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Abstract— Due to the ever-increasing complexity of VLSI
designs and IC process technologies, the mismatch between a
circuit fabricated on the wafer and the one designed in the layout
tool grows ever larger. Therefore, characterizing and modeling
process variations of interconnect geometry has become an inte-
gral part of analysis and optimization of modern VLSI designs.
In this paper, we present a systematic methodology to develop
a closed form capacitance model, which accurately captures
the nonlinear relationship between parasitic capacitances and
dominant global/local process variation parameters. The explicit
capacitance representation applies the orthogonal principle factor
analysis to greatly reduce the number of random variables
associated with modeling conductor surface fluctuations while
preserving the dominant sources of variations, and consequently
the variational capacitance model can be efficiently utilized by
statistical model order reduction and timing analysis tools. Exper-
imental results demonstrate that the proposed method exhibits
over 100× speedup compared with Monte Carlo simulation while
having the advantage of generating explicit variational parasitic
capacitance models of high order accuracy.

Categories and Subject Descriptors: B.7.2 [Integrated Cir-
cuits]: Design Aids – simulation, verification.

General Terms: Design, Algorithms.

Keywords: Process variations, capacitance, parasitic extrac-
tion, random variable reduction, principle factor analysis.

I. INTRODUCTION

As VLSI circuits have entered deep submicron dimen-
sions, increasing complexity of VLSI designs and IC process
technologies increases the mismatch between design and
manufacturing. Process induced variations in the device and
interconnect structures are posing a significant challenge to
parasitic modeling and signal integrity analysis. To determine
the extent of such effects, the distribution of various electrical
parameters, such as interconnect resistances and capacitances
due to variations in the manufacturing process must be deter-
mined. Once this distribution is known, which is also called
the design envelope, the design corners can then be identified.

During the modern Damascene process, the dielectric is
usually patterned by reactive ion etching (RIE), followed
by the linear and metal (Cu) deposition. Then chemical-
mechanical planarization (CMP) is applied to remove exces-
sive metal and provide a global planarization. During RIE, the
ideal eroded rectangular trenches in dielectric, and hence later
deposited metals and liners, may become trapezoidal due to the

aspect dependent etch rate (ARDE) effect. During the CMP
overpolishing process, regions of high metal pattern density
tend to erode faster and hence show higher metal and dielectric
removal rates than regions of low metal pattern density [1].
The non-uniform metal removal rates across the wafer can
lead to varying metal line thickness for interconnects sited in
the same metal layer. Also during the pattern transferring in
lithography process, photomask geometries may be distorted
due to nonlinear distortions caused by optical diffraction
and resist process effects, so that the tips and corners of
interconnect will become round shape.
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Fig. 1. Process variations due to (a) chemical-mechanical planarization,
(b) optical diffraction, and (c) chemical etching. (Picture courtesy of TSMC,
Hsin-Chu, Taiwan.)

Therefore, for deep submicron technologies, a combination
of device physics, die location dependence, optical proximity
effects, micro-loading in etching and deposition may lead
to heterogeneous and non-monotonic relationships among the
process random variables. Also parasitic capacitance does not
change monotonically or linearly according to those random
parameters, which have varying effects on interconnect geome-
tries depending on local characteristics of the layout and
uncertainties in fabrication. Since all these process variations
are random in nature, statistical parasitic capacitance models
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having the ability to capture those complicated nonlinear
relationships become indispensable.

Furthermore, capacitance extraction with process variations
can never be the final goal. Capacitance variation analysis
needs to provide a model fully compatible with statistical
model order reduction and statistical timing analysis tools,
most of which require representing parasitic capacitances as
functions of some common random variables [2]–[6]. Also
recent study shows that the first order canonical model is
not sufficient enough to represent the nonlinear dependency
of parasitic capacitances on many variation sources [7]. To
our best knowledge, although many efficient 3D capacitance
extraction algorithms [8]–[15] have been proposed in the
literature and there have been some pioneer works [7], [16]
on capacitance extraction with the consideration of process
variations, no algorithm has the functionality to efficiently
supply an explicit statistical capacitance model with high order
accuracy.

