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ABSTRACT
Recent studies show that the nonuniform thermal distribu-
tion on the substrate and interconnects has impact on the
circuit reliability and performance. Hence three-dimensional
(3-D) thermal analysis is crucial to analyze these effects. In
this paper, we present and develop an efficient 3-D tran-
sient thermal simulator based on the alternating direction
implicit (ADI) method for large scale temperature estima-
tion problems. Our simulator, 3D Thermal-ADI, not only
has a linear runtime and memory requirement, but also is
unconditionally stable. Detailed analysis of the 3-D nonho-
mogeneous cases and boundary conditions for on-chip VLSI
applications are introduced and presented. Extensive exper-
imental results show that our algorithm is not only orders
of magnitude faster than the traditional thermal simulation
algorithms, but is also highly accurate and memory efficient.
The temperature profile of steady state can be reached in
few iterations. The software is avaiable on the web [1].
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1. INTRODUCTION
A comprehensive analysis of the thermal effects in high-

performance VLSI has been discussed recently [2], [3], [4],
[5]. Due to the rapid increase of power and packaging den-
sities, thermal issues have become important factors of the
reliability and performance concerns for advanced very large
scale integration (VLSI) design and manufacturing. There-
fore, management of thermal issues is becoming a key factor
to success for the next-generation high-performance VLSI
design.

In general, thermal effects are caused by the power dis-
tribution and dissipation. The primary power consump-
tion in chips is associated with devices. However, the ther-
mal effects in interconnects are becoming more serious even
though the Joule heating only contributes a small part of the
chip power consumption. The trend of temperature distri-
bution along vertical distance from the upper surface of the
silicon substrate to the top metal level has been simulated
[6]. As technology is scaling down, the maximum tempera-
ture increases and the temperature gradient between the top
metal wires and the silicon substrate becomes larger. This
is because the scaling trend, which increases interconnect
levels, current density, and thermal coupling as well as the
introduction of low-k materials, makes the thermal effects
worse.

High temperature not only causes timing failures of the
VLSI circuit design but also degrades chip reliability. For
example, the temperature-induced logic fault occurs in a 10-
bit adder because the large temperature gradient causes the
arrival time of an input signal at the 10th bit to become
slower than expected [7].

Therefore, how to effectively analyze the chip-level 3-D
thermal distribution and hot-spot locations is important.
There are some issues making the problem hard to deal with.
The uniform heat distribution does not guarantee the uni-
form temperature profile due to the complex 3-D nature of
heat spreading. This addresses another 3-D thermal issue.
If the thermal analysis of interconnects is based on single
isolated lines, this approach cannot solve the highly inte-
grated VLSI chip due to the fact that interconnects form a
complicated 3-D array. Therefore the total heating in the
interconnects could be more severe due to self-heating and
thermal coupling.

Several approaches have been proposed to perform ther-
mal analysis. The finite difference method with equivalent



RC model has been presented [7], [8]. However, due to the
complexity of solving the large scale matrix, the existing
direct matrix-solving algorithms suffer superlinear runtime
and memory usage for large scale problems. A full-chip ther-
mal analysis was presented in [9], but the problem was sim-
plified with function blocks. A two-dimensional full-chip
thermal simulation was also presented [10].

In this paper, we propose an efficient transient thermal
simulator using the ADI method [11] to simulate the full-
chip 3-D temperature profile. Basically the ADI method is
an alternative solution method which, instead of solving the
3-D problems, solves a succession of three one-dimensional
(1-D) problems as illustrated in Fig. 1. Our simulator, 3D
Thermal-ADI, is not only unconditionally stable but also
has a linear runtime and memory usage. The temperature
profile of steady state can also be reached in few iterations.
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Figure 1: ADI Method.

The remainder of the paper is organized as follows. An
overview of the simulator is presented in Section 2. Section
3 discusses the problem formulation using finite difference
method. Section 4 deals with the ADI method. The imple-
mentation and experimental results are presented in Section
5, followed by the conclusion in Section 6. The proof of un-
conditional stability of the ADI method is in the appendix.

2. OVERVIEW OF THE SIMULATOR
An overview of the 3D Thermal-ADI simulator will be pre-

sented including the modeling strategy, temperature-power
relation, and the main flowchart of the simulator.

