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Abstract— This paper presents an efficient methodology for
generating sparsified potential coefficient matrices for three-
dimensional capacitance extraction. Previous capacitance extrac-
tion algorithms based on boundary element method (BEM)
formulate the potential coefficient matrix in terms of surface
potentials and charges on those most delicate panels (leaf panels).
By introducing the concept of basis charges, we discover that leaf
panel charges compose the worst basis which leads to the densest
linear system. Therefore, we propose a linear time basis panel
selection algorithm to choose a new basis. It is provable that the
n×n potential coefficient matrix constructed in terms of the new
basis contains O(n) non-zero entries and hence the sparse system
can be solved much more efficiently by preconditioned Krylov
subspace iterative methods. Experimental results demonstrate
the superior runtime and memory consumption over previous
approaches while achieving similar accuracy.

I. INTRODUCTION
Boundary element method (BEM) have been adopted as the

main approach for solving self and coupling capacitances for
interconnects in VLSI design, packaging, and MEMS [1]–[7].
However, BEM yields an extremely dense linear system which
not only limits the tractable problem size, but also prevents the
usage of efficient matrix solvers.

In this paper, we reveal that the intrinsic reason why the linear
system arising from BEM is dense is due to the selection of leaf
panel charges as the basis. Therefore, we significantly improve
BEM capacitance extraction by providing a linear time basis panel
selection algorithm (BPSA) to choose a new basis. The related
potential coefficient matrix of the new basis is very sparse and
hence the sparse system can be solved by preconditioned Conju-
gate Gradient (PCG) or GMRES. Experimental results show that
the new algorithm is faster and uses less memory than previous
algorithms, including FastCap [3], HiCap [5], and PHiCap [7].

II. BACKGROUND
The capacitances between m conductors can be represented by

the capacitance matrix C ∈ Rm×m,

Cvm = qm, (1)

where vm ∈ Rm and qm ∈ Rm are conductor potential and
surface charge vectors respectively. To determine the jth column
of the capacitance matrix, the surface charge on each conductor
is computed by raising the potential on the jth conductor to one
while grounding other conductors and Cij is equal to the surface

charge on the ith conductor. The procedure is repeated m times
to compute all columns of C.

However, due to the uneven distribution of the surface charge,
each conductor needs to be divided into smaller panels and surface
charges on those more delicate panels are assumed to be uniform.

HiCap [5] and PHiCap [7] propose a hierarchical panel re-
finement scheme which can be represented by a multiple-tree
structure show in Fig. 1. If the estimated potential coefficient
between two panels is larger than a threshold value, they are
further divided into smaller panels. Otherwise, a link recording
the potential coefficient is created between these two panels.
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Fig. 1. BEM capacitance algorithms HiCap and PHiCap.

The charge on a parent panel is the sum of charges on its two
child panels. Therefore, an arbitrary panel charge is the sum of
charges on all of its underlying leaf panels, i.e., all panel charges
can be represented by linear combinations of leaf panel charges:

qN = Jq, (2)

where qN ∈ RN is the vector of charges on all leaf and non-leaf
panels and q ∈ Rn is the vector of charges on leaf panels. N
denotes the total number of panels in the multiple tree structure
and n is the number of leaf panels. J ∈ RN×n is called
the structure matrix containing the coefficients of those linear
combinations.

The links within the multiple tree structure can be represented
by the link matrix H ∈ RN×N . If a link exists between panel i
and panel j, the corresponding entry in H is non-zero and can be
calculated by

Hij =
1

aj

∫
panelj

G(x′, xi)da′, (3)

where aj is the surface area of panel j and G(x, x′) is the Green’s
function which has different formulas for uniform dielectric and



multiple dielectrics. It has been shown in [5], [7] that the number
of links in the multiple tree is O(n).

The potential produced by the link Hij on panel i is equal to
Hijqj , so that let vN ∈ RN be the vector of panel potentials
induced by their attached links, then

vN = HqN . (4)

Since the total potential on a panel is the sum of potentials caused
by links on their parent panels and themselves, so that the leaf
panel potential vector v ∈ Rn is equal to

v = JT vN . (5)

By using Eqs. 2, 4, and 5, the relation between leaf panel
potential and surface charge can be formulated as

Pq = v, (6)

where

P = JT HJ. (7)

P ∈ Rn×n is the potential coefficient matrix.
Therefore, the capacitance extraction problem becomes solving

the leaf panel charges in Eq. 6 when the leaf panel potential
distribution v is known.