Unsatisfied with those limitations, in this paper, we propose
a systematic way to develop an explicit quadratic form repre-
sentation for parasitic capacitance and the quadratic model can
be easily extended to achieve even higher order accuracy. First,
we adopt the boundary element method with hierarchical panel
refinement to generate the sparse linear system after conductor
surface discretization. The sparse system can be efficiently
solved by preconditioned iterative matrix solvers, such as
preconditioned conjugate gradient (PCG) or GMRES. The
surface fluctuation of a conductor is then modeled as statistical
position perturbations of those most delicate panels normal
to their smooth surfaces. Each position perturbation can be
modeled as a random variable and the spatial correlations
among those perturbations can be described by the Gaussian
correlation function with an appropriate correlation length.
Then we apply orthogonal principle factor analysis (OPFA)
to find several dominant global/local factors that cause the
position variations. The quadratic approximation in terms of
those dominant factors can be obtained by solving the sparse
linear system several times.

The rest of paper will be organized as follows: Section II
introduces the boundary element method and the hierarchical
capacitance algorithm. Section III presents the main idea of
our variational capacitance extraction. Extensive simulation
results are shown in Section IV and the paper is concluded
in Section V.

II. PRELIMINARY

The capacitances among m conductors can be summarized
by an m × m capacitance matrix C,

Cṽ = q̃, (1)

where q̃, ṽ ∈ Rm×1 are conductor charge distribution and
potential vectors, respectively. The diagonal entries Cii of C
are positive, representing the self-capacitance of conductor i.
The non-diagonal entries Cij are negative, representing the
coupling capacitance between conductors i and j. The jth

column of C can be calculated by solving for the total charges

on each of the conductors when the jth conductor is at unit
potential and all the other conductors are at zero potential.
Then the charge on conductor i, q̃i, is equal to Cij . This
procedure is repeated m times to compute all columns of C.

A. BEM Capacitance Extraction

Boundary element methods (BEM), also referred to as panel
methods or the method of moments, have been adopted as
the main approach for 3D capacitance calculation. Due to
the fact that the charge is restricted to the surface of the
conductors, the surfaces of m conductors with non-uniform
charge distribution need to be discretized into a total of n two-
dimensional panels and the charge distribution on each panel
is assumed to be even. Then for each panel k, an equation is
written that relates the potential at the center of the kth panel
to the sum of contributions to that potential from the charge
distribution on all n panels and the contribution from the lth

panel is determined by the potential coefficient,

Pkl =
1
al

∫
panel l

1
‖ xk − x′ ‖da′ ≈ 1

‖ xk − xl ‖ , (2)

where xl and xk are the centers of the lth and kth panels.
Then a system of equations can be constructed to solve for

the discretized conductor surface charges

Pq = v, (3)

where P ∈ Rn×n is the potential coefficient matrix and q,v ∈
Rn×1 are panel charge distribution and potential vectors. To
compute the jth column of the capacitance matrix, Eq. 3 must
be solved for q, given a v vector where vk = 1 if panel k is
on the jth conductor, and vk = 0 otherwise [8]. Then Cij of
the capacitance matrix is computed by summing all the panel
charges on the ith conductor,

Cij =
∑

k∈conductor i

qk. (4)

B. Hierarchical Capacitance Algorithms

The main obstacle of solving q is that the coefficient matrix
in Eq. 3 is very dense and direct linear system solvers, such
as Gaussian elimination or Cholesky decomposition, become
computationally intractable if the number of panels exceeds
several hundred. Therefore, multipole accelerated [8], [14] and
hierarchical algorithms [9], [10] have been proposed to address
this problem. Hierarchical algorithms will be introduced in this
section.

