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ABSTRACT
Due to the dramatic increase of clock frequency and inte-
gration density, power density and on-chip temperature in
high-end VLSI circuits rise significantly. To ensure the tim-
ing correctness and the reliability of high-end VLSI design,
efficient and accurate chip-level transient thermal simula-
tions are of crucial importance.

In this paper, we develop and present an efficient tran-
sient thermal simulation algorithm based on the alternating-
direction-implicit method. Our algorithm, Thermal-ADI,
not only has a linear runtime and memory requirement, but
also is unconditionally stable which ensures that time-step is
not limited by any stability requirement. Extensive exper-
imental results show that our algorithm is not only orders
of magnitude faster than the traditional thermal simulation
algorithms but also highly accurate, and efficient in memory
usage.

1. INTRODUCTION
Due to the relentless push for high speed, high perfor-

mance, and high component density, the power density and
the on-chip temperature in the high-end VLSI circuits rise
significantly. The 1999 International Technology Roadmap
for Semiconductors (ITRS) shows that the maximum power,
number of metal layers, and the wire current density will
significantly increase for the future high-performance Mi-
croprocessor Unit (MPU). This trend shows the importance
of thermal issues on VLSI design.

High temperature not only causes timing failures for both
transistors and interconnects but also degrades chip relia-
bility. For example, electromigration (EM) effect for the
interconnects is exponentially proportional to the tempera-
ture, not to mention electrostatic discharge(ESD) or other
effects. For the next generation process, the low dielectric
constant (low-k) materials will exaggerate the thermal ef-
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fects because of their low thermal conductivity. To effec-
tively analyze the thermal distribution and locate the hot
spots, chip-level thermal analyses are of crucial importance.
Furthermore, for the finite thermal conductivity of the com-
plicated packaging problem, the uniform heat distribution
does not guarantee uniform temperature profile. Thus, it is
valuable to know the temperature profile and hot spots, not
only for the steady state but also the transient state.

Several approaches have been proposed to perform ther-
mal analysis [3]-[9]. However, due to the complexity of solv-
ing the large scale matrix, the existing direct matrix-solving
algorithms suffer superlinear runtime and memory consump-
tion for large scale problems. In this paper, we propose an
algorithm by using the alternating direction implicit (ADI)
method to simulate the temperature profile. Our method,
Thermal-ADI, is not only unconditionally stable but also
has a linear runtime and a linear memory requirement. The
experimental results show orders of runtime improvement
over the traditional algorithms.

The remainder of the paper is organized as follows. The
thermal simulation physics is discussed in Section 2. Section
3 presents an overview of the numerical formulation of the
heat transfer. Section 4 deals with the thermal simulation by
ADI method. The implementation and experimental results
are presented in Section 5, followed by the conclusion in
Section 6.

2. THERMAL SIMULATION PHYSICS
As shown in Figure (1), the temperature distribution in a

chip is governed by the following partial differential equation
of heat conduction [1] from the energy conservation law [12]:

ρcp
∂T (~r, t)

∂t
= 5 · [κ(~r, T ) 5 T (~r, t)] + g(~r, t) (1)

subject to the following thermal boundary conditions

κ(~r, T )
∂T (~r, t)

∂ni

+ hiT (~r, t) = fi(~rsi
, t), (2)

where T is the temperature, ρ is the density of the material,
cp is the specific heat, κ is the thermal conductivity, g is the
heat energy generation rate, hi is the heat transfer coefficient
on the boundary surface of the chip, fi(~rs, t) is any function
on the boundary surface, and ∂/∂ni is the differentiation
along the outward direction normal to the boundary surface
si.
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Figure 1: Energy Conservation and Heat Conduction

Equation. The one-dimensional system is shown on the

right-hand side, and the heat equation derived by energy

conservation is shown on the bottom. q|x = −[κA ∂T
∂x

]x
is the conduction heat into the system. q|x+∆x =

−[κA ∂T
∂x

]x+∆x is the conduction heat out of the system.
dE
dt

is the change rate of energy stored inside the system.

G is the rate of energy generation inside the system.

In general, thermal conductivity κ(~r, T ) is dependent on
the position and the temperature. The heat generation rate
g(~r, t) comes from each gate and power/ground/clock inter-
connect. The energy generation rate in the interconnects
can be expressed as J2

RMS ·Rρ [7], where JRMS is the RMS
current density, and Rρ is the temperature-dependent resis-
tivity of the interconnects.

