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ABSTRACT
To ensure the power and signal integrity of modern VLSI
circuits, it is crucial to analyze huge amount of nonlinear
devices together with enormous interconnect and even sub-
strate parasitics to achieve the required accuracy. Neither
traditional circuit simulation engines such as SPICE nor
switch-level timing analysis algorithms are equipped to han-
dle such a tremendous challenge in both efficiency and ac-
curacy. In this paper, we establish a solid framework that
simultaneously takes advantage of a novel hierarchical non-
linear circuit simulation algorithm and an advanced large-
scale linear circuit simulation method using a new predictor-
corrector algorithm. Under solid convergence and stability
guarantees, our simulator, HiSIM, a hierarchical interconnect-
centric circuit simulator, is capable of handling the post-
layout RLKC power and signal integrity analysis task effi-
ciently and accurately. Experimental results demonstrate
over 180X speed up over the conventional flat simulation
method with SPICE-level accuracy.

1. INTRODUCTION
In deep-sub-micron giga-hertz VLSI design, power and sig-
nal integrity has become crucial concerns other than perfor-
mance. To accurately analyze the impacts of power fluctua-
tion, capacitive, inductive, or even substrate coupling noise
impacts, several decoupled static analysis algorithms have
been proposed[1][2][3]. For example, to estimate power de-
livery fluctuations, [4][5] proposed to first characterize the
gate current consumption by assuming an ideal voltage and
then plug those PWL current waveforms into linear net-
works. However, albeit the efficiency of this approach, this
algorithm may suffer accuracy and stability issues[6].

Second, to incorporate the noise impact to timing, several
decoupled gate delay and interconnect noises analysis algo-
rithm have been proposed. However, since the interconnect
noise may impact the output behavior of gates, this algo-
rithm also suffer inaccuracy issues. Moreover, this type of
analyses may not be able to handle multiple-driver anal-

ysis tasks. Third, as for the timing window convergence
issues, iterative window shrinking or enlarging algorithms
have been proposed[7][8]. However, the static nature of this
type of algorithms also imposes non-trivial pessimistic guard
banding in into already tight timing requirement. With the
diminishing timing and noise margin budgeting, the errors
induced by those decoupled or static approximations may
no longer be tolerable for modern VLSI designs. As a last
resort, transistor-level simulators become the final means for
sanity check.

However, the traditional transistor-level simulators such as
SPICE[9] are not capable of handling such a large-scale com-
putational expensive tasks since SPICE was developed in an
era such that VLSI chips only contained a few transistors
and the interconnect parasitic was not the dominating factor
as well. Although the recent advancement of transistor-level
simulation such as HSIM[10] already deployed hierarchical
framework to take advantage of the spatial, temporary la-
tency, and array structure such as memories to enhance sim-
ulation performance. However, the success of this type of
algorithms may not be easily brought into the interconnect-
dominated simulation cases such as full-chip power-delivery
analysis especially taking not only coupling capacitance but
also self and mutual inductance into consideration.

Recently, M. Zhao, et al[2] proposed to perform hierarchical
analysis of power distribution networks. This method can
only handle RC elements but not inductors and nonlinear el-
ements due to asymmetricity of the system matrix. Another
work, SILCA[11], used a semi-implicit scheme that takes ad-
vantage of interconnect dominate cases by using a modified
chord methods. However, this algorithm may not perform
well for the cases when there are a non-trivial number of
transistors presented.

As a result, there is a lack of chip-level simulation algo-
rithms, which can simultaneously take care of large-scale
nonlinear and linear devices while maintaining both effi-
ciency and accuracy. In this paper, we establish a solid
framework to simultaneously take advantage of the novel
hierarchical nonlinear circuit simulation algorithm and ad-
vanced large-scale linear circuit simulation method in a wave-
form relaxation manner using a novel predictor-corrector
algorithm. Under solid convergence and stability guaran-
tees, our simulator, HiSIM, a hierarchical and interconnect-
centric circuit simulator, is capable of handling post-layout
RLKC power and signal integrity analysis tasks efficiently



and accurately. Experimental results demonstrate that HiSim
has over 180X speed up over the conventional flat simulation
method with SPICE-level accuracy.