Conductor surfaces can be hierarchically, instead of uni-
formly, divided into smaller panels [9], [10]. The hierarchi-
cal panel refinement can be fully described by a multiple-
tree shown in Fig. 2, in which the root panel of each tree
corresponds to a conductor surface. If the estimated potential
coefficient between two panels is larger than a threshold value
Pε, they are further divided into smaller panels. Otherwise,
a link recording the potential coefficient is created between
these two panels.

All recorded potential coefficients compose a link matrix
H ∈ RN×N [10], where N is the number of all panels.
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Fig. 2. Hierarchical capacitance extraction algorithm represented by a
multiple tree data structure. The dimension of the link matrix H is equal
to the total number of panels.

For any two panels i and j with no links in between, the
corresponding entry in H is zero, otherwise, the recorded
potential coefficient evaluated by using Eq. 2 is filled into
Hij .

For each panel in the hierarchical data structure, its charge
is equal to the summation of charges on its two child panels.
Therefore, one can choose a specific set of panels, called basis
panels, such that all panel charges can be uniquely represented
as linear combinations of charges on those panels [17]. The
coefficient matrix of those linear combinations is called the
structure matrix J ∈ RN×n, where n is the number of leaf
panels.

For a particular multiple-tree structure, there are many
possible bases and each of them has its own structure matrix
J and potential coefficient matrix P , which can be expressed
in terms of H and J as

P = JT HJ. (5)

Then in the new linear system, the q vector in Eq. 3 will
represent charges on those basis panels instead of leaf panels.
It has been discovered that the potential coefficient matrix in
Eq. 5 is dense when leaf panels are chosen as the basis. On the
contrary, if all root panels and left hand side panels are chosen
as the basis, it is provable that the P matrix related to this basis
is sparse and contains O(n) non-zeros (Fig. 3). Therefore,
equations in Eq. 3 can be efficiently solved by preconditioned
Krylov subspace solvers in linear time.

III. STATISTICAL CAPACITANCE EXTRACTION

The following four issues will be discussed in this section
for modeling parasitic capacitance variations: (1) how to
efficiently solve the system equations associated with the
variational capacitance model; (2) how to mathematically
model the surface fluctuation due to process variations; (3)
how to reduce the large number of random variables used to
model the surface fluctuation; (4) how to obtain the probability
density function without using time consuming Monte Carlo
simulation.

A. Variational Capacitance Approximation

Assume for now that process variations induce some pertur-
bations in the nominal potential coefficient Pkl between panel
k and panel l in Eq. 2, and the variational potential coefficient
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(a) Basis includes all leaf panels.

(b) Basis includes all root panels and left hand side panels.

Fig. 3. Sparsifying the potential coefficient matrix based on basis transfor-
mation. The basis including all leaf panels in (a) will lead to a dense potential
coefficient matrix while the potential coefficient matrix P related to the basis
containing all root panels and left hand side panels (b) is sparse and contains
O(n) non-zero entries.

P̄kl can be represented in terms of the nominal value Pkl and
k normal random variables δ = [δ1 δ2 · · · δk]T as

P̄kl = Pkl +
∑

i

∆P i
klδi +

∑
i,j

∆P ij
kl δiδj + h.o.t. (6)

How to represent P̄kl in the such a form will be presented in
the following sections.

The expression of P̄kl in terms of δ can be extended to
higher orders. If the first three terms is used, Eq. 6 is the
quadratic form of the potential coefficient P̄kl. The second
term represents the canonical linear model while the third
term captures the nonlinear relationship between P̄kl and δ.
In the rest of this paper, our discussion will be based on
the quadratic form, since higher order approximations can be
easily extended using the presented derivation.

Since each entry of the variational link matrix H̄ has the
form shown in Eq. 6, the entire H̄ can also be expressed in a
quadratic form as follows:

H̄ = H +
∑

i

∆Hiδi +
∑
i,j

∆Hijδiδj , (7)

where H,∆Hi,∆Hij ∈ RN×N are constant coefficient
matrices.

