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ABSTRACT
Convex optimization has gained popularity due to its capabil-
ity to reach global optimum in a reasonable amount of time.
Convexity is often ensured by fitting the table data into ana-
lytically convex forms such as posynomials. However, fitting
the look-up tables into the posynomial forms with minimum
error itself may not be a convex optimization problem and
hence excessive fitting errors may be introduced.

In this paper, we propose to directly adjust the look-up ta-
ble values into a numerically convex look-up table without
explicit analytical form. We show that numerically ”convex-
ifying” the table data with minimum perturbation can be for-
mulated as a convex semidefinite optimization problem and
hence optimality can be reached in polynomial time. Without
an explicit form limitation, we find that the fitting error is
significantly reduced while the convexity is still ensured. As
a result, convex optimization algorithms can still be applied.
Furthermore, we also develop a ”smoothing” algorithm to
make the table data smooth and convex to facilitate the op-
timization process.

Results from extensive experiments on industrial cell li-
braries demonstrate that our method reduces 30X fitting er-
ror over a well-developed posynomial fitting algorithm. Its
application to circuit tuning is also presented.

1. INTRODUCTION
Convex optimization has gained popularity in the VLSI

circuit optimization society due to its capability of reaching
global optimality for large scale optimization applications
[2], [5], [6], [7].

To ensure the convexity of a given optimization problem
with given table data such as gate delay with respect to
the gate sizes and input slews, significant fitting efforts are
required to obtain an analytically explicit convex functional
form such as posynomials to closely represent the look-up
table data with minimum error [2], [5].

Unfortunately, the fitting process to posynomials with un-
known exponents may not be a convex optimization problem
and is often trapped in the local minimum except for the
simple monomial case. Although systematic fitting meth-
ods such as K-mean algorithms [12] have been proposed to
reduce the fitting errors, the optimality is still not guaran-
teed. As a result, the fitting error may be too excessive or
require human intervention for practical applications. Al-
though generalized posynomial form [2] has been proposed,
this issue is still not solved.

Alternatively, we can directly use the look-up table data

which can be generated experimentally (for example by run-
ning SPICE simulation) [1]. Using finite difference method,
we can still obtain sensitivity and even hessian which are
sufficient for optimization usage. However, as pointed out
in [2], this method is not capable of ensuring convexity re-
quired to ensure quick global convergence. As a result, it
is necessary to modify the data such that both convex and
smooth properties can be guaranteed.

In this paper, we propose to directly adjust the look-up
table data values into a numerically convex table without
explicit analytical form. We show that numerically ”con-
vexifying” the look-up table data with minimum perturba-
tion can be formulated as a convex semidefinite optimization
problem and hence its optimality can be reached in polyno-
mial time. Without an explicit form limitation, we find that
the fitting error is significantly reduced while the convex-
ity is still ensured. As a result, convex optimization algo-
rithms can still be applied. Furthermore, we also develop a
”smoothing” algorithm to make the table data smooth and
convex to facilitate the optimization process.

Results from extensive experiments on a full industrial cell
library demonstrate that our method reduces 30X fitting er-
ror over a well-developed posynomial fitting algorithm. We
also show that the eigenvalue distributions of the hessian
are much better preserved compared to posynomial-based
fitting algorithm. At this point it will be useful to mention
that the terms like ’AN2’, ’ANB2’, ’INV’, ’NR2’ that will be
used at several places in the paper refer to cell names from
the standard cell library used in our experiments.

The application of convex optimization to VLSI is numer-
ous. The most widely used is the gate sizing problem where
the gate delay is reasonably close to the convex function of
gate size and gate load. In our experimental result section,
we also demonstrate the application of our algorithm to the
large scale circuit tuning problem.

The organization of the paper is as follows. In Section 2
we provide some general background on convexity, posyno-
mials and semidefinite programming. We describe our con-
vex model and our problem formulation in section 3.1. We
present our ”smoothing” algorithm in section 3.2. In sec-
tion 4 we provide experimental results of ConvexFit on in-
dustrial cell libraries. We also compare our results with
PosynomialF it, our posynomial modelling technique. We
conclude our discussion in section 5.

2. FUNDAMENTAL CONCEPTS
In this section, the fundamental theorem about convexity

and semidefinite programming is introduced.