2. OVERVIEW OF NONLINEAR CIRCUIT
SIMULATION

Transient analysis is applied to evaluate the large signal be-
havior of a linear/nonlinear circuit as a function of time.
The transient analysis flow for non-linear circuits is shown
in Figure 1(a). The DC solution is first calculated and serves
as the initial condition (i.e. t = 0). In each time step, re-
sistive models of energy storage elements such as capacitors
and inductors are built using either backward Euler, for-
ward Euler, trapezoidal, or multi-step approximation. Then
a nonlinear system has to be solved to obtain the response
for this time step. Keep increasing t until it reaches the
time interval that is interested. Both DC and transient so-
lutions are obtained by Newton-Raphson (NR) algorithm,
which is shown in Figure 1(b). NR is an iterative method
that generates a sequence that converges to the solution of
a set of non-linear equations. In each iteration, it builds
linear companion models of nonlinear devices by calculating
the Jacobian at the previous solution or the initial guess,
and solves the linear equations. Repeat the iteration un-
til the sequence converges[12][13]. Several techniques such
as iteration damping[14] and Gmin-stepping[15] have been
proposed and also implemented in this work to increase the
converging rate and robustness of the NR iterations.
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Figure 1: Simulation flow for circuits containing
non-linear elements (a)Transient analysis flow dia-
gram (b)The Newton-Raphson(NR) method

Each NR iteration contains one solution of a linear system,
which means one Gaussian elimination or LU decomposition
is required. Obviously, the computation effort of solving a
linear system determines the runtime of the transient sim-
ulation. The complexity of the LU decomposition depends
on the density of the matrix. It varies from super linear for
a sparse system to O(n3) for a dense matrix. Due to the
increasing complexity of VLSI designs and already impor-
tant power and signal integrity issues, the circuits needed to
be analyzed might be huge and with enormous number of
nonlinear devices and linear elements (i.e. interconnect par-
asitic). Moreover, if the partial mutual inductance model[16]

is included in the simulation, the long range inductive effect
will cause a dense system matrix. Both these two reasons
make traditional simulation engines such as SPICE hard to
handle this kind of large-scale simulation tasks.

For interconnect-centric applications, huge system matrices
that contain linear and nonlinear elements have to be factor-
ized in each NR iteration. However, system matrices of two
successive NR iterations only disagree on the entries corre-
sponding to nonlinear elements (even only some of them)
but not linear parts. Based on this observation, we develop
a hierarchical simulation scheme that can greatly reduce the
effort spending on solving linear systems and is presented in
the rest of this paper.

3. HIERARCHICAL CIRCUIT ANALYSIS
In this section, we first propose the macro-modeling tech-
nique for a sub-circuit containing linear and nonlinear ele-
ments, and then describe the hierarchical scheme that as-
sembles macro-models. We also discuss the performance
gain of the hierarchical scheme compared to a conventional
flat MNA-based simulation.

3.1 Macro-modeling Technique
Given a lumped circuit, its MNA system equation is as fol-
lows.

Gv + C
d

dt
v = u . (1)

In (1), G is the conductance matrix that is composed of
the equations for resistors, conductors, independent voltage
sources, and control sources, etc...; C is the susceptance ma-
trix that consists of equations for energy storage elements
such as capacitors and inductors; v is the vector of vari-
ables including nodal voltages and branch current variables
that are necessary to introduce such as branch currents of
independent voltage sources and inductors; u is the vector
containing input current and voltage sources.

Using back-Euler approximation, transient analysis of Equa-
tion (1) is obtained:

(
G +

1

h
C

)
vj+1 =

(
1

h
C

)
vj + uj+1 , (2)

in which h means the size of a time-step and the superscript
j means the jth time step. Let

A =

(
G +

1

h
C

)
,

x = vj+1 , and

b =

(
1

h
C

)
vj + uj+1 , (3)

and the system equation (2) can be represented in the fol-
lowing format:

Ax = b . (4)

Similarly, forward-Euler, trapezoidal and other multi-step
approximations can also be written in the format of (4).