By using Eq. 5, the variational potential coefficient matrix
P̄ can also be represented in terms of P and δ

P̄ = JT HJ +
∑

i

JT ∆HiJδi +
∑
i,j

JT ∆HijJδiδj ,

= P +
∑

i

∆P iδi +
∑
i,j

∆P ijδiδj

︸ ︷︷ ︸
∆P

, (8)

where ∆P i = JT ∆HiJ and ∆P ij = JT ∆HijJ . P is the
potential coefficient matrix without considering the process
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variations, and ∆P , which is the summation of the second
and third terms in Eq. 8, represents the variational part of P̄ .

Let q̄ denote the variational charge distribution vector, our
goal is then to express q̄ in a quadratic form, such that

q̄ = q +
∑

i

∆qiδi +
∑
i,j

∆qijδiδj

︸ ︷︷ ︸
∆q

, (9)

where q,∆qi,∆qij ∈ Rn×1. From Eq. 9, it is clear that the
quadratic expressions of self and coupling capacitances can be
easily obtained by using Eq. 4.

From Eq. 8 and Eq. 9, the variational linear system can be
then represented as

(P + ∆P )(q + ∆q) = v. (10)

Substituting the normal equation in Eq. 3 into Eq. 10 and
applying the Taylor expansion, ∆q can be expressed as

∆q = −(I + P−1∆P )P−1∆Pq

= −P−1∆Pq︸ ︷︷ ︸
∆q1

+P−1∆PP−1∆Pq︸ ︷︷ ︸
∆q2

+ · · ·

= Aq + A2q + · · · =
∞∑

i=1

Aiq, (11)

where A = −P−1∆P .

Theorem 1: The variational charge distribution vector ∆q
can be represented as ∆q =

∑∞
i=1 Aiq, where A =

−P−1∆P . The Taylor expansion series of ∆q converges
under the condition ‖ P−1∆P ‖p< 1. So high order terms
can be iteratively calculated by using the following equation

P∆qi+1 = −∆P∆qi. (12)

Since in practice, the perturbation matrix ∆P is normally
smaller than the normal potential coefficient matrix P , the
convergence condition can be almost always satisfied. Let the
quadratic form representation of the first term on the right
hand side of Eq. 11, ∆q1, to be

∆q1 =
∑

i

∆qi
1δi +

∑
i,j

∆qij
1 δiδj . (13)

By using Eq. 8 and P∆q1 = −∆Pq, we can get

P∆qi
1 = −∆P iq,

P∆qij
1 = −∆P ijq, (14)

Therefore, the quadratic expression of ∆q1 can be calculated
by solving (k + k2) linear systems. Since P is sparse, each
linear system in Eq. 14 can be efficiently solved by precon-
ditioned iterative methods with O(n) complexity. So the total
complexity of solving ∆q1 is O((k2 + k)n). Usually, the
number of random variables, k, is much smaller than the total
number of leaf panels n.

The second term ∆q2 =
∑

i,j ∆qij
2 δiδj in Eq. 11 can be

obtained by using ∆q1

P∆q2 = −∆P∆q1. (15)

Let the right hand side vector in Eq. 15 to be q̃1 = ∆P∆q1,
then the quadratic approximation of q̃1 can be expressed as

q̃1 =
∑
i,j

∆P i∆qj
1δiδj + h.o.t. (16)

Therefore, the coefficient vectors of ∆q2 can be obtained by

P∆qij
2 = −∆P i∆qj

1, (17)

So the quadratic expression of ∆q2 requires the solving of k2

linear systems and hence the complexity is O(k2n).
Therefore, by using the quadratic expressions of ∆q1 and

∆q2, the the quadratic expression of ∆q is then obtained by

∆qi = ∆qi
1,

∆qij = ∆qij
1 + ∆qij

2 . (18)

So the total computational complexity of calculating the
quadratic form of ∆q is O(k2n).

Also, one may notice that the first order terms are only
generated by ∆q1 while the second order terms are generated
by ∆q1 and ∆q2. Therefore, for the quadratic form approxi-
mation, when i > 2, ∆qi does not contain the first and second
order terms, and hence can be safely truncated. In the follow
subsections, we will present how to express the variational
potential coefficients in a form given in Eq. 6 in terms of k
normal random variables.

