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Abstract

In this paper, we present a fast algorithm for continu-
ous wire-sizing under the distributed Elmore delay model.
Our algorithm GWSA-C is an extension of the GWSA al-
gorithm (for discrete wire-sizing) in [CL93a]. GWSA-C is
an iterative algorithm with guaranteed convergence to opti-
mal wire-sizing solutions. When specialized to discrete wire-
sizing problems, GWSA-C is an improved implementation
of GWSA, both in terms of runtime and memory usage.
GWSA-C is extremely fast even on very large problems. For
example, we can solve a 1,000,000 wire-segment problem in
less than 3 minutes runtime on an IBM RS/6000 worksta-
tion. This kind of efficiency in wire-sizing has never been
reported in the literature.

1 Introduction

Since interconnect delay has become the dominant factor
of circuit delay in deep sub-micron fabrication technology, it
is clear that sizing the gates alone is not enough to achieve
desirable circuit performance. As a result, wire-sizing for
performance optimization is currently a very active research
area ([CL93a] [ZDX93] [MBP95] .[SP94]).

The wire-sizing optimization problem was first introduced
in [CL93a] [CL93b]. The authors in [CL93a] use the mono-
tonicity, separability, and dominance properties under the
Elmore delay model to determine an optimal solution for
the discrete wire-sizing problem. (By discrete wire-sizing,
we mean that each wire has only a finite number of possi-
ble widths.) Most of the other wire-sizing algorithms in the
literature (e.g. [ZDX93] [MBP95] [SP94]) are designed for
continuous wire-sizing (i.e., each wire size can be any real
number within a given range), but none of them are efficient
when the number of segments is in the thousands. (Note that
in practice it is possible to have “large” problems. For ex-
ample, a 3000-pin clock tree has about 6,000 tree branches;
if each branch has two wire segments, we have more than
10,000 wire segments!)

In this paper, we present a fast algorithm GWSA-C for
continuous wire-sizing under the distributed Elmore delay
model. GWSA-C is an extension of the GWSA algorithm
(for discrete wire-sizing) in [CL93a]. Basically, GWSA-C is
a greedy algorithm based on iteratively re-sizing the wire
segments. In each iteration, the wire segments are examined
one at a time; each time a wire segment is re-sized optimally
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while keeping the widths of the other segments fixed. The
memory requirement by GWSA-C is O(n) and each iteration
in re-sizing all wire segments (once per wire segment) takes
O(n) time, where n is the number of wire segments. GWSA-
C is guaranteed to converge to optimal wire-sizing solutions.
When specialized to discrete wire-sizing problems, GWSA-
C is an improved implementation of GWSA, both in terms
of runtime and memory usage. GWSA-C is extremely fast
even on very large problems. For example, we can solve a
1,000,000 wire-segment problem in less than 3 minutes run-
time on an IBM RS/6000 workstation. This kind of efficiency
in wire-sizing has never been reported in the literature.

The remainder of this paper is organized as follows: In
Section 2, we present the formulation of the wire-sizing prob-
lem under the Elmore delay model. In Section 3, we present
our wire-sizing algorithm GWSA-C. Experimental results are
presented in Section 4.

2 Problem Formulation

Given a routing tree T consisting of a driver wo (at the
root) with resistance ro, a set of s sinks {N1, Nz,..., N}
with capacitance load ¢{, 1 < ¢ < s, and n wire segments
{w1,ws, ..., wn}. Also given is a set of non-negative weights
{21, A2, ..., As} with Z;l Ai =1, where ), is a weight associ-
ated with sink N; representing the criticality of the sink. Let
l; be the length of w; and z; be the wire size of w;, 1 <i< n.
x = (z1,%2,...,2n) which will be referred to as a wire-sizing
solution. We are also given U; and L; as the respective
upper bound and lower bound of the wire size of w;, i.e.
L; < z; < Ui, 1 £1 < n. Let dec(w:) be the set of de-
scendants of w; (excluding w;). Let ans(w;) be the set of
ancestors of w; (excluding w; and including wo). The re-
sistance and capacitance of wire segments w; is denoted by
r; and c¢;, respectively. Let co = 0. We use u; to denote
ZNdeec(w;) AJ’ 1 S i S n. Let Ri ijeana(w,') Hirs and
ij'edec(w;) ) +2Nj€dcc(w;) C;, 1<i<n. Ri and qi
will be referred to as the weighted upstream resistance and
the downstream capacitance, respectively, of w;.