2.1 Modeling Strategy
Consider a chip with package and heat sinks, e.g., the Mo-

torola PowerPC microprocessors with controlled-collapsed-
chip-connection/ceramic-ball-grid-array (C4/CBGA) single-
chip package are shown in Fig. 2 [12]. The modeling strategy
is illustrated in Fig. 3 with two parts [7]. First, the tem-
perature distribution in a chip containing the interconnects
and a portion of the silicon substrate is governed by the fol-
lowing 3-D heat conduction equation [13], and is formulated
with the finite difference method alternatively solved by the
ADI technique for a high degree of accuracy

ρCp
∂T (~r, t)

∂t
= 5 · [κ(~r, T ) 5 T (~r, t)] + g(~r, t) (1)

subject to the thermal boundary conditions
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Figure 2: Cross-section view of the PowerPC with
C4/CBGA package and heat sinks and the simplified
thermal resistance network.

κ(~r, T )
∂T (~r, t)

∂ni

+ hiT (~r, t) = fi(~rsi
, t), (2)

where T is the time dependent temperature, ρ is the density
of the material, Cp is the specific heat, κ is the thermal
conductivity as a function of temperature and position, g
is the heat energy generation rate, hi is the heat transfer
coefficient on the boundary surface of the chip, fi(~rsi

, t) is
an arbitrary function on the boundary surface si, and ∂/∂ni

is the differentiation along the outward direction normal to
the boundary surface si.

The physical meaning of (1) is described as follows. Con-
sider the energy-balance condition for a small control vol-
ume. The rate of energy stored in a control volume causing
the temperature increase is

∫

ρCp
∂T
∂t

dV . Suppose that the

rate of heat conduction through surface d ~A is q = κd ~A ·5T .
Then the rate of heat flow entering the control volume is
∫

q =
∫

κ 5 T · d ~A =
∫

5·[κ 5T ] dV . The power generated
in a control volume is

∫

gdV . For the convection boundary
conditions, the function fi in (2) is fi = hiT∞, where T∞ is
the ambient temperature.

1
θR

2
θR

3
θR

4
θR

5
θR

X

Y
Z

Chip 

Equivalent Thermal Resistance 

6
θR

Figure 3: Modeling Strategy of 3D Thermal-ADI
simulator.

Second, the complicated package and heat sink structures
are modeled as 1-D equivalent thermal resistances network,
e.g., Fig. 2. Suppose that the package surfaces are held
isothermal. If the package surfaces are not isothermal, 3-D
model is needed for better accuracy to include the contribu-
tion due to heat spreading within the package. The equiv-
alent thermal resistances, Ri

θ, on the six sides of the chip
boundary are applied to model the effective heat transfer
coefficient, he

i = 1
AiRi

θ

, where Ai is the effective area normal

to the direction of heat flow. Then (2) can be used to model
the equivalent convection boundary conditions with hi = he

i

and fi = he
i T∞. Therefore the equation is

κ(~r, T )
∂T (~r, t)

∂ni

= he
i (T∞ − T (~r, t)). (3)



The finite difference method is used to solve (1), and ef-
forts are made to keep the formulas having second-order
accuracy in time and space. Since there is not only one ma-
terial in the chip, the homogeneous and non-homogeneous
cases are also considered.

However, the computational inefficiency due to the large
size of the problem and the complexity of the non-homogeneous
cases requires long runtime and large memory usage. There-
fore, we introduce the ADI method to alleviate the problems.
By the ADI method, only the variables in one direction are
implicit in each step; thus, the matrix for solving the ADI
method at each direction is tridiagonal. This implies that
no matrix solving is needed, and runtime for solving the
tridiagonal matrix is linear. The detailed method and the
formulas we derived are discussed in Section 4. A practical
concern for power-temperature relation will be discussed in
the next section.

2.2 Mutual Relation of Power-Temperature
The sources of power consumption in VLSI circuits are

from devices and interconnects. There are four sources of
power consumption from devices, which are switching power,
short-circuit power, leakage circuit power, and static power
[14]. The source of power consumption in interconnects is
from self-heating. Note that the thermal time constant of
the heat conduction is much larger than the circuit clock
period, which implies that the temperature variation caused
by transient currents is small. Therefore we are able to
use the average power dissipation in calculating the heat
generation rate at each time step.

Temperature and power are related to each other. In gen-
eral, the physical parameters, e.g., resistivity and carrier
mobility are sensitive to temperatures. This implies that
power is sensitive to temperature. For example, the power
generated from self-heating which is proportional to resistiv-
ity is specially sensitive to temperature. On the other hand,
the temperature profile needs the accurate power estimation
for heat sources, since the different power distribution may
have a very different temperature profile.

Since the temperature and power are mutually related,
the update of power and temperature are needed for the
calculation in each transient iteration. As shown in Fig. 4,
the first power estimation is calculated by the given initial
temperature. After that, the estimated power for each tran-
sient iteration is dependent on the temperature profile of the
previous iteration. Similarly, the calculation of the tempera-
ture profile by the ADI method in each transient iteration is
dependent on the previous power estimation. The process is
stopped when the temperature profile converges to a steady
state.