III. NEW ALGORITHM

Let S denote the variable space composed of charges on all
leaf and non-leaf panels

S = {qi|surface charge on panel i, 1 ≤ i ≤ N}.
If all panel charges in S can be represented by unique linear
combinations of charges on a set of n panels, charges on those
panels are basis charges and those panels are basis panels.

As shown in Eq. 2, leaf panels compose one set of basis panels.
However, since leaf panels interact with each other through links
between themselves or their upper-level parent panels, every entry
in P is non-zero and hence P containes n2 fill-ins. Consequently,
if we take leaf panel charges as the basis, the corresponding
potential coefficient matrix P will be the densest one.

Fortunately, for a given tree structure, there are many possible
bases. For example, for the multiple tree structure in Fig. 1, Fig.
2 shows another basis, which includes two non-leaf panels c and
e. The related structure matrix J ′ is also shown in Fig. 2.

a b

c

ihg

fed

j

New Basis d f g c i e
a 1 1
b 1 1
c 1
d 1
e 1
f 1
g 1
h -1 1
i 1
j -1 1

J' =

Fig. 2. A new basis and its corresponding structure matrix.

Since each basis has its distinct structure matrices J ′ such that
qN = J ′q′, the related potential coefficient matrix P ′ = J ′T HJ ′
has different densities. So, the basic idea of our algorithm is to
choose a new basis so that the corresponding P ′ is sparse.

A. New Basis Panels

Our basis panel selection algorithm (BPSA) is based on an
important elementary operation to generate a new basis.

For an elementary tree in which two children are included in
the current basis, arbitrarily eliminating one of the child panels
and adding the parent panel to the basis generates another basis.

Without loss of generality, we use an example to gain a clear
idea of this important operation. Assume the current basis includes
all leaf panels and the structure matrix J is shown in Fig. 3.(a).
Now, we apply the elementary operation and move one basis
panel from panel 7 to its parent panel 4. Apparently this results
in another basis since all panels charges still can be represented
by charges on those panels. The new structure matrix J ′ is shown
on right hand side in Fig. 3.(b).
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Fig. 3. An important operation to generate new basis panels.

The column corresponding to panel 4 in the new structure
matrix J ′ is identical with the column corresponding to panel 7 in
the original structure matrix J , since upper level panels originally
gathering the charge on panel 7 still collects the charge on panel
4 after the elementary operation.

However, the column corresponding to panel 6 is changed in
the new structure matrix, since the charge on panel 4 is the
sum of charges on panel 6 and 7, upper level panels now only
need to gather the charge on panel 4. So the changed column
corresponding to panel 6 in J ′ is

J ′
6 = J6 − J7, (8)

where Ji represents the column corresponding to panel i in J.
Furthermore, Eq. 8 can be represented in a matrix form as

J ′ = JE. (9)

E is an elementary transformation matrix expressed by

E =




. . .
1 0
−1 1

. . .




panel 6
panel 7 (10)

Consequently, by using Eq. 10, the relation between the new
potential coefficient matrix P ′ and P can be written as

P ′ = J ′T HJ ′ = (JE)T H(JE) = ET PE (11)



So P ′ is obtained by a congruence transformation on P .
It is important to notice that this transformation only changes

the column and row corresponding to panel 6 which are obtained
by subtracting the column and row of panel 7 from the column
and row of panel 6 in P . Since a link on an upper level panel
above panel 6 and 7 introduces identical fill-ins in columns and
rows of panel 6 and 7, the subtraction cancels out identical terms
and creates many zeros in P ′.