The time constant of the heat conduction is much larger
than the clock cycles. Thus we are able to use the heat gen-
eration rate defined above to simulate the transient temper-
ature profile. The full chip temperature profile is supposed
to become stable when the thermal steady state is reached
after enough time. There are three different situations for
the boundary conditions.

• Specified Temperature The temperature is prescribed
along the boundary surface, i.e.,

T (~r, t) = fi(~rs, t).

This is the boundary condition of the first kind.

• Heat Flux The specified heat flux along the boundary
surface can be expressed as:

κ(~r, T )
∂T (~r, t)

∂ni

= qsi
,

where qsi
is the heat flux on the boundary surface si.

This is the second kind of boundary condition. For the
adiabatic boundary condition, we have qsi

= 0.

• Convection Boundary Condition The heat transfers from
the considered boundary surface si to the ambient by
convection can be expressed as:

κ(~r, T )
∂T (~r, t)

∂ni

+ hiT (~r, t) = hiT∞,

where T∞ is the ambient temperature, and hi is the
equivalent heat transfer coefficient. This is the bound-
ary condition of the third kind.

3. A FINITE-DIFFERENCE FORMULATION
OF THE HEAT CONDUCTION

The two-dimensional heat conduction equation can be
rewritten from Equation (1) as:

∂T (x, y, t)

∂t
= α

∂2T (x, y, t)

∂x2
+ α

∂2T (x, y, t)

∂y2
+

1

ρcp

g(x, y, t), (3)

where α = κ
ρcp

. This equation is a second-order parabolic

partial differential equation. The first step to establish a
finite-difference method of the partial differential equation
is to discretize the continuous space domain into a mesh with
a finite number of grid points. As illustrated in Figure (2),
the temperature T (x, y, t) at each point in the chip will be
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Figure 2: Finite Difference Mesh on the x-y plane

replaced by T (i∆x, j∆y, n∆t) which will be denoted as T n
i,j

for the rest of the paper. The first-order partial derivative of
T with respect to x can be converted to the forward finite-
difference representation as:

∂T

∂x
|ni,j=

T n
i+1,j − T n

i,j

∆x
+ O(∆x) ≈

T n
i+1,j − T n

i,j

∆x
,

where the truncation error is O(∆x). Similarly, the central
finite-difference representation of the second-order partial
derivative of T with respect to x can be expressed as:

∂2T

∂2x
|ni,j =

T n
i+1,j − 2T n

i,j + T n
i−1,j

(∆x)2
+ O(∆x)2

≈
T n

i+1,j − 2T n
i,j + T n

i−1,j

(∆x)2
=

δ2
xT n

(∆x)2

where the truncation error is O((∆x)2), and

δ2
xT = Ti−1,j − 2Ti,j + Ti+1,j .

The next step is to consider the time marching problem
for the finite difference equations. Since Equation (1) comes
from the energy conservation, it can be explained physically
as the increasing rate of the stored energy in a control unit
volume equals to the net rate of energy transferring into the
volume. Hence the forward-difference with time on the left-
hand side of Equation (1) is the energy stored from time step
n to n + 1 in the control unit volume. Three time marching
methods are considered.

Simple Explicit Method
Applying the explicit update on the right-hand side of Equa-
tion (3) at time step n, we get:

T n+1 − T n

∆t
= α[

δ2
xT n

(∆x)2
+

δ2
yT n

(∆y)2
] +

1

ρcp

g. (4)
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Similarly, the difference equations in Step II for each col-
umn can be expressed as:

−ryT n+1
i,j−1 + (2 + 2ry)T n+1

i,j − ryT n+1
i,j+1 =

rxT
n+ 1

2

i−1,j + (2 − 2rx)T
n+ 1

2

i,j + rxT
n+ 1

2

i+1,j +
∆t

ρcp

gi,j

i = 1, 2, ..., I − 1

j = 1, 2, ..., J − 1. (13)

Now, we can reduce the two-dimensional problems into a
succession of two one-dimensional problems by the Peaceman-
Rachford ADI algorithm. For every one-dimensional prob-
lem, the tridiagonal matrix can be solved by the Thomas
Algorithm in O(n) time. Given an I × J mesh, the runtime
and memory requirement for each time step is O(I ×J) and
hence is linear with respect to the problem size.

