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Abstract— Most of the existing statistical static timing analysis
(SSTA) algorithms assume that the process parameters of have
been given with 100% confidence level or zero errors and are
preferable Gaussian distributions. These assumptions are actually
quite questionable and require careful attention.

In this paper, we aim at providing solid statistical analysis
methods to analyze the measurement data on testing chips
and extract the statistical distribution, either Gaussian or non-
Gaussian which could be used in advanced SSTA algorithms for
confidence interval or error bound information.

Two contributions are achieved by this paper. First, we develop
a moment matching based quadratic function modeling method
to fit the first three moments of given measurement data in plain
form which may not follow Gaussian distributions. Second, we
provide a systematic way to analyze the confident intervals on
our modeling strategies. The confidence intervals analysis gives
the solid guidelines for testing chip data collections. Extensive
experimental results demonstrate the accuracy of our algorithm.

I. INTRODUCTION

As the technology feature size goes below the deep-sub-
wavelength domain, the variations of manufacturing parame-
ters are getting more and more significant and greatly impacts
the yield [1], [2]. Facing this issue, the classical corner-based
timing analysis requires significantly change to reduce the
pessimism induced by the ignorance of correlations between
parameters. For this reason, statistical static timing analysis
(SSTA) has been proposed and extensively studied to provide
a systematic timing analysis methodology considering these
parameters’ complicated statistical behavior and their impacts
on timing analysis. [3]–[5] and [6].

Generally speaking, most of the existing SSTA algorithms
assume that the statistical characteristics of these process
parameter variation have been calibrated perfectly at the
foundry side (almost as a black box). SSTA algorithms then
assume zero confidence interval or zero errors on these given
parameters and perform SSTA confidently. In reality, these
assumptions are actually questionable and require careful
revisions.

First, due to the limited budget and human resources, there
could often be only a few test chips or circuits could be
manufactured and measured to estimate the data distribution.
Therefore, confidence interval or error is finite and has to be
carefully analyzed to properly reflect the fidelity of the data
sources. Using only finite measurement data samples, it is
mandatory to consider confidence interval and error bounds

for formal statistical analysis. This effect has been most likely
ignored in the literatures.

Second, due to the nature of semiconductor process, even
the independent parameter such as gate length and interconnect
width/thickness may not follow Gaussian distributions, not to
mention the derived parameters such as gate and interconnect
delay. Therefore forcing any distribution, especially those with
non-zero skewness to be a Gaussian distribution can funda-
mentally introduce large errors. To deal with the non-gaussian
and non-linear issues, several researchers have proposed to use
either numerical integration or quadratic function of Gaussian
random variables as the basic modeling function [7]–[9].
Since numerical integrations require significant computational
efforts, quadratic function approach may be more efficient in
runtime-wise. However, those quadratic functions are assumed
perfectly given so far. It is not clear how to fit the real
measurement data using these quadratic models.

In this paper, we simultaneously provide solutions for these
two problems. First, we develop a moment matching based
method to fit the quadratic function model of which the
first three moments, mean, variance and skewness, matches
the given primitive measurement data. Second, we provide a
systematic way to analyze the confident interval or error for
our modeling strategies. With such, the quality of the modeling
process can be analytically evaluated. The confident interval
analysis also gives solid guidelines for designing testing chips
and making measurement on these chips. Extensive experi-
mental results demonstrate the accuracy of our algorithms.

The rest of the papers are organized as follows. In section II,
we present the basics of process variation and measurement
process. Section III introduces the moment-matching based
quadratic parameter modeling and section V is the confidential
interval analysis for the quadratic modeling. At last, in the
section V, experiment results of the quadratic fitting and
confidence interval analysis are provided.

II. PARAMETER VARIATION AND MEASUREMENT

IC timing parameter variations will cause device and circuit
to deviate from their designed value. Classical worst case
timing analysis produces timing predictions that are often
too pessimistic and grossly conservative. On the other hand,
statistical timing analysis (STA) that characterizes timing
delays as statistical random variables offers a better approach
for more accurate and realistic timing prediction.