B. Process Variation Modeling

After the hierarchical panel discretization process, the po-
sitions of those most delicate panels, leaf panels, may be
varying due to process variations. The surface fluctuation of a
conductor can be described as a statistical perturbation on each
nominal leaf panel smooth surface along its normal direction
as shown in Fig. 4.

Nom inal sm ooth surface

Rough surface

nj

ni

correlation between
njandni

Fig. 4. Process variation modeling with correlated statistical position
perturbations on leaf panels.

Although leaf panel position variations may not be truly
random, they can often be accurately modeled by assuming
an appropriate spatial correlation [16]. We denote leaf panel
position variations as a random variable vector ∆ñ, where the
ith element in ∆ñ, ∆ñi, is the random perturbation on the leaf
panel i. For simplicity, one can assume that the expectation of
∆ñ is µ(∆ñ) = 0.

Obviously, the larger the distance between two leaf panels,
the weaker the correlation will be. This spatial relationship
can be accurately modeled by using the Gaussian correlation
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function [16]. For two leaf panels i and j, the correlation
between them is determined by

Γij = e−‖xi−xj‖2/η2
, (19)

where e is Euler constant and η is user-specified correlation
length. xi and xj are the centers of leaf panels i and j,
respectively. Then the correlation matrix can be written as

Γ(∆ñ) = (Γij)n×n. (20)

Many small terms in Γ(∆ñ) can be truncated to make it sparse
if the corresponding two leaf panels are separated faraway
enough. Also if the variance on leaf panel i is assumed to
be σi, then the variance-covariance matrix Σ of ∆ñ can be
obtained as

Σ(∆ñ) = (Γijσiσj)n×n. (21)

Therefore, the surface fluctuation can be modeled by the
random vector ∆ñ with mean µ(∆ñ) = 0 and the variance-
covariance matrix Σ(∆ñ) given in Eq. 21.

C. Random Variable Reduction

Although the process variations can be modeled as position
perturbations on leaf panels, the number of random variables
can easily exceeds several thousand and this may greatly limit
the size of the problem that can be analyzed.

The position perturbations of leaf panels may be caused by
many unobservable variation sources, either global or local.
However, some of them may have significant effects on the
conductor surface fluctuation while others may not, and hence
those non-significant factors can be safely neglected in our
modeling process. In multivariate statistics, determining the
dominant unobservable variation sources can be performed
by principle factor analysis (PFA) [18] based on either the
correlation matrix Γ(∆ñ) in Eq. 20 or the variance-covariance
matrix Σ(∆ñ) in Eq. 21.

The random variable vector ∆ñ representing the pertur-
bations on leaf panels is observable, and has n components
with the mean vector µ(∆ñ) = 0 and the variance-covariance
matrix Σ(∆ñ) given in Eq. 21. The principle factor analysis
postulates that ∆ñ is linearly dependent upon k (k << n)
unobservable random variables δ, called common factors.
Those k common factors are used to model the unknown
and unobservable dominant process variation sources that
inherently induce the perturbations on leaf panels.

Furthermore, the orthogonal principle factor analysis
(OPFA), also referred to as principle component model, as-
sumes that

µ(δ) = 0,

Σ(δ) = I. (22)

The goal of orthogonal principle factor analysis is to find a
loading matrix L ∈ Rn×k, such that

∆ñ = L × δ.
(n × 1) (n × k) (k × 1) (23)

From the OPFA model in Eq. 23 and by using Eq. 22, one
can easily obtain that

Σ(∆ñ) = LΣ(δ)L′ = LL′. (24)

Let Σ(∆ñ) have eigenvalue-eigenvector pairs (λi,ei) with
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then the eigen-decomposition
of Σ(∆ñ) is given by

Σ(∆ñ) = λ1e1e
′
1 + λ2e2e

′
2 + · · · + λnene′

n

=
[√

λ1e1

√
λ2e2 · · · √

λnen

]


√

λ1e1√
λ2e2

...√
λnen


 .(25)

So if the loading matrix equal is equal to L =
[
√

λ1e1 · · · √λnen], then we can obtain Σ(∆ñ) = LL′ as
in Eq. 24.