4.2 Douglas-Gunn Algorithm
Douglas and Gunn developed another general algorithm

for the ADI schemes that are unconditionally stable and
retain second order accuracy. As shown in [11], equation (7)
can be rewritten as:

T n+1
− T n

∆t
=

αδ2
x

2(∆x)2
(T n+1 + T

n) +
αδ2

y

2(∆y)2
(T n+1 + T

n) +
1

ρcp

g. (14)

Following the ADI scheme [11], Equation (14) can be solved
by two sub time-steps:

• Step I

T
n+ 1

2 − T
n =

rxδ2
x

2
(T n+1

2 + T
n) + ryδ

2

yT
n +

∆t

ρcp

g (15)

• Step II

T
n+1

− T
n

=

rxδ2
x

2
(T

n+ 1
2 + T

n
) +

ryδ2
y

2
(T

n+1
+ T

n
) +

∆t

ρcp

g.(16)

Since the Douglas-Gunn Algorithm uses a similar ADI
scheme to the Peaceman-Rachford algorithm, we will ignore
the detailed discussion about the time marching scheme.
The detail difference equations in Step I for each row can
be derived as follows:

−rxT
n+1

2
i−1,j

+ 2(1 + rx)T
n+1

2
i,j

− rxT
n+ 1

2
i+1,j

= rxT
n
i−1,j + 2ryT

n
i,j−1

+2(1− rx − 2ry)T n

i,j + rxT
n

i+1,j + 2ryT
n

i,j+1 +
2∆t

ρcp

gi,j

i = 1, 2, ..., I − 1

j = 1, 2, ..., J − 1. (17)

The difference equations in Step II for each column are
as follows:

−ryT
n+1

i,j−1 + 2(1 + ry)T n+1

i,j − ryT
n+1

i,j+1 =

(rxT
n+1

2
i−1,j

− 2rxT
n+1

2
i,j

+ rxT
n+ 1

2
i+1,j

) + rxT
n

i−1,j + ryT
n

i,j−1

+2(1− rx − ry)T
n

i,j + rxT
n

i+1,j + ryT
n

i,j+1 +
2∆t

ρcp

gi,j

i = 1, 2, ..., I − 1

j = 1, 2, ..., J − 1. (18)

Similarly, the above tridiagonal equation sets can be solved
by the Thomas Algorithm in linear time and hence the
Douglas-Gunn Algorithm has a linear runtime and memory
requirement which is the same as the Peaceman-Rachford
algorithm.

5. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

The flowchart of the transient thermal simulation by the
ADI algorithm is shown in Figure (4). The main features of
implementing the algorithm is listed below:

Kernel of
2D Thermal-ADI  

Simulator

Boundary 
Conditions

Physical 
Parameters

Extract of Power/
Ground/Clock Bus 

Circuit LayoutAverage Power
Density Estimation

Temperature 
Profile

Figure 4: The flow chart for the FDTD ADI thermal

simulation

1. The core part of Thermal-ADI is a fast 2D transient
thermal simulator. The first step for the thermal simu-
lation is to partition the chip into a mesh, and choose
the size of ∆t, ∆x and ∆y. The second step is to
extract the layout of transistors and metal wires from
circuits. There are three situations of layout extraction
as shown in Figure (5). The simulator reads the given
circuit descriptions, the coordinates of the gates, metal
wires, and power/ground/clock interconnects for ther-
mal simulation, and then calculates the information at
each node on the mesh according to the physical pa-
rameters at that point. Finally, it iteratively calculates
the temperature at each node by the ADI Algorithm
and outputs the temperature profile.

2. We use band structure to implement the Crank-Nicolson
method in order to reduce the runtime and the memory
usage. For the chip with mesh points (I +1)× (J +1),
we need a matrix A with size (I + 1)(J + 1) × (I + 2)
rather than (I + 1)(J + 1) × (I + 1)(J + 1).

We implemented the Thermal-ADI algorithm with C++
language, and executed it on an Alpha workstation with
Dual SLOTB 667 MHz Alpha 21264 processors.

Si Heat Source Heat Source
Heat Source

(i,j)(i-1,j) (i+1,j)

(i,j+1)

(i,j-1)

(i,j)(i-1,j) (i+1,j)

(i,j+1)

(i,j-1)

(i,j)(i-1,j) (i+1,j)

(i,j+1)

(i,j-1)

Si

(a) (b) (c)

Figure 5: Three different situations of the transistors

and metal wires layout extraction.