2.1 Convexity, Posynomial, and Hessian

Figure 1: Convexity Taxonomy and ”Convexifying”
process

Since convex representation of data is important for op-
timization problems based on convex programming tech-
niques, we now introduce the fundamental definition of con-
vexity. A function f(x) is convex if

f( (1 − λ)a + λb) ≤ (1 − λ)f(a) + λf(b)

∀a, b ∈ DOMf, and ∀λ ∈ (0, 1)

If f(x) is 2nd-order differentiable then f(x) is convex if and
only if ∇2f(x) � 0 for all x ∈ DOMf , where ∇2f(x) is the
Hessian of f(x), denoted as H(x) and is defined as

[H(x)]ij = [∇2f(x)]ij =
∂2f(x)

∂xi∂xj
, i, j = 1 . . . n

and ∇2f(x) � 0 means the Hessian of f(x) is positive semidef-
inite, i.e. all the eigenvalues of the Hessian are greater or
equal to zero.

A posynomial is a function almost like a polynomial but
with positive coefficients and real exponents. The definition
of a posynomial is

f(x) =
k∑

j=1

cj

n∏

i=1

xi
αij ,

where cj , j = 1 . . . n are positive real numbers, and αij are
real numbers. It is well known that posynomial is convex
after the exponential transformation ey = x.

Note that posynomial is only a proper-subset of analyt-
ically convex functions. For example, 1

x+1
or −log(x) are

also convex functions but not in posynomial form. The
more general the convex form, the better it can be used
for convex fitting. Recently, Kishore Kasamsetty et al ex-
panded the posynomial form to generalized posynomial [2],

Gk(x) = .
∑k

j=1 cj

∏n
i=1 G

αij

k−1, where αij ≥ 0 and G0(x) is
a posynomial function.

2.2 Semidefinite Programming
A semidefinite program (SDP) is an optimization problem

of the form:

SDP: minimize C • X

s.t. Ai • X = bi ,i=1,...,m,

X � 0 ,

The objective function is the linear function C •X and there
are m linear equations that X must satisfy, namely Ai•X =
bi , i = 1, ..., m. The variable X also must lie in the (closed
convex) cone of positive semidefinite symmetric matrices. If
C(X) is a linear function of X, then C(X) can be written
as C • X, where

C • X =
n∑

i=1

n∑

j=1

CijXij . (1)

We now introduce the primal form (P ) and the dual form
(D) of SDP which we use in our optimization problem :

(P ) minimize

nb∑

j=1

〈Cj , Xj〉

subject to

nb∑

j=1

〈Ai,j , Xj〉 = bi,

i = 1, ..., m, Xj ∈ Kj (2)

(D) maximize
m∑

i=1

biyi

subject to
m∑

i=1

Ai,jyi + Sj = Cj ,

j = 1, ..., nb, Sj ∈ Kj (3)

where each cone Kj is a set of symmetric positive semidefi-
nite matrices. Hence,

Sj � 0,
∑m

i=1 Ai,jyi − Cj 	 0,
∑m

i=1 Ai,jyi 	 Cj (4)

3. CONVEX FITTING PROBLEM FORMU-
LATION

In this section, we introduce the formulation of minimum-
error convex fitting problem and its solution.

3.1 Convex Fitting Problem Formulation
Fundamentally, we are interested in knowing what are the

most general convex functions. If such a general function
form exists, is there any way we can fit general functions es-
pecially in table form to this function with guaranteed min-
imum error? We now describe the minimum-error convex
fitting problem formally.

Given an analytical or numerical function g(x), we define
the minimum-error convex fitting problem as follows:

ConvexFit :

minimize
∑

xm∈DOMg

| f(xm) − g(xm) |

subject to f(xm) is convex, xm ∈ DOMg

Let f(xm) − g(xm) = δ′(xm), then δ′(xm) is the pertur-
bation of g(xm), the task of ConvexFit is to minimize the



perturbation of g(x) to make the hessian of f(x) convex.
We rewrite the problem formulation as follows:

ConvexFit′ :

minimize
∑

xm∈DOMg

| δ′(xm) |

subject to ∇2(g(xm) + δ′(xm)) � 0,

xm ∈ DOMg

Since | δ(xm) | is not a linear function of xm , we use
−δ(xm) ≤ δ′(xm) ≤ δ(xm), where δ(xm) ≥ 0 to represent
it. Under this transformation, we get the following formu-
lation:

ConvexFit′′ :

minimize
∑

xm∈DOMg

δ(xm)

subject to ∇2(g(xm) + δ′(xm)) � 0,

−δ(xm) ≤ δ′(xm) ≤ δ(xm),

δ(xm) ≥ 0,

xm ∈ DOMg (5)

It is easy to see that the ConvexFit′′ formulation can be
easily fitted into the dual form (D) of semidefinite program-
ming framework [3]. Since semidefinite programming is a
convex optimization problem, the ConvexFit′′ problem can
be optimally solved by any semidefinite programming solver.