For a sub-circuit shown in Figure 2, we can generate the
macro-model for it by first grouping the nodal voltage and
branch current variables into two parts, internal and exter-
nal (port) variables. By reordering the system matrix A,



the system equation (4) for this sub-circuit is rewritten as
follows.

[
A11 A12

A21 A22

] [
xi

xe

]
=

[
bi

be + bo

]
. (5)

In (5), xi and xe are the vectors of internal and external
variables respectively. Internal variables stand for those
nodal voltages and branch currents that are not interac-
tive with any components outside this sub-circuit. External
variables include variables that are interactive with those
outside this sub-circuit, such as port nodal voltages(vn,e),
inductance currents(il,e) coupled with external inductors,
branch currents(ic,e) required by control sources outside,
and etc... bi is the vector of current and voltage sources
that connect to internal nodes. be is the vector of current
sources(is,e) that connect to external nodes but belong to
this sub-circuit. bo is the vector of sources that are in-
duced or controlled by the components outside, which in-
clude voltage drop caused by mutual inductors(vl,o), con-
trol voltage(vs,o) and current(is,o) sources, and etc... These
variables are illustrated in Figure 2.
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Figure 2: Illustration of ports in a sub-circuit

Rewriting the first set of equations in (5), we get

xi = A
−1
11 (bi −A12xe) . (6)

Substituting (6) into (5), we get the second set of equations
as follows:

bo =
(
A22 −A21A

−1
11 A12

)
xe −

(
be − A21A

−1
11 bi

)
. (7)

We now factorize matrix A by block LU decomposition.
[

A11 A12

A21 A22

]
=

[
L11 0

L21 L22

] [
U11 U12

0 U22

]

=

[
L11U11 L11U12

L21U11 L21U12 + L22U22

]
(8)

Let

Ã = A22 −A21A
−1
11 A12

= L21U12 + L22U22 − L21U11 (L11U11)−1 L11U12

= L21U12 + L22U22 − L21U11U
−1
11 L

−1
11 L11U12

= L22U22 , (9)

and

b̃ = be −A21A
−1
11 bi

= be − L21U11 (L11U11)−1
bi

= be − L21U11U
−1
11 L−1

11 bi

= be − L21L
−1
11 bi . (10)

Thus from Equation (7), the equivalent equation of this sub-
circuit can be expressed in the following format:

Ãxe − bo = b̃ . (11)

The macro-model Ã and equivalent sources b̃ can be calcu-
lated by (9) and (10).

3.2 Hierarchical Simulation
In the current design flow, virtually all circuits are hierarchi-
cal due to the complexity and design reusability. Simulation
tools such as SPICE support sub-circuits but still use flat
scheme to simulate. A sub-circuit such as a functional block
usually contains large number of elements and internal nodes
with relatively less number of ports. Therefore, we take ad-
vantage of this design hierarchy nature and attempt to earn
efficiency during the dynamic simulation.

For a circuit containing one or several sub-circuits, we first
build macro-models of all sub-circuits by (9) and (10). After
all of them are in the condensed form, we can organize the
whole system equation as follows:




A0 0 · · · 0 ET
0

0 Ã1 · · · 0 ET
1

...
...

. . .
...

...

0 0 · · · Ãn ET
n

E0 E1 · · · En 0







xe0

xe1

..

.
xen

iport




=




b̃0

b̃1

...

b̃n

0




, (12)

where A0 is the conductance matrix that is composed of el-

ements not described in any sub-circuit, Ã’s are the macro-
models of sub-circuits, E’s are the adjacency matrices con-
taining equations how ports of sub-circuits and global nodes
are interactive, and iport is the vector of current (or voltage
if necessary) variables running through ports of sub-circuits.
Equation (12) can be easily derived from (11) and is illus-
trated in the top layer of Figure 3.
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Figure 3: Circuit simulation with multi-layer of hi-
erarchy

Note that Equation (12) represents only one level of hier-
archy. While multiple levels are presented in the circuit



(as shown in Figure 3), the hierarchical macro-modeling can
be done by a bottom-up search of the tree structure. We
first create macro-models for the sub-circuits in the bottom,
form the system equation by (12), and use (9) and (10) to
construct models for the upper level of hierarchy. By repeat-
ing this procedure until the whole tree structure has been
traversed once, we can get the equation of the top level of
hierarchy.