A. Quadratic Timing Model

However, to realize the full benefit of STA, one must address
a challenging issue that gate/wire delays in a circuit could be
correlated since two delays might be affected by the same
parameter variation such as voltage supply uncertainties, gate
channel length variations, wire geometry variations,...,etc. In
[4], [5], [10] the delay D is explicitly related with these
parameter variations Yi by the canonical timing model:

D = µ + αR +
∑

i

βiYi (1)

where R accounts the cumulative effect of all variation sources
other than considered parameter variations.

The canonical timing model (1) provides an elegant way to
deal with the correlations( [4]). Unfortunately, the nonlinear
relationship between the gate/wire delay and the parame-
ter variations can not be accurately reflected by the linear
canonical timing model. To mitigate this deficiency, in [7],
a quadratic timing model is proposed to augment the linear
canonical timing model with second order terms:

D = m + αR +
∑

i

βiYi +
∑
i,j

ΓijYiYj (2)

where Γij are quadratic coefficients and m is a constant term
which may be different from the mean value of the delay
timing variable.

Nevertheless, both canonical and quadratic time model
assume parameter variations to be Gaussian distribution which
is not always true in reality. In cases when a parameter
variation, Y , is not Gaussian, we would like to express it as
a quadratic function of a quadratic function of some other
Gaussian random variable X and conduct the timing analysis
using the method proposed in [7]:

Y = aX2 + bX + c (3)

To be a fact, additional truncation may be needed then we
substitute the quadratic parameter expression into the quadratic
delay model.

B. Parameter Variation Components

All circuit timing parameters are physically measurable
quantities and so that their variations can be represented as a
set of measurement data of the actual values of the parameter
in many manufactured circuits.

Roughly speaking, there are four components of parameter
variations in current manufacturing process: (1) the variations
between different lots of wafers, lot-to-lot variations Yl, (2)the
variations between different wafers in the same lot, wafer-
to-wafer variations Yw, (3)the variations between different
chips in the same wafer, chip-to-chip variations Yc and (4)the
variations between different gates in the same chip, gate
variations Yg. The overall parameter variation is then the linear
superposition of all these four variation components:

Y (l, w, c, g) = Yl + Yw + Yc + Yg (4)
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Fig. 1: Variation Sources

where l, w, c, g are indices of the lot, wafer, chip and gate
repsectively. So to study the overall parameter variation, it is
equivalent to study each of its four components individually
assuming these four components are orthogonal to each other.
Since all four variation components of a parameter variation
can be treated similarly, we will use the gate-to-gate variation
as an example.

C. Measurement Data Matrix

Of course, we are not able to measure the value of Yg di-
rectly. Instead, we can only measure the value of Y (l, w, c, g)
which is a comprehensive effect of all four variation compo-
nents. In order to characterize the gate-to-gate variation Yg,
we partition the four indices l, w, c, g into two group indices:
one group index is the gate index g only and the other group
index is the combination of the rest three indices and noted
as(l, w, c). With these two group indices, the measurement
data set {Ylwcg} can be organized as a measurement data
matrix as:

MY =

⎛
⎜⎝

Y1111 Y1121 · · · Y1211 · · · Y2111 · · ·
Y1112 Y1122 · · · Y1212 · · · Y2112 · · ·

...
...

. . .
...

. . .
...

. . .

⎞
⎟⎠

in which, each row i is a measurement data set for gate i’s
variation for parameter Y at all chips, wafers and lots. Clearly,
the total number of columns will be the same as the total chips
manufactured and total number of rows will be the same as
the gate number in each chip.