Since the domain of interests of g(x), or DOMg(x), is
often finite, we can use a finite difference scheme to ap-

proximate the sensitivity and hessian of g(x) by ∂g(x)
∂xi

∼=
g(x+∆ ei)−g(x−∆ ei)

2∆
and [∇2g(x)]ij = ∂2g(x)

∂xi∂xj

∼=
g(x+∆ ei+∆ ej)−g(x−∆ ei+∆ ej)−g(x+∆ ei−∆ ej)+g(x−∆ ei−∆ ej)

4∆∆
,

where ei is a vector with one in ith entry and zero in others.

3.2 Smoothing the ConvexFit Model
The convex optimizer will converge faster if the sensitivity

and even hessian are continuous. Let f be a discrete function
of x = [x1, x2, ..., xn]T . We use the following quadratic form
to generate smooth data values of f at intermediate points
x′ = x + ∆x.

f(x + ∆x) =
1

2
∆xT Hf (x)∆x + ∆xT b + C

where C = f(x) , b = [ ∂f(x)
∂x1

, ∂f(x)
∂x2

, ..., ∂f(x)
∂xn

]T and Hf is

the Hessian of f . In the n-dimensional case, we can have 2n

surrounding data points for an intermediate point x′. We
calculate the value at x′ by using the quadratic form from
each surrounding point. We then find the smoothed value
at x′ by a weighted sum of the values obtained from the 2n

points.
An n-dimensional space is divided into hypercubes. Each

point (x1, x2, .., xn) not on the boundary of the hypercubes,
has 2n surrounding points. Our smoothing algorithm uses
the surrounding 2n points to approximate the value at point
(x1, x2, .., xn). These points are labeled as (x1l, x2l, ....),
(x1u, x2l, ....), (x1l, x2u, ....), (x1u, x2u, ....).... where x1l < x1 <
x1u, x2l < x2 < x2u, ... and so on.

We have to choose the weight associated with each point
such that our curve can pass through the original data and

is also continuously differentiable everywhere. We do not di-
rectly use 1/distance as the weight of these points. This may
result in non-continuity at the boundary of each cube. We
calculate weight x1w = (x1u −x1)/(x1u −x1l). Similarly, we
can calculate x2w, x3w, ...xnw. We use (x1w × x2w × x3w ...×
xnw) as the weight of point (x1l, x2l, x3l, ...., xnl). Similarly
we use ((1−x1w) × x2w × x3w ...× xnw) as weight of point
(x1u, x2l, x3l, ..., xnl) and so on. Our smoothed curve passes
through the original points. Hence smoothing does not add
additional error over ConvexFit.

The sum of the weights of all the surrounding points is
one. We use

∑
(value × weight) as our smoothed value

of point (x1, x2, .., xn). Following a similar methodology we
can deal with the points in the boundary. Figure 2 illustrates
the weight calculation for 3-dimensional space.

(sl , ll , cl)

(sl , lu , cu) (su , lu , cu)

(su , ll , cu)

  sw  =   (su-s)  / (su-sl)
  cw  =  (cu-c) / (cu-cl)
  lw   =  (lu-l)  /  (lu-ll)

(s , l , c)

(sl , lu , cl)

(sl , ll , cu)

(su , lu , cl)

(su , ll , cl)

Figure 2: Smoothing for 3-dimension: n = 3, x1 =
slew, x2 = load, x3 = input capacitance

3.3 Posynomial Fitting Procedure for com-
parison

We initially modelled cell data as posynomials due to the
popularity of geometric programming. While searching reli-
able and automatic posynomial fitting procedures, we found
that it was extremely difficult to find universally accurate
posynomials for even just the delay or transition time which
naturally should already be very close to polynomial forms.
We tried several methods which actually worked for many
cases while were not suitable for many other cases. We now
introduce those methods.