3.3 Analysis of Computation Cost
We now analyze the computation cost of our hierarchical
simulation scheme compared to the flat one. Assumed the
cost of factorizing a matrix a is Γ(a), the cost of the transient
simulation using flat MNA solution is

k × Γ(AN ), (13)

where k is the total number of NR iterations used to solve
the transient response, and A is the flat MNA matrix whose
subscript N means its dimension.

Supposed only one layer of hierarchy is used, and the cost to
build a macro-model for a matrix a is Υ(a), the computation
cost for the hierarchical simulation is

k ×

(
n∑

i=1

Υ(Ai) + Γ

(
A0 +

n∑

i=1

Ãi + E

))
. (14)

The first summation in (14) is the total cost of building
macro-models for all sub-circuits, and the second part, Γ(·),
means the cost of factorizing the condensed system equa-
tion listed in (12). The difference between (13) and (14) is
basically the difference between the following two different
ordering methods: minimum fill-in and nested dissection. It
is known that the latter is a little bit slower then the for-
mer. However, macro-model calculation can be executed in
parallel, and the computation cost becomes

k ×

(
max {Υ(Ai)|i=1∼n} + Γ

(
A0 +

n∑

i=1

Ãi + E

))
.

It is obvious that parallel processing can dramatically re-
duce the computation cost, so we do not address too much
on it in this paper. The difficulty of parallel computing is
that not every designer can access a parallel system. There-
fore, we will show that even without parallel computing, our
proposed method still greatly improves the performance of
analyzing VLSI circuits with strong parasitic coupling ef-
fects.

First, to capture interconnect parasitic effects, huge amount
of linear elements should be modeled and included in the
analysis. Modules such as buses, power grids, clock trees, or
even substrate parasitics can be isolated from nonlinear de-
vices and become pure linear sub-circuits. There is no need
to build macro-models for linear sub-circuits in each NR it-
eration. Linear macro-models are built at the beginning of
the simulation if fixed-step simulation methods are used, and
reused in the successive iterations. Thus, the computation
cost becomes

∑

lin

Υ(Ai)+k×

(
∑

non

Υ(Ai) + Γ

(
A0 +

n∑

i=1

Ãi + E

))
. (15)

From (15), the performance will be greatly improved if there
exist many linear sub-circuits and if k is large. If multi-step
methods are used, we only have to build those linear macro-
models for every time step. Since several NR iterations are

required to converge in each time step, the hierarchical sim-
ulation scheme still saves tremendous computational effort.

Second, even a sub-circuit contains nonlinear elements, it
is not necessary to rebuild its macro-model in every NR
iteration. A sub-circuit may be “quiet” while others are op-
erating. This is so called temporal latency. We can check
the port variables of a sub-circuit before we reconstruct its
macro-model in each NR iteration. If the change of variables
is under the given tolerance, computation cost of building
model for this sub-circuit can be saved. For example, sup-
posed the three curves in Figure 4 are the port responses of
sub-circuits A, B, and C respectively. In region I, only sub-
circuit A is activate; in region II, only B is changing. If we
use conventional flat simulation scheme, we have to stamp
and factorize the matrix with sub-circuits A, B, and C. The
hierarchical scheme only has to construct the macro-model
of A in region I, and B in region II.

Sub-circuit A

Sub-circuit B

Sub-circuit C

Region I Region II time

Figure 4: An example of temporal latency

Based on the above reasons, our hierarchical simulation scheme
is competent to simulate large-scale interconnect-centric anal-
ysis. Runtime improvement of several different types of cir-
cuits will be reported in the result section.