P =

We use the m-model to model each wire segment w; (see
Figure 1). We have the resistance of w; is given by r; =
ali/z;, the capacitance of w;, is given by ¢; = Bz:l; /2, where
o is the resistance per unit length at unit width and 3 is the
capacitance per unit square. We use the Elmore delay model
[E48] to estimate the delay. The signal delay at sink N; is



wl/x
wire size x , length |

o0 —»
sxlR

= -

Bsxl/2

Figure 1: RC model for wire segment

computed by:

Di= Y r(Ci+ 3, (1)

w;EP;

where P; is the set of wire segments that lie on the path from
the root to sink N;.

In this paper, we consider the following wire-sizing opti-
mization problem:

Minimize F(x) = EA;D.-
i=1
Subject to L;i<z;<U;, 1<5<n.

3 Wire-sizing Algorithm
Lemma 1 For each zi, F(x) can be written in the following

form

B (x)

Fix) = Aix)zi+ + Ei(x),

where Ai(x), Bi(x), and Ei(x) are independent of =z,
Ai(x) = BliRi, and Bi(x) = alipiC;.

Proof:

F(x)

> o AiD;

j=1
- T S @)

j=1 wi €P;

Ck

- T T

wy €T Nj€dec(wg)
= Zrkuk(0k+%).

wi €T

Note that the terms that involve z; come from
Zwkeans(w;) repxCx. In fact, only the term Bliz; (the wire
capacitance of w;) in Ci contribute to the terms with z;,

hence
>

wj €ans(w;)

Ai(x) = Bk

Tilj.

Since the terms that involve - only come from riuiC; =

ohiyCi, we have Bi(x) = aliwiCi. Let Ei(x) = F(x) -

Ai(x)zi — —4—)- It is clear that Ai(x), Bi(x), and E:(x) are
independent of z; A

If we re-size w; while keeping the wire-sizes of all the
other wire segments fixed, we say that it is a local re-sizing
of wi. An optimal local re-sizing of w; is a local re-sizing
that minimize F(x).

Lemma 2 Let & = (2, £2,...,2%) be a wire-sizing solution.
An optimal local re-sizing of w; is given by changing the width

of w; to
Bi(%)
Ai(X) )

T = min (U.',ma:z: (L.,

Proof: Suppose we change the wire-size of w; to z;. It
follows from Lemma 1 that the new delay cost is given by

B.(x)

G(z:) = AiX)zi+ + Ei(%)

Differentiating G with respect to z;, we get

dG@ B.(x)
d.’l?,' - A( ) '
Let 0(%) = '\/XL((i)l Note that
Hd_a':(% =0, =z =0(%),
g% <0, zi<0(%),
‘Ei% >0, zi> 0()’&)

Hence G(z:) is decreasing when z; < (%), G(=:) is in-
creasing when z; > (%), and G(z;) is minimum at z; = 6(X).

Let ! be the wire-size of w;: in an optimal local re-sizing
of the wire segments. We consider three cases.

Case 1: §(%) € [L;, Ui}

In this case, we have =} = 6(%).
Case 2: 8(x) > Us.

Since G(z:) is decreasing on (L, U], we have z} = U;.
Case 3: 6(%) < L.

Since G(z:) is increasing on [Ls, Us), we have =] = Li.
From the above discussion, we have

Bi(x) ) a

x] = min (U;,maz (L.’, AR

Theorem 1 x* = (z},...,2z;) is an optimal wire-sizing so-

lution if and only if

R , ) /Bi(X‘)) .
z; = min (U.,maz (L‘, (%) ),ISzSn.