However, in this case, the principle factor analysis is not
particularly useful since it employs as many common factors as
there are random variables and does not lead to any approxima-
tion of Σ(∆ñ), although the correlative relationships among
∆ñ have been decoupled. We prefer models that explain the
variance-covariance matrix Σ(∆ñ) in terms of just a few
common factors.

When the last (n−k) eigenvalues are small, one can neglect
the contribution of λk+1ek+1e

′
k+1 + · · ·+λnene′

n to Σ(∆ñ)
in Eq. 25. So if one let

L = [
√

λ1e1

√
λ2e2 · · ·

√
λkek], (26)

then neglecting this contribution leads to the approximation

Σ(∆ñ) ≈ λ1e1e
′
1 + λ2e2e

′
2 + · · · + λkeke′

k = LL′. (27)

Furthermore, OPFA provides a easy way to determine how
many number of common factors are necessary to achieve
the user specified accuracy. Since the ith factor basically
corresponds to the ith eigenvalue as shown in Eq. 25 and∑n

i=1 λi = tr(Σ(∆ñ)), the contribution of the ith factor to
Σ(∆ñ) can then be estimated by

ci =

{
λi

tr(Σ(∆ñ)) factor analysis using Σ(∆ñ)
λi

n factor analysis using Γ(∆ñ)
.(28)

So if
∑k

i=1 ci of the first k largest eigenvalues is larger than
a user specified value depending on accuracy requirement, the
result k number of factors will be applied to approximate ∆ñ.

D. Potential Coefficient Approximation

For one pair of panels k and l without process variations,
the potential coefficient between them is evaluated by Eq. 2.
If panels k and l have variations ∆nk and ∆nl along their
normal direction, then the variation potential coefficient P̄kl is
a function of ∆nk and ∆nl, P̄kl = f(xk, xl,∆nk,∆nl). By
expanding P̄kl into Taylor series around ∆nk and ∆nl, one
can obtain that

P̄kl = Pkl + âkl∆n̂ + ∆n̂′Âkl∆n̂ + h.o.t, (29)
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where âkl is a 1× 2 vector and Âkl is a 2× 2 matrix. ∆n̂ =
[∆nk ∆nl]T is a random vector containing ∆nk and ∆nl.

During the hierarchical panel refinement process, the
recorded links may or may not be created between two leaf
panels as we have shown in Fig. 2. So ∆n̂ could contain
the variations on some non-leaf panels. Since our process
variations and principle factor analysis are performed in terms
of variations on leaf panels, it is necessary to represent ∆n̂
in terms of ∆ñ.

Without loss of generality, we assume that the position vari-
ations of leaf panels are along their normal direction. Then if
two panels i and j have variations ∆ni and ∆nj , the variation
on their parent panel k will be ∆nk = 1/2(∆ni+∆nj). So all
panel variations ∆n, either leaf or non-leaf, can be expressed
in terms of variations on its underlying leaf panels

∆n = R∆ñ, (30)

where R ∈ RN×n is a provable sparse matrix. For example,
for the small tree structure shown on the right hand side in Fig.
5, panels 1, 2, and 4 are leaf panels. Panel 3 is the parent of
panels 1 and 2, and hence ∆n3 = 1/2(∆n1 + ∆n2). Panel 5
is the parent of panels 3 and 4, and hence ∆n5 = 1/2(∆n3 +
∆n4) = 1/4(∆n1 + ∆n2) + 1/2∆n4. The detailed algorithm
for constructing the random variable transformation matrix R
is presented in Fig. 6.
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Fig. 5. Random variable transformation.

Procedure ConstructR
Input: (a) Vector Panel contains the indexes of all panels;

(b) Vector Basis contains the indexes of leaf panels.
Output: R ∈ RN×n, such that ∆n = R × ∆ñ.