The elementary operation of moving basis panels upward can
be executed continuously. As shown in Fig. 4, after moving panel
7 to panel 4, the elementary tree including panel 2, 4, and 5 now
has two basis panels (panel 4 and panel 5). So we can eliminate
panel 5 (or panel 4) and add it parent panel 2. Also notice that
in this step, the column and row corresponding to panel 6 will
not be affected and hence zeros created in the previous step are
preserved. Similarly, after this step, we can move panel 3 (or panel
2) to panel 1 and again introduce many zero entries.
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Fig. 4. Successively applying the elementary operation.

So successively moving basis panels upward is equivalent to
implicitly apply consecutive congruence transformations on the
potential coefficient matrix with the transformation matrix

E = E1E2E3 · · · (12)

In each step of the transformation, many zeros are created in the
new potential coefficient matrix and those already created zero
entries will not be destroyed the later steps.

Assume we start from the basis including all leaf panels, and
then we apply the elementary operation to consecutively push
basis panels from bottom to top. At the end, the result basis
will only include root panels and left-hand side (LHS) panels
in all internal elementary trees. This process is equivalent to
consecutively apply congruence transformations to cancel out
duplicated terms introduced by the same link. So in the new
potential matrix P ′, the number of non-zeros is comparable with
the total number of links in the multiple-tree structure, which has
been proven to be O(n) [5]. This property has also been observed
in the experiment as shown in Fig. 5.

Therefore, the new basis includes all root panels and all left-
hand side panels will lead to a sparse potential coefficient matrix
containing O(n) non-zero entries.

B. Direct Formulation of J ′

The corresponding structure matrix J ′ of the new basis can be
constructed using the following method.
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Fig. 5. Comparison of non-zero entries in H and P ′.

In the column J ′
i corresponding to a basis panel i, each entry

Jij is 1 if panel i contains the right-hand side panel j. If panel
i is not a root panel, then each entry Jij is −1 if the parent of
panel i contains the right-hand side panel j.

The above method can be illustrated by an example in Fig. 6.
Panel 2 is a LHS panel and has been included in the new basis.
Panel 5 and 7 are its underlying RHS panels and hence the related
entries in J ′ are filled by 1. The parent of panel 2 contains RHS
panel 3, so that the related entry in J ′ is −1.
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Fig. 6. Efficient construction of the new structure matrix J ′.

C. Extracting E from J ′

We have shown that the new potential coefficient matrix P ′ is
obtained by applying congruence transformations on the original
P matrix. Since P ′q′ = v′, by substituting P ′ = ET PE, we
get ET PEq′ = v′. Also we know that Pq = v. So these two
equations can be satisfied by setting v′ = ET v and q = Eq′.

From q = Eq′, we can see that E is the coefficient matrix
when representing leaf panel charges using charges on those new
basis panels. Since we have known that all panel charges can be
represented by qN = J ′q′, so that E has already been included
in the J ′ matrix and hence can be obtained directly.

D. Solving P ′q′ = v′

For the problem with uniform media, the sparse linear system
P ′q′ = v′ is symmetric. In this scenario, we use incomplete
Cholesky factorization with no fill to compute the preconditioner.
Preconditioned Conjugate Gradients method is used to solve the
system. For the problem with multiple dielectrics, the sparse
linear system is unsymmetric. The preconditioner is computed
from incomplete LU factorization of the coefficient matrix. No
fill is allowed during factorization. We use right preconditioned
GMRES method to solve the system. After we get q′ which is
the charges on optimal basis panels, the charges on leaf panels
can be easily obtained by q = Eq′.

E. Complexity Analysis
The outline of our new algorithm is summarized in Table. I.

The first step of selecting the new basis can be done by scanning
all N = 2n − 1 panels to determine which are roots and LHS



panels and hence takes O(n) time. Constructing J ′ is equivalent
to insert O(n) non-zeros in J ′ and hence is also O(n). For the
second step, E is contained in J ′ and does not require extra time.
H has been proved to contain O(n) non-zeros [5], so that the
construction of P ′ = J ′T HJ ′ can also be done in O(n).

TABLE I

OUTLINE OF OUR NEW ALGORITHM.

BEGIN
1. Select one optimal set of panels and generate the new

structure matrix J ′.
2. Extract the transformation matrix E from J ′. Given a leaf

panel voltage vector v, v′ = ET v.
2. Calculate the new potential matrix P ′ = J ′T HJ ′ and solve

P ′q′ = v′ using PCG or GMRES.
4. Obtain root panel charges directly in q′.