The posynomial modelling procedure is essentially done
via least-square regression analysis on the cell data. The
posynomial parametric regression problem can be formally
defined as follows:

PosynomialF it : minimize

z∑

m=1

((

km∑

j=1

cj

n∏

i=1

xmi
αij ) − bm)2

subject to cj ≥ 0 (6)

where z is the number of sets of tunable parameters , n is



the number of tunable parameters which affect the metric
being approximated, xmi ∈ � is the ith entry of the mth set
of tunable parameters, bm ∈ � is one of z different values
from the cell look-up table each corresponding to the mth

set of tunable parameters. km, cj , and αij are the unknown
parameters we are trying to determine.

If the exponents, αij , are already known, the problem
of PosynomialF it is a convex least square fitting problem
which can be optimally solved by any convex solver. The
issue is that when the exponents are unknown, the problem
is not in any known convex form. Therefore, the convexity
of the problem is not guaranteed. There is, however, one
special case. When there is only one term in the posyno-
mial, it degenerates into monomial form which can be solved
optimally. This can be seen by taking a logarithm on both
sides of the equation.

We developed three different algorithms for posynomial
modelling.

Approach 1 - Posynomial Characterization with Fixed
Exponents and Unknown Coefficients : Select and fix a num-
ber of monomial terms to use in the characterization pro-
cess. Select and fix a set of exponent values to use for each
variable in the posynomial expression. Determine the best
coefficients using least-square fitting.

Approach 2 - 1-Phase Posynomial Characterization with
unknown Exponents and Unknown Coefficients: Select and
fix a number of monomial terms to use in the characteriza-
tion process. Determine the unknown coefficients and un-
known exponents for the posynomial expression using least-
square fitting. The following is an example of a posyno-
mial for cell AN2 obtained by using this approach: cell rise
posynomial for pin = I1 is:

0.00014 × (slew)0.0049 × (load)0.8783 × (cap)−1.7592

+0.00598 × (slew)−0.3466 × (load)−0.5262 × (cap)0.6315

+0.51642 × (slew)0.6948 × (load)2.1138 × (cap)2.4264

+6.0844 × (slew)0.3135 × (load)−0.0656 × (cap)0.8093

+8.18 × 10−10 × (slew)2.4264 × (load)−0.2173 × (cap)−1.4685

Approach 3 - 2-Phase Posynomial Characterization with
unknown Exponents and Unknown Coefficients: (Similar to
K-Mean Algorithm [12]) We explain this in the context of
our cell delay which depends on the drive strength, input
slew rate and the load capacitance of the cell. Phase 1:
For each drive strength instance of a particular cell, indi-
vidually generate an accurate posynomial expression based
on only input transition and output load capacitance (with
unknown coefficients and unknown exponents for the posyn-
omial expression solved using least-square fitting). Phase 2:
Aggregate all results from phase 1 together, and add to each
term a new posynomial term expressed as a function of the
input capacitance (which is directly related to the transistor
width drive strength)

Table 1 summarizes the results of these approaches for
cells AN2 and ANB2. SE is the total square error for the
cell delay model. The percentage of total data points falling
within ±20% fitting error is also shown in the table.

4. EXPERIMENTAL RESULTS ON INDUS-
TRIAL CELL LIBRARY

Table 1: Posynomial modelling approaches

Std.
Approach 1 Approach 2 Approach 3

SE pts
within

SE pts
within

SE pts
within

cell (ns2) 20% error (ns2) 20% error (ns2) 20% error
AN2 4.34 43% 0.88 96% 0.89 94%
ANB2 7.43 12% 4.26 50% 4.95 47%

In this section, we first introduce how to apply ConvexFit
to a popular industrial cell library to generate convex delay
and transition time models. Next, we present the experi-
mental comparison between PosynomialF it and ConvexFit
algorithms. Then we introduce the results obtained from our
smoothing algorithm. Finally, we illustrate the application
of our algorithm to gate-sizing.

4.1 Applying ConvexFit in generating stan-
dard cell delay models

Our ConvexFit formulation (5) can be easily applied to
model standard cell delay look-up tables. Let us denote our
lookup table, cell rise time as f(s, c, l), a function of input
slew s, input capacitance c, and output load l. We have
to introduce minimum perturbation in the cell rise values to
make them purely convex. The perturbed function obtained
by running ConvexFit is our generated delay model for the
standard cells.