1: n = Basis.size();
2: for i = 1 · · ·n do
3: X = Basis[i];
4: InsertEntry(R, X, i, 1);
5: value = 1/2;
6: while Panel[X].parent! = NULL do
7: X = Panel[X].GetParent();
8: InsertEntry(R, X, i, value);
9: value = 1/2 × value;

10: end while
11: end for

Fig. 6. Algorithm for constructing random variable transformation matrix.
Function InsertEntry(R, i, j, value) fills value into the entry (i, j) of R.

Therefore, by using Eq. 30, ∆n̂ can be expressed in terms
of ∆ñ as

∆n̂ =
[
Rk

Rl

]
∆ñ, (31)

where Rk and Rl are the kth and the lth rows in the
transformation matrix R. And then the variational potential
coefficient between panels k and l, P̄kl, can be written as
according to ∆ñ

P̄kl = Pkl + ãkl∆ñ + (∆ñ)′Ãkl∆ñ, (32)

where

ãkl = âkl

[
Rk

Rl

]
, (33)

and

Ãkl =
[
Rk

Rl

]′
Âkl

[
Rk

Rl

]
. (34)

Furthermore, since the leaf panel variations can be rep-
resented using k common factors as shown in Eq. 23, the
variational potential coefficient between panels k and l, P̄kl,
can be further represented in terms of the k dominant common
factors

P̄kl = Pkl + aklδ + δ′Aklδ, (35)

where

akl = ãklL, (36)

Akl = L′ÃklL. (37)

The representation in Eq. 35 is exactly equivalent to the one
in Eq. 6. The ith element in the vector akl is equal to ∆P i

kl

while ∆P ij
kl is equal to 2(Akl)ij if i �= j and (Akl)ij if i = j.

So the method presented in section 3.1 can be used to solve
∆q.

E. Distribution of Parasitic Capacitance

After obtaining the quadratic expression of parasitic capac-
itance, Monte Carlo simulation can be applied to determine
the corresponding probability density distribution (PDF). How-
ever, in this section, we will present a way to directly calculate
the PDF of a parasitic capacitance given its quadratic form.

To compute the PDF of the parasitic capacitance, we first
need to calculate its characteristic function. For a random
variable X , its characteristic function is defined as

CX(ξ) = E(ejξX) =
∫ +∞

−∞
ejξxfX(x)dx, (38)

where fX(x) is the probability density function (PDF) of X .
Since the characteristic function is actually an inverse

fourier transform of the PDF, the PDF of the random variable
X can easily computed if its characteristic function is known

fX(x) =
1
2π

∫ +∞

−∞
e−jξxCX(ξ)dξ. (39)

The formal proof of this conclusion can be found in [19].
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For a parasitic capacitance defined in the quadratic form

C̄ = C + aδ + δ′Aδ, (40)

where δ ∼ N(0,Σ), its exact characteristic function can be
analytically computed by [20]

CC̄(ξ) = |Ω|− 1
2 exp{jξm − 1

2
ξ2a′Σ

1
2 Ω−1Σ

1
2 a}, (41)

where |Ω| is the determinant of matrix Ω = I − 2jξΣ
1
2 AΣ

1
2 .

Once we obtain CC̄(ξ), the PDF, and then the cumulative
distribution function (CDF), can be computed from Eq. 39.

Clearly, there will be one step of eigenvalue decomposition
(computing Σ

1
2 ) and one step of fourier transformation in

order to analytically compute the distribution of a parasitic
capacitance. Since our principle factor vector is δ ∼ N(0, I),
the Ω matrix can be simplified to Ω = I − 2jξA. So that
CC̄(ξ) = |Ω|− 1

2 exp{jξm − 1
2ξ2a′Ω−1a} and the eigenvalue

decomposition can be eliminated.