2.3 Flowchart of the Simulator
The main procedure of the simulator is described as fol-

lows and shown in Fig. 4. The geometric information and
locations of the interconnects and transistors are given. The
simplified problem which gives only the geometry and loca-
tions of the function-blocks can also be handled. This infor-
mation may be extracted from GDSII file or other sources.
The corresponding power densities are given from the power
estimation tools [15], [16]. The package and cooling sys-
tem data and the chip size are given in order to apply the
boundary conditions. The temperature sensitive physical
parameters as well as the technology information are given.
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Figure 4: The flowchart of the 3D Thermal-ADI
Simulator.

The system initializes the computation by combining all the
information, and begins the calculation by the ADI based
solver.

Several transient iterations are needed to converge to the
thermal steady state. Each transient iteration repeats the
following procedure. The ADI based solver calculates the
temperature distribution with three alternating direction
implicit steps. Then the system checks whether the temper-
ature profile converges to steady state or not. If the results
do not converge, the temperature sensitive physical parame-
ters and the power are updated by the current temperature
solutions. Then the next iteration will be calculated accord-
ing to the new power and physical values. If the results do
converge, the temperature profile approaches a steady state.

In the following section we will discuss the problem formu-
lation by the finite difference method to have second-order
accuracy both in time and space. We also derive the formu-
las for homogeneous and non-homogeneous cases.

3. PROBLEM FORMULATION BY FINITE
DIFFERENCE METHOD

For a given chip, the temperature distribution is governed
by (1), and is subject to the boundary conditions in (3). For
the homogeneous material, the term 5 · [κ(~r, T ) 5 T (~r, t)]
in (1) can be replaced by κ(T ) 52 T (~r, t). We have

∂T (~r, t)

∂t
= α[

∂2T (~r, t)

∂x2
+

∂2T (~r, t)

∂y2
+

∂2T (~r, t)

∂z2
] +

g(~r, t)

ρCp

(4)

where α = κ
ρCp

. This equation is a second-order parabolic

partial differential equation.
The procedure to establish a finite-difference method of

the partial differential equation is to discretize the contin-
uous space domain and time domain. At time step n, the
temperature T (x, y, z, t) at grid point (i, j, k) can be replaced
by T (i∆x, j∆y, k∆z, n∆t) which is denoted as T n

i,j,k for the
rest of the paper. According to central finite-difference dis-
cretization, the second-order partial derivative of T with
respect to x can be expressed as:

∂2T

∂x2

∣

∣

∣

∣

n

i,j,k

=
T n

i+1,j,k−2T n
i,j,k +T n

i−1,j,k

(∆x)2
+ O[(∆x)2] ≈

δ2
xT n

(∆x)2
(5)

where δ2
xT = Ti−1,j,k−2Ti,j,k+Ti+1,j,k . The truncation error



(TR) is O[(∆x)2]. Similar process can be applied to y and
z directions.

The next step is to consider the time discretization prob-
lem. Since (4) comes from energy conservation, the rate of
the energy stored in a control volume equals the sum of the
net rate of energy transferring into the control volume and
the power generated. Hence on the left-hand side of (4) is
the energy stored from time step n to n + 1 in a control
volume. However, the choice of time step on the right-hand
side affects the accuracy and stability of discretization [17].
In this paper, the Crank-Nicolson method is used by taking
the average of energy at time step n (simple explicit method)
and time step n + 1 (simple implicit method). According to
(4) and (5), we have:

T n+1
i,j,k

−T n
i,j,k

∆t
= α[

δ2
xT n+1+δ2

xT n

2(∆x)2
+

δ2
yT n+1+δ2

yT n

2(∆y)2

+
δ2
zT n+1+δ2

yT n

2(∆z)2
] +

g

ρCp

. (6)

After rearrangement, we get the difference equation as:

−rxT n+1
i−1,j,k−ryT n+1

i,j−1,k−rzT n+1
i,j,k−1 +2(1+rx+ry+rz)T

n+1
i,j,k

−rxT n+1
i+1,j,k

−ryT
n+1

i,j+1,k−rzT
n+1

i,j,k+1 = rxT
n

i−1,j,k +ryT
n

i,j−1,k +rzT
n

i,j,k−1 +2(1−rx

−ry−rz)T
n

i,j,k +rxT
n

i+1,j,k +ryT
n

i,j+1,k +rzT
n

i,j,k+1 +
2∆t

ρCp

gi,j,k , (7)

where rx = α∆t

(∆x)2
, ry = α∆t

(∆y)2
, rz = α∆t

(∆z)2
and i = 1, 2, . . . , I−1,

j = 1, 2, . . . , J−1, k = 1, 2, . . . , K−1. Note that there are
seven unknowns in each equation at point (i, j, k) to solve the
time step n+1. With this choose of discretization, the equa-
tion has the best accuracy with TR = O[(∆t)2, (∆x)2, (∆y)2,
(∆z)2]. This method is unconditionally stable [17].