# Nodes CN PR DG
(seconds) (seconds) (seconds)

2500 141 2 2
4900 502 4 4

10000 1665 7 6
40000 25303 25 28
90000 133433 64 69

160000 576750 121 140
250000 2520000 223 252
360000 - 297 336
490000 - 405 465
640000 - 561 672
810000 - 711 845

1000000 - 942 1182
4000000 - 3772 5047
9000000 - 9113 11729

25000000 - 28235 37122
49000000 - 60375 85625
64000000 - 83500 113830
81000000 - 106525 143414

100000000 - 134708 -

Table 1: Runtime of Crank-Nicolson method,

Peaceman-Rachford Algorithm, and Douglas-Gunn Al-

gorithm
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Figure 6: Runtime comparisons of the Crank-Nicolson,

Douglas-Gunn, and Peaceman-Rachford Algorithms

The runtime comparison of the Crank-Nicolson method,
Peaceman-Rachford algorithm, and Douglas-Gunn algorithm
is shown in Figure (6) and Table 1.

We executed all these methods with 500 time steps where
each time step is 0.75 ns. As can be seen in Figure (6),
the runtime of the Douglas-Gunn and Peaceman-Rachford
algorithm is linearly proportional to the number of nodes as
shown with size up to 108. However, the runtime of Crank-
Nicolson method increases dramatically.

Transient Thermal Simulation of CN, DG , PR
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Figure 7: The simulation results of the Crank-Nicolson

method, the Douglas-Gunn, and the Peaceman-Rachford

Algorithms at a point in the chip are shown above.
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Figure 8: Douglas-Gunn algorithm is unconditionally

stable. Since the γ values exceed the criteria value 0.5,

the results are still stable rather than oscillating.

The temperature of transient thermal simulation at a ran-
dom chosen point is shown in Figure (7). This is done by
a 100 × 100 mesh with time interval ∆t = 0.75ns and
the time steps 1000. The error of the Douglas-Gunn algo-
rithm compared to the Crank-Nicolson method is less than
0.1%. However, the error of the Peaceman-Rachford algo-
rithm compared to the Crank-Nicolson method is 2.25%.
The transient temperature curve of the Douglas-Gunn Al-
gorithm is very close to the curve of the Crank-Nicolson
method.

The stability constraint γ in Equation (5) was varied from
0.4 to 20 as shown in Figure (8), where 1

2
is the stability

limit. As illusrated in Figure (8), the Douglas-Gunn algo-
rithm is unconditionally stable. Figure (8) also shows that
the larger ∆t of the Douglas-Gunn algorithm turns out to
have the bigger deviation away from the curve of the Crank-
Nicolson method.

The error of the Douglas-Gunn Algorithm is shown in
Figure (9) with different γ at time step 1000. Here we only
change the value of ∆t in γ while keeping the other factors
fixed. The error increases linearly with respect to the γ
value.

As illustrated in Figure (10) and Table 2, the memory
usages of the Douglas-Gunn and Peaceman-Rachford Algo-
rithms are linearly proportional to the number of nodes up to
108. However, the memory usage of Crank-Nicolson Method
increases dramatically.



�������������	
�������	������������������������
	

����

����

����

����

����

����

����

� �� �� 	� 
� ��� ��� ���

�����������������

�
�
�
�
�
��
�
�

Figure 9: The errors of the Douglas-Gunn Algorithm

compared to the Crank-Nicolson Method at time step

1000 as shown in Figure 8 are proportional to ∆t.

Table 2: Memory Usages of the Crank-Nicolson

method, the Peaceman-Rachford, and Douglas-Gunn Al-

gorithms
# Nodes CN PR DG

(Mb) (Mb) (Mb)

4900 7.048 1.104 1.144
10000 17 1.192 1.272
40000 128 1.68 1.992
90000 424 2.48 3.184

160000 998 3.592 4.848
250000 1900 5.016 6.976
360000 - 6.752 9.68
490000 - 8.8 12
640000 - 10 15
810000 - 13 19

1000000 - 16 24
4000000 - 62 93
9000000 - 138 207

25000000 - 383 574
49000000 - 749 1100
64000000 - 978 1460
81000000 - 1200 1800

100000000 - 1500 -

6. CONCLUSIONS
An efficient Thermal-ADI algorithm for transient thermal

simulation has been developed. The unconditional stabil-
ity and linear runtime and memory requirements have been
demonstrated. The numerical simulation also shows that the
Thermal-ADI Algorithm not only speeds up the runtime or-
ders of magnitude over the Crank-Nicolson method but also
reduces the memory usages. The error of the Douglas-Gunn
Algorithm can be reduced to 0.1 % with a suitable choice of
∆t and time step.
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