END

IV. EXPERIMENTAL RESULTS

We implemented the new algorithm in C + + language and
Matlab. All experiments are executed on Sun-Blade 2500 with
two 1.28-GHz UltraSPARC IIIi processors, 8G RAM and Sorlaris
9. The test examples are k× k bus crossing conductors for k = 2
to 16, generated by busgen in FastCap released package [3].

The density of the new potential coefficient matrix P ′ related
to the new basis is plotted in Fig. 7. The density is defined as
the total number of non-zeros in P ′ divided by its dimension.
As shown in Fig. 7, as the number of leaf panels goes over one
thousand, P ′ is very sparse and the density of P ′ becomes well
below 10%.
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Fig. 7. Density of the new potential coefficient matrix P ′.

Table II compares the performance of three algorithms : Fast-
Cap [3] with expansion order 2, HiCap [5], and the new algorithm.
The convergence tolerance is set to 0.01, and error is calculated
with respect to FastCap (-o2). Iteration is the average number
of iterations per conductor. Our new algorithm is the fastest one
in these three algorithms. Compared with FastCap, it is 30 − 40
times faster and with much less memory. Compared with HiCap,
for the bus 12×12 benchmark, the new algorithm exhibits nearly
10 times speedup.

HiCap represents P as a block matrix instead of implementing
it directly, and hence the real storage of P is O(n). All H , J ,
and P ′ of our new algorithm contain O(n) non-zeros, so that the
memory consumptions of the new algorithm and HiCap are in
the same order. The actual accuracy and memory consumption
depend on the refinement parameters. When the number of leaf
panels is roughly the same, HiCap and the new algorithm have
comparable accuracy.

We do not have access to PHiCap [7] and cannot compare with
it explicitly. Published results show PHiCap is 2 − 3 times faster
than HiCap for benchmarks in Table 2. Based on the comparison
with HiCap, we can expect our new algorithm is faster than
PHiCap as well. Also for testing cases in Table 2, normally the
new algorithm converges in less than 2 iterations while PHiCap
needs about 3 iterations. Also, the main disadvantage of PHiCap
is its memory consumption due to the explicit formulation of
transformation matrix while the new algorithm directly formulates
the sparse matrix P ′. Also [7] shows that PHiCap has lower
accuracy than HiCap. So the new algorithm can be superior to
PHiCap in terms of memory and accuracy.

TABLE II

SIMULATION RESULTS COMPARISON.

4 × 4 Bus, Unit List: Time(Sec), Memory(MB)

Algorithm Time Iteration Memory Error Panels
FastCap 8.03 18.63 26.27 – 2736
HiCap 0.77 8.7 0.99 0.72% 2176
New Alg 0.39 1.12 0.581 0.76% 2112
6 × 6 Bus, Unit List: Time(Sec), Memory(MB)
Algorithm Time Iteration Memory Error Panels
FastCap 35.55 14.4 65.19 – 5832
HiCap 3.19 14.5 1.85 1.42% 3168
New Alg 0.7 1.08 1.54 1.50% 3168
8 × 8 Bus, Unit List: Time(Sec), Memory(MB)
Algorithm Time Iteration Memory Error Panels
FastCap 67.4 12 114.5 – 10080
HiCap 14.64 13.4 5.03 1.63% 8448
New Alg 2.84 1.43 3.58 1.91% 8320
12 × 12 Bus, Unit List: Time(Sec), Memory(MB)
Algorithm Time Iteration Memory Error Panels
FastCap 357.99 18.1 297.8 – 22032
HiCap 76.53 15.1 12.72 1.08% 12864
New Alg 7.21 1.41 11.87 1.18% 12480

V. CONCLUSION

This paper presents a 3D capacitance extraction algorithm. The
new algorithm exhibits significant improvement of previous best
algorithms by proposing a novel but simple method to obtain
a sparse potential coefficient matrix. Thus preconditioners can
be easily constructed and hence greatly speedup iterative matrix
solvers. Detailed analysis shows that the new algorithm is faster
and consumes less memory than all previous algorithms.
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