Basically, there are several different materials in a chip
such as silicon, polysilicon, silicon dioxide, silicon nitride,
aluminum, copper, and others. In the next section we will
discuss the nodes having control volumes with different ma-
terials.

3.1 Non-homogeneous Case
Consider the nodes located between different materials,

e.g., the geometry as shown in Fig. 5, one quarter of the
control volume is material 2 and three quarters of the con-
trol volume is material 1. The rate of energy stored in the
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Figure 5: The non-homogeneous discretization ex-
ample with node Ti,j,k on the boundary surface of
two different materials.

control volume causing the temperature increase is dE
dt

=

[ 3
4
∆V ρ1Cp1 + 1

4
∆V ρ2Cp2]

∆Ti,j,k

∆t
where ∆V = ∆x∆y∆z is

the control volume. The power generated in the control
volume is g = 3

4
∆V g1 + 1

4
∆V g2. The rate of heat conduc-

tion from Ti,j,k to Ti−1,j,k and Ti+1,j,k are q1 = κ1
∆y∆z

∆x
(Ti,j,k−

Ti−1,j,k) and q2 = κ1+κ2
2

∆y∆z

∆x
(Ti,j,k−Ti+1,j,k), respectively. The

others can be calculated similarly. Then we obtain q3 =
3κ1+κ2

4
∆x∆z
∆y

(Ti,j,k−Ti,j−1,k), q4 = 3κ1+κ2
4

∆x∆z
∆y

(Ti,j,k−Ti,j+1,k),

q5 = κ1
∆x∆y

∆z
(Ti,j,k − Ti,j,k−1), and q6 = κ1+κ2

2
∆x∆y

∆z
(Ti,j,k −

Ti,j,k+1). From energy conservation, we have

g =
dE

dt
+ q1 + q2 + q3 + q4 + q5 + q6. (8)

It can be rearranged as follows:

∆Ti,j,k

∆t
=

1
3
4
ρ1Cp1+ 1

4
ρ2Cp2

{

κ1+κ2
2

Ti+1,j,k−Ti,j,k

∆x
−κ1

Ti,j,k−Ti−1,j,k

∆x

∆x

+

3κ1+κ2
4

Ti,j+1,k−Ti,j,k

∆y
− 3κ1+κ2

4

Ti,j,k−Ti,j−1,k

∆y

∆y

+

κ1+κ2
2

Ti,j,k+1−Ti,j,k

∆z
−κ1

Ti,j,k−Ti,j,k−1

∆z

∆z
} +

3g1+g2

3ρ1Cp1+ρ2Cp2
.

(9)
This expression implies that it is the same as taking cen-

tral finite-difference discretization on (1). Therefore, the
accuracy of the space domain is still second-order. The next
step is using the Crank-Nicolson method to treat the time
discretization resulting in difference equations with second-
order accuracy in time. Note that the equations discussed
so far are for those points inside the chip. The equations for
those points on the boundary will be discussed later.

For a 3-D grid with size l×m×n, the number of degrees-
of-freedom for this system is N = lmn, which requires a ma-
trix A with size N ×N to store the coefficients. To solve the
equations Ax = b by Cholesky decomposition with order-
ing the matrix by the minimum degree ordering algorithm,
which is known as the fastest decomposition algorithm and
the least fill-in ordering method for a grid structure, it is
still not fast enough to solve the large size problem. The
next section introduces the ADI method.

4. ADI METHOD
Peaceman and Rachford [18], and Douglas and Gunn [11]

developed a variation on the Crank-Nicolson approximation
which is known as the ADI method. In this paper, we
adopt the Douglas-Gunn technique applied to the thermal
problems. The Peaceman-Rachford approach has second-
order accuracy and unconditional stability for only two-
dimensional problems. It leads to conditionally stable and
first-order accuracy in time for 3-D problems.

4.1 Douglas-Gunn Approach
First rewrite (6) as follows:

T n+1 − T n = rx
δ2
x

2
(T n+1 + T n) + ry

δ2
y

2
(T n+1 + T n)

+rz
δ2
z

2
(T n+1 + T n) +

∆t

ρCp
g. (10)

Instead of directly solving (10) at every time step, we solve
the same equations by three sub-time steps at each time
march n → n + 1.