4. PARTITIONED EXPLICIT METHOD
In this section, we propose a predictor-corrector algorithm
that further improves the runtime of our hierarchical sim-
ulator in a waveform relaxation manner. Due to the high
computation cost of LU decomposition, divide-and-conquer
is usually used to improve the runtime of solving a prob-
lem. Some examples such as the ADI (Alternating Direc-
tion Implicit) method[17] and the waveform relaxation tech-
nique[18]. The ADI method is often used to efficiently solve
problems with regular 2-D(or 3-D) grid structures. Instead
of solving the whole 2-D(or 3-D) grid, it solves each di-
rection separately, which reduces the complexity to linear,
and shows good accuracy for some particular applications.
Waveform relaxation algorithms break a system into pieces
and solve them independently, which is usually used in cir-
cuit simulation to reduce the computation cost. Our pro-
posed partitioned explicit method is also a divide-and-conquer
scheme, which partitions the circuit into linear and non-
linear parts and performs LU to them separately.

4.1 Explicit Predictor for NR Iteration
We first group the circuit into two different sets, sub-circuits
with and without non-linear elements. Thus, the system
equation (12) can be written as follows.




An 0 ET
n

0 Al ET
l

En El 0






xn

xl

iport


 =




bn

bl

0


 . (16)



A, x and b are the system matrix, the vector of unknown
variables, and the right-hand-side vectors respectively, which
are defined in (3). E and iport are the adjacency matrix and
the vector of currents running through the connection sim-
ilar to those in (12). The subscripts n and l represent sub-
circuits containing nonlinear elements and those containing
only linear elements respectively.

By rearranging the terms, we split Equation (16) into two
parts.

[
An ET

n

En 0

] [
xn

iport

]
=

[
bn

−Elxl

]
(17)

Alxl = bl −ET
l iport (18)

By using the relation in equations (17) and (18), we derive
our partitioned explicit method to reduce the computation
cost of each NR iteration. We first set

i
j+1(0)
port = 2ijport − i

j−1
port , (19)

where j denotes the jth time step. This is a first-order pre-
diction of ij+1

port by the extrapolation of its prior two points.
The superscript (·) means the iteration count of the NR

method. We use the extrapolation, i
j+1(0)
port in (19), as the

start point of the NR iterations.

For each NR iteration, Equation (16) has to be solved im-
plicitly (LU for the whole matrix) once. However, only ma-
trix An changes during each iteration; the rest of the ma-
trix remains the same. Since the targets of our simulation
are VLSI circuits with strong parasitic coupling, the lin-
ear circuit would be complex and makes its macro-model
dense. To solve the whole matrix including linear part ev-
ery NR iteration wastes time. Therefore, instead of solving
the whole system equation (16) implicitly, we split it into
two phases and solve equations (17) and (18) explicitly. For
each Newton-Raphson iteration, k, we perform the explicit
predictor:

Alx
j+1(k+1)

( 1
2
)

l
= b

j+1
l

−ET
l i

j+1(k)
port (20)

[
An ET

n

En 0

]

 x
j+1(k+1)(1)

n

i
j+1(k+1)(1)

port



 =



 b
j+1(k+1)
n

−Elx
j+1(k)

( 1
2
)

l



 (21)

In (20) and (21), x
j+1(k+1)

( 1
2
)

l is an intermediate solution,

and x
j+1(k+1)(1)

n and i
j+1(k+1)(1)

port are the prediction for the

NR iteration (k+1) of the (j +1)th time step. The physical
meaning of this method is illustrated in Figure 5. In phase
1, we treat the initial branch current running through the
ports as independent current sources1 attached to the linear
sub-circuit, and solve this sub-circuit alone. In phase 2, in-
dependent voltage sources2 are attached to the ports using
the values calculated in phase 1, and the linear compan-
ion model for the nonlinear circuit is generated and solved.
Since the macro-model for linear circuit is fixed, we only
have to perform LU decomposition to the nonlinear part for
each NR iteration.