Table 2: Cell-Rise Fitting Errors Comparison

Cell name
PosynomialFit ConvexFit

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 0.883 0.035 0.333 0.0113
AOI222 9.214 0.137 0.143 0.0079

BUF 3.861 0.047 0.679 0.0125
INV 9.427 0.087 0.052 0.0044

MAOI1 8.100 0.125 0.0445 0.0037
MUX4 5.900 0.108 0.031 0.0064

ND3 1.774 0.068 0.236 0.0143
OA12 3.523 0.084 0.369 0.0109

OR3B2 4.009 0.087 0.074 0.0041
XOR2 2.537 0.064 0.000 0.0002

4.2 Comparison of PosynomialFit and Con-
vexFit

We now present the experimental results of ConvexFit
and PosynomialF it on a real industrial cell library. It is a
0.13µm family standard cell library containing 415 generic
core cells and 53 I/O cells. We performed our experiments
using 67 combinational cells from this library. We have used
the DSDP5.7 [3] solver in C to run our semidefinite optimiza-
tion ConvexFit [16]. PosynomialF it (using approach 2 in
subsection 3.3 ) was implemented in C++ using the CFSQP
solver [4]. All experiments were performed on a PC with
1.60GHz Microprocessor, 256 MB RAM and 60 GB hard
drive running Windows XP. Experiments were performed
for cell-rise, cell-fall, rise-transition and fall-transition look-
up tables for each cell, and for one input pin per cell. Ta-
bles 2, 3, 4, 5 summarize the total square error(SE) and the
average absolute error(AE) for the four different look-up ta-
bles(results for only ten cells are shown due to limitation
of space). SE is calculated by summing the square of the
error for each data point in the look-up table. AE is calcu-



lated by summing the absolute error for each data point in
the look-up table, and then dividing by the total number of
data points. It can be observed that ConvexFit shows more
than 30X reduction in fitting error over PosynomialF it.
ConvexFit has an average square error of 0.26, while av-
erage square error of PosynomialF it is 9.5307. Figures
3, 4, 5, 6 showing the error distribution for the two tech-
niques demonstrate the significant reduction in fitting error
of ConvexFit over PosynomialF it. Table 6 presents the
runtime comparisons. It shows that ConvexFit is at least
7-8 X faster than PosynomialF it.

Table 3: Cell-Fall Fitting Errors Comparison

Cell name
PosynomialFit ConvexFit

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 0.130 0.0130 0.056 0.0046
AOI222 1.689 0.0637 0.071 0.0067

BUF 0.524 0.0189 0.053 0.0029
INV 1.768 0.0391 0.032 0.0046

MAOI1 1.017 0.0483 0.073 0.0071
MUX4 0.926 0.0462 0.062 0.0061

ND3 1.506 0.0672 0.038 0.0078
OA12 0.506 0.0289 0.050 0.0036

OR3B2 1.274 0.0530 0.003 0.0009
XOR2 0.395 0.0292 0.000 0.000

Table 4: Rise-Transition Fitting Errors Comparison

Cell name
PosynomialFit ConvexFit

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 4.818 0.0832 1.800 0.0276
AOI222 52.601 0.3521 0.711 0.0194

BUF 18.392 0.0990 3.378 0.0267
INV 42.715 0.1843 0.260 0.0094

MAOI1 39.820 0.2859 1.140 0.0286
MUX4 33.874 0.2786 0.177 0.0095

ND3 9.561 0.1526 0.127 0.0076
OA12 18.054 0.1689 2.024 0.0292

OR3B2 22.853 0.2164 0.655 0.0241
XOR2 16.216 0.1695 0.002 0.0006

Table 5: Fall-Transition Fitting Errors Comparison

Cell name
PosynomialFit ConvexFit

SE AE SE AE
(ns)2 (ns) (ns)2 (ns)

AN2 0.854 0.0421 0.207 0.0092
AOI222 9.531 0.1582 0.048 0.0056

BUF 2.048 0.0355 0.361 0.0083
INV 5.317 0.0664 0.035 0.0033

MAOI1 5.218 0.1081 0.217 0.0123
MUX4 4.306 0.0933 0.026 0.0039

ND3 6.414 0.1329 0.000 0.0001
OA12 2.237 0.0576 0.224 0.0088

OR3B2 7.531 0.1242 0.389 0.0169
XOR2 2.943 0.0690 0.000 0.0000

Figures 7 and 8 show the cell-rise, cell-fall look-up tables
f(s, c, l) for AN2, the corresponding convex and posynomial
model data mapped to a single dimension to illustrate the
fitting efficiency of these techniques. These figures show only
a small subset (zoomed) of the total data points in the look-
up table.They show that ConvexFit consistently performs
better than PosynomialF it throughout the range of data.
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Figure 3: Cell-Rise error distribution for Posynomi-
alFit and ConvexFit