IV. EXPERIMENTAL RESULTS

The proposed capacitance variability modeling approach has
been implemented in C/C++ language. All experiments are
executed on a Pentium(R) 4 CPU 1.4GHz machine with 1GB
RAM. Monte Carlo simulation with 10, 000 runs is used for
comparison purpose.

First, for the 2×2 bus crossing problem, probability density
functions (PDF) obtained from the canonical linear model and
the quadratic model are shown in Fig. 7 and compared with
that from Monte Carlo simulation. It is illustrated that there
is a significant accuracy improvement by using the second
order quadratic model instead of the canonical model. The
accuracy improvement of the quadratic model is mostly due
to the probability distribution region corresponding to larger
capacitance values, which is actually more critical for circuit
performance and timing analysis. The canonical model will
tend to underestimate the possible capacitance value in the
high probability region. This underestimation, in reality, will
result in optimistic design and excessive chip failure. This
example clearly shows the necessity of the quadratic model
in today’s technology where process variation can no longer
be ignored..

In the second experiment, the CDFs and PDFs of the second
order quadratic models with different number of dominant
factors are compared. Without applying PFA, the number
of random variables is equal to the total number of leaf
panel, which is 1126 for bus 2 × 2. In practice, how many
number of dominant factors need to be preserved is determined
by the Gaussian correlation length in Eq. 19. The setup of
Gaussian correlation length depends on the detailed processing
techniques and the local layout characteristics. For different
regions and different panel orientations, we can assign differ-
ent correlation lengths. In this test, PFA with only ten factors
is very close to the result CDF and PDF from Monte Carlo
simulation, so that ninety percent random variable reduction
has been achieved by PFA. And in this case, the error in CDF
compared with Monte Carlo is less than 3%. Furthermore, as
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Fig. 7. First and second order capacitance models and their comparisons
with Monte Carlo method for the bus 2 × 2 benchmark (σ = 20%).

the number of factors increases, the CDFs and PDFs from the
quadratic models quickly converge to those from Monte Carlo
simulation.

In table IV, the run times of Monte Carlo method and
the quadratic model with 10 dominant factors for different
bus crossing benchmarks are compared. It is clear that the
quadratic model exhibits over 100× speedup compared with
Monte Carlo simulation. Statistical distribution-related para-
meters, such as mean value, standard deviation, and skewness
are normally within 3% errors. Combined with the results
from previous experiments, We can safely conclude that,
currently, the second order approximation is accurate enough
for variational parasitic capacitance modeling.

2 × 2 Bus
Method Time Mean µ Std Variation σ Skewness η
M.C. 1826 -78.56 106.01 1.868
QuadMod 9.78 -81.43 103.64 1.927
Speedup/Err 186.7× 3.7% 2.2% 3.2%
4 × 4 Bus
Method Time Mean µ Std Variation σ Skewness η
M.C. 4673 -194.89 85.62 -1.78
QuadMod 16.88 -192.45 83.78 -1.72
Speedup/Err 276.8× 1.3% 2.1% 3.4%
6 × 6 Bus
Method Time Mean µ Std Variation σ Skewness η
M.C. 8568 -195.49 89.34 -1.42
QuadMod 69.56 -190.71 85.52 -1.37
Speedup/Err 123.2× 2.4% 4.3% 3.5%

TABLE I

SIMULATION RUNTIME COMPARISON FOR BUS CROSSING BENCHMARK.

(1) MONTE CARLO (M.C.); (2) QUADRATIC MODEL (QUADMOD).

V. CONCLUSION

This paper presents an efficient methodology for generating
explicit statistical representations of parasitic capacitances.
Our method applies principle factor analysis to reduce the
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Fig. 8. Second order parasitic capacitance modeling with different number of
factors and the comparison with Monte Carlo method for bus 2×2 benchmark.

number of random variables while preserving the dominant
global/local factors that induce the conductor surface fluctu-
ation due to process variations. The obtained quadratic form
can not only be used to directly generate parasitic capacitance
probability distribution to locate design corners, but it is also
fully compatible with statistical model order reduction and
statistical timing analysis tools.
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