1or voltage sources if some elements in iport represent volt-
age variables. This happens when the port connection is
a mutual coupling between two sub-circuits or a control
source. Please see Figure 2.
2or current sources for the similar reason.
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Figure 5: Physical meaning of the proposed parti-
tioned explicit method (a) the original system (b)
two phases of the method

4.2 Iterative Corrector
Obviously, if we use i

j+1(k+1)(1)

port as the start point for next
NR iteration, the error caused by the explicit predictor will
reduce the converging rate of the NR. Thus, we propose an
iterative corrector to improve the solution with only a small
cost. Similar to (20) and (21), we iteratively solve:

Alx
j+1(k+1)

(m+ 1
2
)

l
= b

j+1
l

−ET
l i

j+1(k)(m)

port (22)

[
An ET

n

En 0

]

 x
j+1(k+1)(m+1)

n

i
j+1(k+1)(m+1)

port



 =



 b
j+1(k+1)
n

−Elx
j+1(k)

(m+ 1
2
)

l



(23)

where (m) is the iteration count for the iterative correc-
tor. If this procedure converges successfully, the final so-
lution will approach to the original solution, which solves
(16), of (k + 1)th NR iteration. The method we proposed
thus has the same accuracy with the ordinary simulation
method. We will discuss the convergence property in the
next subsection. The iterative corrector only has to per-
form forward/backward substitution. Thus the time saved
in the predictor (do LU to smaller matrix) should dominate
the time spend in the corrector (need more iterations) as
long as the converging rate of the corrector is fast.

4.3 Convergence Analysis
In order to simplify the symbol used in this discussion, we
ignore the superscripts j and k in (22) and (23). From these
two equations, we have
[

x
(m+1)
n

i
(m+1)
port

]
=

[
An ET

n

En 0

]
−1
[

bn

−ElA
−1
l

(
bl −ET

l
i
(m)
port

)
]

(24)

E’s are the adjacency matrices that contain one 1(or −1) in
each row. Without losing generality, we can let En and El

identity matrices, I, by reordering the matrices An and Al.
Hence, Equation (24)

=

[
An I
I 0

]
−1
[

bn

−IA
−1
l

(
bl − Ii

(m)
port

)
]

=

[
0 I

I −An

] [
bn

−A−1
l

bl + A−1
l

i
(m)
port

]
, (25)

and
i
(m+1)
port = bn + AnA

−1
l

bl − AnA
−1
l

i
(m)
port . (26)



From the third term in the right side of (26), the iterative
corrector converges if

|| − AnA
−1
l

|| < 1 . (27)

A is the conductance matrix that represents the port char-
acteristic of a sub-circuit. In our application, Al is corre-
sponding to the sub-circuit for interconnect parasitic, which
is highly conductive (i.e. ||A−1

l || < 1). Usually the input
impedance of a nonlinear circuit is large. Only during the
gate transition time, both NMOS and PMOS are conducted
and the impedance of the power-supply port becomes small.
This means An is usually highly resistive (i.e. ||An|| < 1).
Therefore, if ||−AnA−1

l || << 1, the sequence of the iterative
corrector will be with a high converging rate.

i
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Ain,

linearization of nonlinear eqn

v

i

xi

xi+1

ith iteration of NR
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Al

Ain

v

xi

xi+1

(b)

Prediction

Correction

Figure 6: (a) The ith iteration of NR; its solution is
implicitly solved by (Ai

n +Al). (b) By solving Ai
n and

Al separately, the iterative predictor and corrector
can converge to the same solution.

Figure 6 illustrates the convergence of the iterative predictor
and corrector. Figure 6(a) shows the solution of the ith NR
iteration. As defined in this section, An and Al are the ma-
trices of nonlinear and linear sub-circuits respectively. Ai

n

means the linearization of An at ith iteration. The original
NR method directly solve the whole matrix (Ai

n+Al), which
is pretty time consuming.

Figure 6(b) shows the solution sequence of the iterative pre-
dictor and corrector. By explicitly solving Ai

n and Al, this
sequence converges to the same solution as that in (a). From
this figure, the condition that results in fast convergence is
a steep Al and a flat Ai

n. This observation is the same as
Equation (27).