For example, if we manufacture 4 four-gate chips in
a single lot of two wafers. Each wafer has two chips
on it. For the timing parameter of effective gate channel
length Leff , we will get 16 measurement data as: {Ll,w,c,g} =
{L1111, L1112, L1113, L1114, L1121, L1122, L1123, L1124, L1211,
L1212, L1213, L1214, L1221, L1222, L1223, L1224}. If we are



interested in the gate-to-gate variation, then we will arrange
these 16 measurement data as a 4 × 4 measurement data
matrix as:

ML =

⎛
⎜⎜⎝

L1111 L1121 L1121 L1221

L1112 L1122 L1122 L1222

L1113 L1123 L1123 L1223

L1114 L1124 L1124 L1224

⎞
⎟⎟⎠

where the first row is the measurement data set for Leff at
gate 1, and the second row is that at gate 2, so on so forth.

III. QUADRATIC PARAMETER FITTING

From N manufactured chips with G gates on each chip,
we can get a G × N measurement data matrix for a specific
gate’s timing parameter such as effective channel length Leff .
From such a measurement data matrix, we can use statistics
methods to estimate the distribution characteristics of the
timing parameter at each gate, i.e. mean, variance, skewness
etc. Moreover, the parameter variation is not independent
between different gates and the covariance between them
can then be estimated using the corresponding rows in the
measurement data matrix.

A. Moment Estimation

From N manufactured chips, if Y1, Y2, ..., YN is one row
in the measurement data matrix for a timing parameter at the
gate Y , then the arithmetic average of these measurement data

Ŷ =
1
N

N∑
i=1

Yi (5)

will be the unbiased estimator for the parameter mean at gate
Y .

Similarly, unbiased estimators for the variance Ŝ2, and the
skewness K̂3 of the timing parameter at the gate Y using the
above data set are:

Ŝ2
Y =

1
N − 1

N∑
j=1

(
Yj − Ŷ

)2

(6)

K̂3
Y =

N

(N − 1)(N − 2)

N∑
j=1

(
Yj − Ŷ

)3

(7)

If Z1, Z2, ..., ZN is another row in the measurement data
matrix as the value of the considered timing parameter at
another gate Z, the estimator for the covariance between the
parameters at gate Z and Y is:

ĈZY =
1

N − 1

N∑
j=1

(
ZjYj − ẐŶ

)
(8)

B. Quadratic Fitting

In order to translate the estimated distribution characteristic
of the timing parameter, represented by its mean, variance,
skewness and covariance, into the sensitivity form needed
in the statistical timing analysis, we will have to represent
the timing parameter as a function of another computational

parameter which is usually assumed to be a standard Gaussian
random variable.

If the timing parameter approximately follows Gaussian
distribution, the estimated skewness of the parameter will then
be close to zero and the timing parameter will then be a
linear function of the computational parameter. But if the
parameter has significant skewness estimation, it is then be
significantly non-Gaussian. We treat such case by setting the
timing parameter as a quadratic function of the corresponding
computational parameter, as shown in the fitting equation
(4), and matching all first three moments between the timing
parameter and the function of the computational parameter.

Theorem 1: Assuming random variable Y = aX2+bX+c
where X is a Gaussian random variable with µX = 0 and
σX = 1, then:

µY = E{Y } = a + c (9)

σ2
Y = E{(Y − E{Y })2} = 2a2 + b2 (10)

κ3
Y = E{(Y − E{Y })3} = 8a3 + 6ab2 (11)

Proof: For the Gaussian random variable X , its moments
will be E{X} = µX = 0, E{X2} = σ2

X = 1, E{X3} = 0,
E{X4} = 3, E{X5} = 0 and E{X6} = 15. Using these
results, the moments of Y can be evaluated as:

E{Y } = E{aX2 + bX + c}
= aE{X2} + bE{X} + c = a + c

E{(Y − E{Y })2} = E{(aX2 + bX − a)2}
= a2 − 2abE{X} − (2a2 − b2)E{X2} +

2abE{X3} + a2E{X4}
= 2a2 + b2

E{(Y − E{Y })3} = E{(aX2 + bX − a)3}
= −a3 + 3a2bE{X} + 3a(a2 − b2)E{X2} −

b(6a2 − b2)E{X3} − 3a(a2 − b2)E{X4} +
3a2bE{X5} + a3E{X6}

= 8a3 + 6ab2

So knowing the left hand side moments by making esti-
mations on the measurement data for timing parameter Y ,
we are able to solve the parameters of a, b and c and
express the timing parameter of Y as a quadratic function
of computational parameter of X .