Step I :

T n+ 1
3 −T n =

rxδ2
x

2
(T n+ 1

3 +T n) + ryδ2
yT n + rzδ2

zT n

+
∆t

ρCp

g (11)



Step II :

T n+ 2
3 −T n =

rxδ2
x

2
(T n+ 1

3 +T n) +
ryδ2

y

2
(T n+ 2

3 +T n)

+rzδ2
zT n +

∆t

ρCp

g (12)

Step III :

T n+1−T n =
rxδ2

x

2
(T n+ 1

3 +T n) +
ryδ2

y

2
(T n+ 2

3 +T n)

+
rzδ2

z

2
(T n+1 + T n) +

∆t

ρCp

g. (13)

Theorem 1. The ADI method in (11)-(13) is uncondi-
tionally stable. The detailed proof is in the appendix.

This method splits the time march from n to n + 1 into
three steps: from n to n + 1

3
, n + 1

3
to n + 2

3
, and n + 2

3
to

n + 1 as shown in Fig. 1. In Step I, the x direction is im-
plicit, but the y and z directions are explicit. For each (y, z)
row of grid points, there are I − 1 equations of the corre-
sponding (x, y, z) point from (11), the other two equations
of the corresponding point are from boundary conditions,
which will be discussed in Section 4.2. Since each point in

11 is related to three unknown variables T
n+ 1

3
i−1,j,k, T

n+ 1
3

i,j,k , and

T
n+ 1

3
i+1,j,k, there is a tridiagonal system of each (y, z) value.

For the grid size l ×m× n with total node count N = lmn,
the tridiagonal matrix of each (y, z) is solved by the Thomas
Algorithm [17] with time complexity O(l). Similarly, it ap-
plies to Step II and Step III. Therefore the total time
complexity is O(itr × 3 × lmn) = O(N), where itr is the
number of transient iterations.

The detailed difference equations for these three steps
with the homogeneous and non-homogeneous cases can be
derived. For example, the three steps of the homogeneous
case can be derived as follows:

Step I :

−rxT
n+ 1

3
i−1,j,k + 2(1+rx)T

n+ 1
3

i,j,k
− rxT

n+ 1
3

i+1,j,k =

{ rxT n
i−1,j,k + 2ryT n

i,j−1,k + 2rzT n
i,j,k−1 + 2(1−rx−2ry−2rz)T n

i,j,k

+ rxT n
i+1,j,k + 2ryT n

i,j+1,k + 2rzT n
i,j,k+1} +

2∆t

ρCp

gi,j,k (14)

Step II :

−ryT
n+ 2

3
i,j−1,k + 2(1+ry)T

n+ 2
3

i,j,k
− ryT

n+ 2
3

i,j+1,k =

{ rxT
n+ 1

3
i−1,j,k − 2rxT

n+ 1
3

i,j,k
+ rxT

n+ 1
3

i+1,j,k} + { rxT n
i−1,j,k + ryT n

i,j−1,k

+2rzT n
i,j,k−1 + 2(1−rx−ry−2rz)T

n
i,j,k + rxT n

i+1,j,k + ryT n
i,j+1,k

+2rzT n
i,j,k+1} +

2∆t

ρCp

gi,j,k (15)

Step III :

−rzT
n+1
i,j,k−1 + 2(1+rz)T n+1

i,j,k
− rzT

n+1
i,j,k+1 =

{rxT
n+ 1

3
i−1,j,k − 2rxT

n+ 1
3

i,j,k
+ rxT

n+ 1
3

i+1,j,k} + {ryT
n+ 2

3
i,j−1,k − 2ryT

n+ 2
3

i,j,k

+ryT
n+ 2

3
i,j+1,k} + {rxT n

i−1,j,k + ryT n
i,j−1,k + rzT n

i,j,k−1 + 2(1−rx−ry

−rz)T n
i,j,k + rxT n

i+1,j,k + ryT n
i,j+1,k + rzT n

i,j,k+1} +
2∆t

ρCp

gi,j,k . (16)

In Step I as shown in (14), there are I + 1 equations for
each (y, z) value. Also there are three unknown variables

T
n+ 1

3
i−1,j,k, T

n+ 1
3

i,j,k , and T
n+ 1

3
i+1,j,k for each equation. Then this

can be expressed as a tridiagonal system:
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(17)

where bi are the values on the right-hand side of the equal
sign in (14). Note that the coefficients denoted with dia-
monds will be determined by the boundary conditions. For
the non-homogeneous cases, the difference equations of the
ADI method can be derived with the same rule.

4.2 Boundary Conditions
So far the equations we have discussed are only for the

points inside the chip. In this section the equations related
to the boundary conditions will be discussed. These com-
plete the system to be solved, with the number of the un-
known variables equal to the number of the equations.