If the sequence diverges in two successive iterations, we dis-
card the result obtained from the predictor and implicitly
solve Equation 16 for that NR iteration. The overhead of
this divergence is performing the predictor and corrector
once, whose cost is much smaller than implicitly solving the
matrix. In our experiment, we never met divergence. All of
the cases are solved by the explicit method.

5. SIMULATION RESULTS
We implemented the proposed hierarchical analysis, the par-
titioned explicit method, and the flat MNA simulator in
C/C++ programming language. In order to have fair com-
parison, both methods use the same state-of-art sparse ma-
trix solver. We also compared these methods with SPICE3[9].
The simulations are run on an Intel Pentium IV 1.4GHz sys-
tem with RedHat 7.2 Linux operation system.

Figure 7 shows the waveforms of a clock tree simulation us-
ing SPICE3, our flat MNA, and the proposed hierarchical
analysis. From this figure, the flat and hierarchical versions
are equivalent. Our HiSIM simulator terminates the NR
iteration when reaching either of the following conditions.
1.The nodal voltages converge to within a tolerance of 1µV .
2.The nonlinear branch currents converge to within a toler-
ance of 1pA. This meets the same accuracy requirement as
SPICE3. The slight variation between our developed simu-
lator and SPICE3 comes from the different choices of time
steps. It is known that the NR algorithm fails to converge
to a solution while the system is ill-conditioned. In order
to guarantee reliability, techniques such as iteration damp-
ing and Gmin-stepping that are adopted by SPICE3 are also
implemented in HiSIM.
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Figure 7: Waveforms of the flat MNA simulation,
the hierarchical analysis, and SPICE3

Table 1 shows the runtime information of SPICE3, the flat
MNA, and the hierarchical analysis. We tested various kinds
of circuits. The first one is a clock tree with RLC intercon-
nect model, which is used in Figure 7. The second circuit
tested combines the first clock tree and a power-grid model
to perform a clock and power-grid co-analysis. The follow-
ing three cases are three bus structures. Each bit of them is
driven by a drive buffer and ended with some load transis-
tors. The buses are modeled with RLC PEEC model such
that the inductance matrices are dense and are very difficult
to analyze. The second column shows the number of nodes
in the test cases. The third shows the number of linear and
nonlinear devices respectively. Since the objective of HiSIM
is interconnect-centric simulation, the cases we used all con-
tain huge amount of linear elements while some nonlinear
devices are present.

Besides runtime information, we also list the number of LU
decompositions used to perform the simulation. The 6th

column shows the number of sub-circuits without and with
nonlinear devices. A linear sub-circuit means a sub-circuit
not containing nonlinear elements. We only have to factor-
ize linear sub-circuit once and use the macro-model for later
simulation. Therefore the average number of LU’s for each
NR iteration should be equal or less than the number of
nonlinear sub-circuits. We count the number of LU’s in DC
solution and transient analysis separately. Divided by the
total number of LU iterations, we obtain the average number



SPICE3 Flat Hierarchical
# of # of elem. # of subckts DC Transient

Circuit nodes linear runtime runtime linaer # of LU # of LU # of LU # of LU runtime
nonlinear nonlinear NR iter per NR NR iter per NR

CLK tree 45,812 2 min 2 min 6,169 10,540 6,778 1 min
w/o P/G 30,673 7,680 37 sec 26 sec 385 42 250.95 370 18.32 46 sec
CLK tree 148,856 >3 26 hour 6,170 24,217 62,038 58 min
w P/G 61,331 7,680 days 23 min 385 66 366.92 374 165.88 41 sec
8-bit 75,003 41 min 19 min 1 207 3,609
bus 1,234 256 24 sec 37 sec 9 23 9.0 439 8.22 39 sec

16-bit 297,467 6 hour 2 hour 1 391 6,506 4 min
bus 2,466 512 36 min 24 min 17 23 17.0 471 13.81 39 sec

32-bit 1,482,230 >3 20 hour 1 759 15,760 42 min
bus 4,930 1,024 days 44 min 33 23 33.0 639 24.66 40 sec