Equations (10) and (11) in theorem 1 are nonlinear equa-
tions, so it is not always possible to get real solution for a, b
and c from them.

Theorem 2: Equations (9), (10) and (11) in theorem 1 will
have real solution for a, b and c if and only if Y’s skewness

|κY | ≤
√

2σY (12)
Proof: We prove the necessity first.

Substitute the equation (10) into (11), we will get a cubic
equation about a:

f(a) = 4a3 − 6σ2
Y a + κ3

Y = 0 (13)



For equation (10) to have real solution for b, it is necessary
and sufficient to have

σ2
Y ≥ 2a2 or |a| ≤ σY√

2
Notice that for any a in this range

df(a)
da

= 12a2 − 6σ2
Y ≤ 0

So we must have

f(−σY√
2
) ≥ 0 and f(

σY√
2
) ≤ 0

which is equivalent to |κY | ≤ √
2σY with some simple

additional derivation.
The sufficiency is simple since all proof steps in above are

reversible.
So exact moment matching can only be achieved when

the underneath distribution is not heavily skewed (|κY | ≤√
2σY ). This restriction, however, can be satisfied in most

realistic cases for timing parameter estimation. In cases with
heavily skewed parameter distribution, approximation has to
be made for moment matching equations. For example, we can
minimize the skewness matching error while matching mean
and variance exactly.

Theorem 3: If equations (9), (10) and (11) in theorem 1
have real solutions for a, b and c, then a will be one of the
following three values whichever is real and in the range of
|a| ≤ σY /

√
2:

a1 = −2σ2
Y + ∆2/3

2∆1/3
(14)

a2 =
2(1 + i

√
3)σ2

Y + (1 − i
√

3)∆2/3

4∆1/3
(15)

a3 =
2(1 − i

√
3)σ2

Y + (1 + i
√

3)∆2/3

4∆1/3
(16)

where ∆ = κ3
Y + i

√
8σ6

Y − κ6
Y is a complex number.

Solutions for b and c cab be found as:

b =
√

σ2
Y − 2a2 and c = µY − a (17)

Proof: From the proof of theorem 2, we know that if
there are solutions for a, b, c, then |a| ≤ σY /

√
2 and a must

be a solution of the cubic equation (13). All there solutions of
equation (13) are listed as equations (14) to (16). Also, from
the proof of theorem 2, there will be only one out of these
three solutions located in the range of |a| ≤ σY /

√
2.

As long as the solution of a is identified, substitute it into
equations (9) and (10), we then compute b and c as equations
in (17).

C. Covariance Translation

By translating the timing parameters into computational
random variables, the original covariances between timing
parameter at different gates has to be translated into the
covariances between computational parameter at those gates
too. This is achieved by using the following theorem:

Theorem 4: Assuming Y1 = a1X
2
1 + b1X1 + c1 and Y2 =

a2X
2
2 + b2X2 + c2 are timing parameters in gate 1 and 2

and X1 and X2 are computatonal Gaussian random variables
at gate 1 and 2. µX1 = µX2 = 0, σX1 = σX2 = 1, and
ρX = cov(X1,X2). Then:

cov(Y1, Y2) = ρXb1b2 + 2ρ2
Xa1a2 (18)

Proof: Although random variables X1 and X2 are
correlated, it can be verified that random variables