The positive definiteness of our model is indicated by the
eigenvalues of its Hessian. The real part of all the eigen-
values must be positive to ensure convexity. ConvexFit
will make the eigenvalues positive using minimum pertur-
bation to the original data. We plot the eigen-distribution
of Hessian for cell AN2 in figures 9 and 10. It can be eas-
ily observed that ConvexFit preserves most of the positive
eigenvalues while moving the negative eigenvalues to be just
positive. As for the result generated from PosynomialF it,
although all the eigenvalues are made positive, the whole
distributions are disturbed.

Table 6: Execution times
Mode

PosynomialFit ConvexFit
(sec) (sec)

Cell-Rise 952 125
Cell-Fall 1063 121

Rise-Transition 1019 178
Fall-Transition 995 131

4.3 Smoothing of ConvexFit for standard cells
Our ConvexFit models for standard cells were smoothed

according to the technique mentioned in subsection 3.2. As
the delay depends on 3 parameters (s, c, l) we used weighted
sum of the values obtained from the 8 (= 23) surround-
ing points. Figures 11 and 12 give a visual illustration of
the original cell-rise data and the convexified and smoothed
model for cells NR2 and INV.

4.4 Gate sizing and delay calculations
We test the accuracy of our model in the gate sizing opti-

mization problem. We performed the experiments using our
gate sizing tool Glaive implemented in C++. We conducted
our experiments on ISCAS85 benchmark circuits where the
number of gates ranged from 214 to 3512. The synthesized
ISCAS85 design using the standard cell library was used as
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Figure 4: Cell-Fall error distribution for Posynomi-
alFit and ConvexFit

input to our gate sizing software. We used the arrival time at
the sink node of the netlist as our objective function. Table 7
summarizes the delay for various benchmark circuits using
PosynomialF it and ConvexFit models in our gate sizing
tool. We have also compared our delay with that for the
same synthesized designs, from a popular commercial syn-
thesis tool. All delay measurements were done using Synop-
sys Primetime. It can be observed that both of our models
perform better than the optimized delay from the synthe-
sis tool. ConvexFit shows on average 1.18% improvement
in delay over PosynomialF it. PosynomialF it might rarely
show a marginally better delay than ConvexFit. This can
be explained by Figures 7, 8 where in certain smaller sec-
tions of the curve, PosynomialF it might give a closer fitting
than ConvexFit.

Table 7: Results of sizing various circuits

circuit

Commercial Gate sizing result Delay
Synthesis tool PosynomialFit ConvexFit ratio

Delay Delay Delay CFit/PFit
(ns) (ns) (ns)

C432 2.82 2.66 2.67 1.004
C499 1.80 1.71 1.69 0.989
C880 2.45 2.13 2.11 0.991

C1355 2.85 2.18 2.13 0.977
C1908 2.74 2.32 2.26 0.974
C5315 2.48 2.22 2.19 0.986
C6288 11.26 10.02 10.01 0.999

5. CONCLUSION
Convex optimization has gained popularity due to its ca-

pability to reach global optimum in a reasonable amount of
time. Convexity is often ensured by fitting the table data
into analytically convex forms such as posynomials. How-
ever, fitting the look-up tables into the posynomial forms
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Figure 5: Rise-Transition error distribution for
PosynomialFit and ConvexFit
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Figure 6: Fall-Transition error distribution for
PosynomialFit and ConvexFit

with minimum error itself may not be a convex optimiza-
tion problem and hence excessive fitting errors may be in-
troduced. In this paper, we propose to directly adjust the
look-up table values into a numerically convex look-up table
without explicit analytical form. We show that numerically
”convexifying” the look-up table data with minimum per-
turbation can be formulated as a convex semidefinite opti-
mization problem and hence optimality can be reached in
polynomial time. We demonstrate over 30X improvement
in fitting error over a well-developed posynomial fitting pro-
cedure. We also develop a ”smoothing” algorithm to fur-
ther make the table data smooth and convex to facilitate
optimization process. We illustrate the effectiveness of this
model in a convex optimization problem by providing exten-
sive results for using our model in the optimal gate-sizing of
standard cells.
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