Proof:

(2») This follows directly from Lemma 2 and the fact that
optimal local re-sizing of w; would not change its width.
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(<) If 27 = min (Ug, mazx (L.—, \/ %1(%% ’) , we show that

x* is a global minimum point of F(x) over Q; = {x|L; <
z; < Uy,1 < i < n}; e x* is an optimal wire-
sizing solution. Note that F(x) is a posynominal in x,
and that under the transformation z; = €*,1 < ¢t < n,
G(z) = F(e”’L ...,e°*) is convex over Q, = {z|L; < e <
U.,l < z < n}(see [DPZ67)). Let z* = (z1,...,2,) where

z} = €%, 1 <1 < n. We now consider three cases:
Case 1: z} = %—(Lﬁ—:)l.

In this case, we have %(x‘) = 0. Thus

oG,

3x;
9z ) = _( )

Sz =

(2] P
o i=o0.
o (x)e

Case 2: z7 = L;.
In this case, L; >
z! > 0,Vz € Q.. Hence

oG . OF |, . a¢
8_(2 Wzi —2) = 5;‘7(" e (=

ﬁﬁ Weha.ve—é—f‘->0 and z; —

i —2])>0,Vz € Q..

Case 3: z7 = U..
In this case, U; <
zi —2] <0,Vz € Q..

2 ()

%L((Tc‘;} We have

Hence

8:, £(x*) < 0 and

—zl) = g—f‘:(x')e’: (zi —2{) > 0,Vz € Q..

Combining the three cases, we get g—z(z')(z; -z >
0, Vz € Q.. Since G is convex (see [L84]), we have, for all
A Qz,

6() ~G) 2 VGG -
= Z
0.

Thus F(x)— F(x*) = G(z) - G(z*

x* is a global minimum point. O

~(27) (7 — =)

v

) > 0, Vx € Q. Therefore

We now describe our algorithm GWSA-C. Basically, GWSA-
C s a greedy algorithm based on iteratively re-sizing the wire
segments. In each iteration, the wire segments are examined
one at a time; each time a wire segment is re-sized opti-
mally while keeping the sizes of the other segments fixed.
Lemma 2 gives the formula to compute the new size of a
wire segment. Note that we can pre-compute the set of all
edge weights ui’s in O(n) time by a bottom-up traversal of
the tree. The computation of each y; is based on previously
computed ,uf,-s, using the formula ui = ij children(w) M
where children(w;) is the set of the children of y;. At the be-
ginning of each iteration, we compute all downstream capac-
itances C;’s by a bottom-up traversal of T in O(n) time. The
formula for computing C; is C; = Zwiech”drw(wl_)(cj +cj5).
FEach iteration of GWSA-C consists of a top-down traversal

of T'; each time we visit a wire segment w;, we re-size w;
according to the formula in Lemma 2 where we need A;(x)
and Bi(x). Observe that R; = Ry, + pp;rp;, where wp, is
the parent of w;. Thus, Ai(x) = Ap,;(x) + Bliptp;7p;. Since
C; is independent of the wire sizes of the ancestors of wi,
there is no need to update C; during the top-down traversal
of T. We have, Bi(x) = al;u;iC;. Clearly, each iteration of
re-sizing the wire segments takes O(n) time. It is also easy
to see that the memory usage by GWSA-C is also O(n). We
summarize the description of GWSA-C in Figure 2. Since
we terminate the program when no further improvement is
possible, it follows from Theorem 2 that GWSA-C converges
to an optimal wire-sizing solution. We have the following
theorem.

Theorem 2 Algorithm GWSA-C converges to an optimal
wire-sizing solution. It runs in O(rn) time using O(n) stor-
age, where n is the number of wire segments and r is the
number of iterations.

Algorithm: GWSA-C
S1. z;:=L;,1<1<m;
S2. Compute all u;’s by a bottom-up traversal of T using
the following formula:
Hi = Zw,—echildren(wg) Hjs

S3. Compute all C;’s by a bottom-up traversal of T using
the following formula:

Ci = ij Gchildren(w;)(cj + cj);

S4. Perform a top-down traversal of T:
For each w;,

Ai(x) := Ap;(x) + Blinp;rp;;

Bi(x) := alipiCi;

z; = min (U;,maa: (L;, i: § );
S5. Repeat S3—S4 until no improvement.