φ1 =
X1 + X2√
2(1 + ρX)

and φ2 =
X1 − X2√
2(1 − ρX)

are independent Gaussian random variables with µφ1 = µφ2 =
0, σ2

φ1 = σ2
φ2 = 1, E{φ3

1} = E{φ3
2} = 0, and E{φ4

1} =
E{φ4

2} = 3. Since⎧⎨
⎩ X1 =

√
1+ρX

2 φ1 +
√

1−ρX

2 φ2

X2 =
√

1+ρX

2 φ1 −
√

1−ρX

2 φ2

then the covariance between Y1 and Y2 can be evaluated as:

cov(Y1, Y2) = E{Y1Y2} − E{Y1}E{Y2}
= −a1a2 − a2c1 − a1c2 +

ρ2
X − 1

4
a1a2E{φ2

1φ
2
2}

1 + ρX

2
(b1b2 + a2c1 + a1c2)E{φ2

1} +

1 − ρX

2
(a2c1 + a1c2 − b1b2)E{φ2

2} +

(1 + ρX)2

4
a1a2E{φ4

1} +
(1 − ρX)2

4
a1a2E{φ4

2}
= ρXb1b2 + 2ρ2

Xa1a2

where the covariance results for φ1 and φ2, E{φ1φ2} = 0 and
E{φ2

1φ2} = E{φ1φ
2
2} = 0 are used.

So knowing the covariance between Y1 and Y2, cov(Y1, Y2)
as we have estimated from the measurement data, we are able
to solve the correlation coefficient between X1 and X2 which
can be used in statistical timing analysis.

IV. CONFIDENCE INTERVAL OF QUADRATIC FITTING

From N manufactured chips, we can get an estimation
for quadratic coefficients â, b̂, ĉ and correlation coefficient ρ̂X

using the moment matching method introduced above if the
timing parameter Y = aX2+bX+c is quadratically dependent
on the Gaussian computational parameter X . But we also
would like to have some idea of the accuracy for this type of
estimation. Since it is hard to directly derive the estimators for
coefficients a, b, c, we will instead use a statistical Jackknife
method based on the following theorem:

Theorem 5: With a G×N measurement data matrix for a
timing parameter from N manufactured chips, let θ be some
statistical parameter of interest such as the quadratic fitting
coefficient a, b, c for the timing parameter at a gate or the
correlation coefficient ρX between the computational param-
eters at two gates. Let θ̂ and θ̂i, respectively, be estimators of
parameter θ computed from the complete measurement data
matrix and a reduced measurement data matrix obtained by
omitting the ith column in the complete measurement data



matrix. We can then construct a pseudovalue set P1, P2, ..., PN

with Pi = Nθ̂ − (N − 1)θ̂i and an unbiased estimator for θ
will be:

θ̂ = P̂ =
1
N

N∑
i=1

Pi (19)

and the end points for the confidence interval of the estimation,
at the confidence level of α, are:

θ̂ ± tN−1,α/2√
N

√∑N
i=1(Pi − P̂ )2

N − 1
(20)

where tN−1,α/2 is the (1 − α/2) quantile of the Student’s t
distribution with N − 1 degree of freedom

Proof: See [11].

A. Example of ρX Estimation

For example, if we manufacture 4 chips {1, 2, 3, 4} and each
chip has gate A and B, then for the effective gate channel
length Leff , we will have the following measurement data
matrix:

ML =
(

L1A L2A L3A L4A

L1B L2B L3B L4B

)

If we are going to use the quadratic form of standard
Gaussian computational parameters XA and XB to fit the dis-
tribution of LA and LB respectively, the correlation coefficient
ρX between XA and XB can then be estimated using theorem
4 and the confidence interval of ρX can be estimated using
the following steps of Jackknife method:

1) Estimate cov(LA, LB) using equation (8) and the com-
plete measurement data matrix of ML

2) Compute ρ̂X from theorem 4
3) Construct 4 reduced measurement data matrices as:

M1
L =

(
L2A L3A L4A

L2B L3B L4B

)

M2
L =

(
L1A L3A L4A

L1B L3B L4B

)

M3
L =

(
L1A L2A L4A

L1B L2B L4B

)

M4
L =

(
L1A L2A L3A

L1B L2B L3B

)