As mentioned in Section 2.1, the complicated package and
heat sinks can be modeled by (3). Suppose that we have the
following boundary conditions in x-direction:

−κ
∂T

∂x
+ he

x−T = he
x−T∞ at surface x = 0

κ
∂T

∂x
+ he

x+T = he
x+T∞ at surface x = L (18)

where he
x− and he

x+ are the effective heat transfer coeffi-
cients calculated from the equivalent thermal resistance on
the boundary x = 0 and x = L, respectively.

In order to achieve second-order accuracy, the central-
difference approximation will be used to discretize the bound-
ary condition equations. First, we introduce the virtual tem-
perature nodes T n

−1,j,k and T n
I+1,j,k by expanding the dis-

tance ∆x to external boundary. Then we apply the central-
difference approximation to discretize the boundary condi-
tion equations, e.g., at i = 0 and time step n in (18), we
have

−κ
T n
1,j,k−T n

−1,j,k

2∆x
+ he

x−T n
0,j,k = he

x−T∞ at i = 0. (19)

Thus the virtual point can be expressed as:

T n
−1,j,k = T n

1,j,k +
2∆xhe

x−

κ
(T∞ − T n

0,j,k). (20)

The other virtual points can be derived in the same way.
Then these derived virtual points can be used to eliminate
the virtual points occurring on the boundary points.

For instance, consider the point (0, 0, 0) on the boundary
as shown in Fig. 6. The energy generates in the control
volume is G = 1

8
∆V g. The rate of energy stored causing

the temperature increase is dE
dt

= 1
8
∆V ρ1Cp1

∆T0,0,0

∆t
. The

rates of heat transfer are q1 = he
x−

∆y∆z

4
(T0,0,0 − T∞), q2 =

κ1
∆y∆z

4∆x
(T0,0,0 − T1,0,0), q3 = he

y−
∆x∆z

4
(T0,0,0 − T∞), q4 =

κ1
∆x∆z
4∆y

(T0,0,0 − T0,1,0), q5 = he
z−

∆x∆y

4
(T0,0,0 − T∞), and

q6 = κ1
∆x∆y

4∆z
(T0,0,0−T0,0,1). Then the difference equation of

the Crank-Nicolson method derived by energy conservation
at point (0, 0, 0) is:
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Figure 6: The boundary conditions for node at point
(0, 0, 0).

G =
dE

dt
+ q1 + q2 + q3 + q4 + q5 + q6. (21)

After rearranging, we have

1

4
(1+rxβx−+ryβy−+rzβz−)T n+1

0,0,0−
rx

4
T n+1
1,0,0−

ry

4
T n+1
0,1,0−

rz

4
T n+1
0,0,1 =

1

4
(1−rxβx−−ryβy−−rzβz−)T n

0,0,0 +
rx

4
T n
1,0,0+

ry

4
T n
0,1,0 +

rz

4
T n
0,0,1+

1

2
(rxrhx−+ryrhy−+rzrhz−)+

∆t

4ρCp

g0,0,0 (22)

where rhx− =
he
x−∆xT∞

κ
, rhy− =

he
y−∆yT∞

κ
, rhz− =

he
z−∆zT∞

κ
,

βx− = 1+
he
x−∆x

κ
, βy− = 1+

he
y−∆y

κ
, βz− = 1+

he
z−∆z

κ
. This

equation is the same as substituting virtual points, T n+1
−1,0,0,

T n+1
0,−1,0, T n+1

0,0,−1, T n
−1,0,0, T n

0,−1,0, and T n
0,0,−1 into the Crank-

Nicolson equation at point (0, 0, 0) in (7). Note that the
coefficients in (22) are very important to maintain the sym-
metry of the matrix when solving the problem. If both sides
of (22) are multiplied by 4, the symmetry of the matrix will
be destroyed. There are 26 different locations of the point
Ti,j,k on the boundary surface. All 26 types can be derived
with the same way. Furthermore, the difference equations
of the ADI method can similarly be derived by substituting
virtual points for each step from (14) to (16).

5. EXPERIMENTAL RESULTS AND DISCUS-
SION

The proposed simulator, 3D Thermal-ADI, was imple-
mented with C++ language and executed on a PC with
a 1.4-GHz Pentium 4 processor and 1 GB memory. Note
that the matrix in the Crank-Nicolson method is solved by
the Choleskey decomposition with ordering of the matrix
by the minimum degree ordering method in order to make
a fair comparison.