Table 1: Runtime comparison of SPICE3, the flat MNA simulation, and the hierarchical analysis
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Figure 8: An example design and modeling of
power-grid and clock net co-simulation, in which
clock buffers are modeled by non-linear devices.

of LU’s per NR iteration in columns 8 and 10. Obviously,
these numbers are equal or less than the number of non-
linear sub-circuits, which demonstrates the temporary quiet
described in Figure 4. The runtime result shows that our
flat MNA is faster than SPICE3 while the circuit is large.
Even more, the macro-modeling and hierarchical analysis
technique improves the performance of HiSIM significantly.
For the last test case, the hierarchical analysis gains 29.5x
speed over the flat MNA.

To evaluate the performance of the proposed partitioned
explicit method, there are two major concerns. First, the
test cases must contain large amount of linear elements and
some nonlinear devices. Second, the convergence condition
is shown in Equation (27). If the partitioned explicit method
does not converge, one implicit LU solution has to be exe-
cuted. In this case, the cost of that NR iteration is the same
as the hierarchical analysis but with a small overhead. Satis-
fying these two conditions, we thus use clock and power-grid
co-analysis as test cases.

The power-grid and clock tree models used are illustrated
in Figure 8. We use RLC interconnect model and transistor
buffers to model the clock tree while the power grid con-
tains only RLC linear elements. The current drained from
other functional blocks are represented by independent cur-
rent sources, which can be extracted by SPICE simulation
with ideal power supply or estimated by some current esti-
mation algorithms. Since clock timing is very sensitive to

the power-delivery fluctuation, static analysis may not be
accurate enough to guarantee the functionality of the sys-
tem. The experimental setup shown in Figure 8 is hence
necessary.

Table 2 shows the runtime information of the flat MNA, the
hierarchical analysis, and the partitioned explicit method.
The structure of this table is similar to that of Table 1.
# of iter in columns 6-9 means the number of explicit cor-
rector iterations. HiSIM can obtain the solution of each
NR iteration by the explicit iteration solver as well as the
implicit direct method. It only needs a few explicit itera-
tions (about 2-3) to approach the original solution. From
the runtime information, we also show that decomposing a
small matrix and running a few explicit iterations are much
faster than decomposing a large matrix. When the circuit
size becomes larger, the runtime improvement is more sig-
nificant.

6. CONCLUSION
With the diminishing timing and noise margin budgeting,
the errors induced by static approximation may no longer
be tolerable for modern VLSI design. Hence, in this pa-
per we proposed an interconnect-centric circuit simulation
method, which can handle nonlinear circuit simulation effi-
ciently. Taking advantage of the design hierarchy, we pro-
posed a decomposition-based macro-modeling technique, and
a hierarchical framework to simulate large-scale nonlinear
circuits with strong parasitic coupling. The simulation re-
sult shows that our hierarchical analysis method has dra-
matic speedup over the traditional flat MNA simulation
method. In addition, we presented a partitioned explicit
method to further improve our hierarchical simulation scheme.
The partitioned explicit method partitions circuits into lin-
ear and nonlinear parts, and uses an iterative predictor and
corrector to reduce the cost of directly solving huge matrices
in each NR iteration. Excellent performance has been shown
when performing this method to a clock-tree and power-grid
co-analysis.
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Flat Hierarchical Partitioned Explicit
# of # of elem. DC Transient

Circuit nodes linear runtime runtime # of iter # of iter # of iter # of iter runtime
nonlinear # of NR per NR # of NR per NR

clock tree w/ 7,849 11 min 75 978
2-layer power/ground 4,552 14 44 sec 4.3 sec 28 2.68 387 2.52 4.1 sec

clock tree w/ 69,048 1 hour 10 min 132 993 1 min
4-layer power/ground 24,920 7,680 3 min 48 sec 45 2.93 424 2.34 44 sec

clock tree w/ 125,039 20 hour 54 min 109 891 6 min
6-layer power/ground 37,983 7,680 11 min 28 sec 39 2.79 398 2.23 44 sec

Table 2: Runtime comparison of the flat simulation, the hierarchical analysis, and the proposed partitioned
explicit method
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