4) Repeat step 1) and 2) for each reduced measurement data
matrix, we will get four estimations ρ̂1

X ,ρ̂2
X ,ρ̂3

X and ρ̂4
X

5) Construct 4 pseudovalues as: P1 = 4ρ̂X − 3ρ̂1
X , P2 =

4ρ̂X − 3ρ̂2
X , P3 = 4ρ̂X − 3ρ̂3

X , P4 = 4ρ̂X − 3ρ̂4
X

6) The confidence interval of ρX estimation is then equal
to that of the mean estimation for pseudovalue set
{P1, P2, P3, P4} at the same confidence interval. For
example, if the confidence level is 5%, then:

ρX = ρ̂X ± 1.59√
3

√√√√ 4∑
i=1

(Pi − ρ̂X)2

B. Error Reduction

So using theorems 5, we are able to estimate both expected
values and confidence intervals for all interesting quadratic
fitting parameters for a timing parameter. To gauge the accu-
racy of such type of estimation, we proposed here to use the
following ratio:

Definition 1: The accuracy of the statistical mean estima-
tion using theorem 5 is represented by the estimation error
of εθ, defined as the ratio between the estimated confidence
interval range and the expectation value as:

εθ =
tN−1,α/2

θ̂
√

N

√∑N
i=1(Pi − P̂ )2

N − 1
According to theorem 5, the size of the peudovalues will

be the same as the original measurement data size and so that
the estimation error will reduce as 1/

√
N . Clearly, if we want

to get one more digit of accurate estimation, we need roughly
100× more chips being measured.

V. EXPERIMENT AND DISCUSSIONS

Gaussian and non-Gaussian timing parameters may have
significantly different statistical behavior during our estimation
and moment fitting. Since there are many type of non-Gaussian
distributions, we use Weibull distribution as an example for
experiment purpose.

A. Quadratic Fitting with Moment Matching

It is clear that the moment matching between the timing
parameter Y and its quadratic fitting form aX2+bX+c based
on Y ’s N measurement data Y1, Y2, ..., YN will have minimum
error if the timing parameter Y follows Gaussian distribution
since Gaussian random variable can always be expressed as a
linear transformation of a standard Gaussian random variable.
Such accuracy is clearly shown in figure 2(a).
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Fig. 2: p.d.f.s of quadratic form fitting based on N = 1000
measurement data for Gaussian and non-Gaussian parameter.

κ/σ is the skewness coefficient of the parameter.



But for non-Gaussian timing parameter Y , there is no
guarantee that it can be precisely expressed as a quadratic
function of a standard Gaussian random variable and so that
there will be some intrinsic error for our quadratic fitting
Y = aX2 + bX + c. But since we will match all three
moments when we do the fitting. The fitting accuracy is still
very reasonable as shown in figures 2(b), 2(c) and 2(d) where
non-Gaussian distributions with different skewness coefficients
κ/σ are shown.

B. Estimation Convergence

Apparently, the size of the measurement data will be with
most interest not only because it will directly affect the
estimation accuracy but more importantly, because it directly
reflect the cost to get the estimation: more measurement will
result in higher estimation accuracy but on the other hand,
more measurement means manufacturing more chips which
is expensive. So the data size will actually be the result of
trade-off between accuracy and cost.
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Fig. 3: Estimation error ε for Gaussian distribution at
different measurement data size N
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Fig. 4: Estimation error ε for non-Gaussian distribution at
different measurement data size N

Figure 3 and 4 demonstrate the estimation error reduction
at the rate of 1/

√
N when data size N increases for Gaussian

and non-Gaussian timing parameters.
From figure 5, the estimation error seems not very sensitive

to the type of distributions of the timing parameter. The esti-
mation done for non-Gaussian timing parameter will roughly
has the same size of confidence interval as that done for the
Gaussian timing parameter if the measurement data size is the
same.
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Fig. 5: Estimation error ε for Gaussian and non-Gaussian
distribution at different measurement data size N
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