The runtime comparison of the simulator with the Crank-
Nicolson method and the 3D Thermal-ADI method per it-
eration is illustrated in Fig. 7. Note that the scale in y
axis is a logarithm on the top. As can be seen in Fig. 7,
the runtime of 3D Thermal-ADI is linearly proportional to
the number of the grid nodes. However, the runtime of the
Crank-Nicolson method increases dramatically.

The comparison of memory usages of the simulator with
the Crank-Nicolson method and the 3D Thermal-ADI method
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Figure 7: Runtime comparison of the simulations
with the Crank-Nicolson and the 3D Thermal-ADI
approaches.
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Figure 8: Comparison of the memory usage of the
simulations with the Crank-Nicolson and the 3D
Thermal-ADI approaches.

is illustrated in Fig. 8. On the top figure, the y axis is also
a logarithm. The memory usage of the 3D Thermal-ADI is
linear with respect to the node number. However, the mem-
ory usage of the Crank-Nicolson method increases quickly,
which limits the size of the problem which can be solved on
a given machine.

Consider a chip with size 11.3 mm×14.4 mm. The power
in each function block is shown in Fig. 9. The discretiza-
tion size is 565 × 720 × 7 with ∆x = 20 µm, ∆y = 20 µm,
and ∆z = 20 µm. Here we only consider the volume near
the substrate surface, and the substrate is included in the
equivalent thermal resistance. The effective heat transfer
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Figure 9: The illustration of the power in each func-
tion block.

coefficients, he
i , are supposed to be 8 × 104 W/m2K in the

primary heat transfer path and 7 × 103 W/m2K in the sec-
ondary heat transfer path. The simulation runs 1200 iter-
ations with time increment ∆t = 10−4 s. The runtime is
about 311 min. The results of the temperature profile are
shown in Fig. 10. The highest temperature is about 180 oC
which is influenced by the effective heat transfer coefficients.
There are three main parameters that affect the tempera-
ture: the board-level component population (thermal load-
ing), the heat sink style and design, and the air velocity on
the components and/or the heat sink [19].

Figure 10: Thermal Profile at t = 0.07 s.

The transient temperature profile of the average tempera-
ture is shown in Fig. 11. From the figure we can find that the
average temperature reaches steady state at time 0.07 s or
at iteration 700. The temperature difference between time
0.07 s and 0.12 s is 0.3 %.

However, we need 700 iterations to reach the steady state
in this circuit. In order to decrease the number of iterations
to approach the steady state, we can increase the size of
time step ∆t. Is there any limit for the maximum ∆t? For
the problem solved by Crank-Nicolson method, there is a
criterion for the maximum ∆t [20]. If the ∆t is bigger than
the criterion, then the simulation begins to oscillate. After
careful analysis, the estimate ∆t of the critical time step can
be expressed as follows:

∆tc = min {
1

2((1 − s)α1 + sα2)
[

1
bx

∆x2 +
by

∆y2 + bz

∆z2

]}(i,j,k) (23)
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Figure 11: The transient results for the average tem-
perature with ∆t = 10−4s, ∆t = 10−3s, and ∆t = 10−2s.

where s depends on the location of the point Ti,j,k as dis-
cussed in the non-homogeneous case, and bx, by, and bz

depend on the location of the point Ti,j,k in the boundary
conditions. The meaning of (23) is as follows. Calculate the
value of each discretization point Ti,j,k on the right-hand
side of (23), then find the minimum value which is the crite-
rion for the maximum ∆t among all points. For example, the
case shown in Fig. 5 has one quarter of material 2 and three
quarters of material 1. Therefore the value of s is 1

4
. We

have bx = 1
2
(1+β±x), by = 1

2
(1+β±y), and bz = 1

2
(1+β±z)

if the point is located on the boundary surface x, y, and z
respectively. Otherwise we have bx = 1, by = 1, and bz = 1.
Let us look at the example in Fig. 6. The point T0,0,0 is lo-
cated on the left plane at x = 0, the front plane at y = 0, and
the bottom plane at z = 0. Hence we have bx = 1

2
(1+β+x),

by = 1
2
(1 + β+y), and bz = 1

2
(1 + β+z). The value of ∆tc in

this example is 8.293 × 10−7 s.
For the problem solved by the Thermal-ADI method, there

is no such restriction. The transient results for the av-
erage temperature with ∆t = 10−4 s, ∆t = 10−3 s, and
∆t = 10−2 s are shown in Fig. 11. Obviously, there is no
oscillation for ∆t bigger than 8.293× 10−7 s. If the time in-
crement ∆t is 10−2 s, it only takes seven iterations to reach
the thermal time constant. However, it takes 700 iterations
for ∆t = 10−4 s and 70 iterations for ∆t = 10−3 s to reach
the steady state respectively.