Figure 2: The GWSA-C algorithm.

Remark GWSA-C can be specialized to solve the discrete
wire-sizing problem. Let 83 < 82 < ... < si be the set of
feasible wire sizes for w;. We modify GWSA-C as follows.
In S4, after computing z;, we let s; and s;4; be the two con-
sective feasible wire sizes such that s; < z; < s;41. It 1s not
hard to see that the optimal local re-sizing of w; is obtained
by checking the delay costs G(s;) and G(s;4+1) and pick the
smaller one. For discrete wire-sizing problems, GWSA-C is
an improved implementation of GWSA in [CL93a}, both in
terms of runtime and memory usage.

4 Experimental Results
We implemented and tested our algorithm on an
IBM/RS6000 workstation. We first compare the runtime
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of GWSA-C with GWSA in [CL93a] on a single wire with
100 to 10° segments. The GWSA package we used was ob-
tained from the authors of [CL93a] in July 1995. The param-
eters used are shown in Table 1. Table 2 shows the runtime
and memory usage comparisons between GWSA and GWSA-
C. It shows that GWSA-C runs much more efficiently than
GWSA, and that the number of iterations grows very slowly.
Due to the requirement of large memory usage, GWSA al-
gorithm could not get any results when the number of wires
segments exceeded 2000. Figures 3 and 4 show that the run-
time and memory usage of GWSA-C are close to linear. Ta-
ble 3 shows that GWSA-C improved the delay cost in the
clock tree r1-r5 [T93] by up to 89%. Table 4 showsthat
GWSA-C produced near-optimal results for discrete wire-
sizing problems. The lower bound was obtained by running
the continuous version of GWSA-C.

Unit Resistance: 0.003 Q/pm

Unit Capacitance: 2x 10717 F/um

Minimum Wire Width: 1 um

Maximum Wire Width: 20 um

Table 1: RC Parameters.
# of wire GWSA [CL93a] GWSA-C No of
segments Time { Memory Time | Memory Iters
100 0.15 1968 0.01 32 9
200 0.76 2408 0.02 32 10
1000 22.50 17464 0.08 40 10
2000 106.68 64500 0.17 48 12
10000 - - 1.12 108 15
20000 - - 2.35 188 16
100000 - - 13.52 812 18
1000000 - - 141.42 7884 19
Table 2: Runtime and memory usage comparisons between

GWSA and GWSA-C. (Unit:Runtime(second), Memory(kbytes),
Step Width(1um)

Tine (3e0)
3

0 T 100000 200000 00000 400000 500000 000000 700000 800000 000000 1ev0E
Number of wire sgmente

Figure 3: Runtime of GWSA-C.

Circuit Name | No of Wire Delay (ns) Tmprove% ||
Segments Initial | Final
rl 533 0.77 0.12 84.42
r2 1195 2.11 0.27 87.20
r3 1723 3.38 0.43 87.28
r4 3805 9.09 1.03 88.67
r5 6201 15.86 1.65 89.04

Table 3: Result Comparisons between with and without
wire-sizing by GWSA-C.

Sersge (o)
£

© 100000 200000 300000 400000 500000 600000 TOOG0 60000 $I0000  1eedd
Humber of wire segmants

Figure 4: Memory Usage of GWSA-C.

Wire Delay (ps) Ratio
Length Initial | GWSA-C | lower bound

100 0.52 0.12 0.11 1.09
200 2.66 0.47 0.47 1.00
500 15.72 3.01 2.99 1.01
1000 63.45 12.07 11.98 1.01
10000 6051.50 1209.54 1200.73 1.01
50000 150365.34 30244.42 30024.13 1.01

Table 4: Results for GWSA-C for discrete wire sizes.
(Unit:wire length(um))
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