From Fig. 11, there are deviations between the transient
thermal results. The differences between the transient tem-
perature results by comparing ∆t = 10−4 to ∆t = 10−3 are
from 0.007% to 0.037% in 0.1 s. Comparing ∆t = 10−4 with
∆t = 10−2, the differences are from 0.03% to 2.96% in 0.1 s
period. Therefore the error of ∆t = 10−2 is about 100 times
larger than ∆t = 10−4. It satisfies that the Thermal-ADI
has second-order accuracy in time. Therefore, a tradeoff
between the runtime (i.e., iteration number) and accuracy
depends on the designer’s requirements.

If the time increment is too big, the Thermal-ADI method
still can convergence to steady state. For instance, the time
increments are ∆t = 0.05 s and ∆t = 0.1 s as shown in
Fig. 12. Even though we can not know the transient results
because of the oscillation, the results still converge to steady
state in several iterations.

6. CONCLUSION
In this paper, an efficient transient 3-D thermal simula-
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Figure 12: The transient results for the average tem-
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tor based on the ADI method, 3D Thermal-ADI, has been
presented and developed for the analyses of VLSI chip ther-
mal distribution. Detailed discussions of the 3D nonho-
mogeneous material and boundary conditions for on-chip
VLSI applications are also presented. The experimental re-
sults show that our simulator not only has a linear runtime
and memory requirement, but also is unconditionally sta-
ble. The temperature profile of steady state can also be
reached in few iterations. In the future, we will extend the
3D Thermal-ADI as a general tool to develop an electrother-
mal simulator as well as a thermal reliability diagnosis tool.

7. APPENDIX
In this section the unconditional stability of the ADI method

in (11)-(13) is proved.
Proof: After rearranging (11)-(13), we have the following
form
Step 1 : (1 −

1

2
rxδ

2
x)∆T

n+1
3 = (rxδ

2
x + ryδ

2
y + rzδ

2
z)T n +

∆t

ρCp

g

Step 2 : (1 −
1

2
ryδ

2
y)∆T

n+2
3 = ∆T

n+1
3

Step 3 : (1 −
1

2
rzδ

2
z)∆T

n+1 = ∆T
n+2

3

where

∆T
n+1

3 ≡ T
n+1

3 −T
n ∆T

n+2
3 ≡ T

n+2
3 −T

n ∆T
n+1 ≡ T

n+1−T
n

In order to see the ADI method is unconditionally stable, we
take the discrete Fourier transform of the non-homogeneous
case of equations to have

(1+rx(1−coskx))T̂
n+1

3
i,j,k

= (1−rx(1−cos kx)−2ry(1−cos ky)

−2rz(1−cos kz))T̂ n
i,j,k

(1 + ry(1−cos ky))T̂
n+2

3
i,j,k

= T̂
n+1

3
i,j,k

+ry(1−cos ky)T̂ n
i,j,k

(1+rz(1 − cos kz))T̂ n+1
i,j,k = T̂

n+2
3

i,j,k
+ rz(1 − cos kz)T̂ n

i,j,k

Solving the equations for T̂ n+1
i,j,k as a function of T̂ n

i,j,k

T̂
n+1
i,j,k

= 1
1+rz(1−cos kz)

T
n+2

3
i,j,k

+ rz(1−cos kz)
1+rz(1−cos kz)

T̂ n
i,j,k

= 1
[1+rz(1−cos kz)][1+ry(1−cos ky)]

T̂
n+ 1

3
i,j,k

+
ry(1−cos ky)

[1+rz(1−cos kz)][1+ry(1−cos ky)] T
n
i,j,k+

rz(1−cos kz)
1+rz(1−cos kz)

T̂ n
i,j,k

= {
1−rx(1−cos kx)−2ry(1−cos ky )−2rz(1−cos kz)

[1+rx(1−cos kx)][1+ry(1−cos ky )][1+rz(1−cos kz)]+
ry(1−cos ky)

[1+ry(1−cos ky)][1+rz(1−cos kz)]
+ rz(1−cos kz)

1+rz(1−cos kz)
2}T̂ n

i,j,k

=
[1−rx(1−cos kx)][1−ry(1−cos ky)][1−rz(1−cos kz)]

[1+rx(1−cos kx)][1+ry(1−cos ky)][1+rz(1−cos kz)] T̂ n
i,j,k.

In the above equation, we have

[1 − rx(1 − cos kx)][1 − ry(1 − cos ky)][1 − rz(1 − cos kz)]

[1 + rx(1 − cos kx)][1 + ry(1 − cos ky)][1 + rz(1 − cos kz)]
< 1.

Therefore, the ADI method is unconditionally stable.
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