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Abstract— In deep sub-micron technologies, process variations
can cause significant path delay and clock skew uncertainties
thereby lead to timing failure and yield loss. In this paper,
we propose a comprehensive clock scheduling methodology that
improves timing and yield through both pre-silicon clock scheduling
and post-silicon clock tuning. First, an optimal clock scheduling
algorithm has been developed to allocate the slack for each path
according to its timing uncertainty. To balance the skew that can
be caused by process variations, programmable delay elements
are inserted at the clock inputs of a small set of flip-flops on
the timing critical paths. A delay-fault testing scheme combined
with linear programming is used to identify and eliminate timing
violations in the manufactured chips. Experimental results show
that our methodology achieves substantial yield improvement over
a traditional clock scheduling algorithm in many of the ISCAS89
benchmark circuits, and obtain an average yield improvement of
13.6%.

I. INTRODUCTION

The performance and yield of sequential circuits can be
improved significantly by carefully assigning clock arrival
times to each flip-flop. This technique is usually called clock
scheduling [1], [2] or clock skew optimization [3], [4], [5],
[6]. Because of process variations, the path delays in each
manufactured chip are different, and each chip requires a
different clock schedule to achieve its best performance. How-
ever, the clock trees in existing designs usually do not have
tuning capabilities. Moreover, process variations also change
clock arrival times and cause unintentional clock skews, which
aggravate the timing yield problem.

Previous works attempt to improve the timing yield of a
sequential circuit by finding a good clock schedule that max-
imizes the slacks for all paths in different ways. The authors
in [5], [6] formulate the clock skew optimization problem
as a least square error problem: where the error is defined
as the difference between the assigned skew and the middle
point of the permissible range. Held et al. [1] and Albrecht
et al [2] adopt the minimum balance algorithm [7] to find
the clock schedule that yields a lexicographically maximum
slack vector when the slacks are sorted in nondecreasing order.
Both approaches do not take into consideration the statistical
behavior of process variation.

Recent clock tree designs have started to incorporate tuning
capabilities in order to remove unintentional clock skews or
speedup timing convergence. Intel’s ItaniumTM processors

use programmable deskew buffers (DSK) or second level
clock buffers (SLCB) to counter unintentional clock skews
in order to deliver the pre-determined clock schedule in the
manufactured chips [8], [9]. Ginosar et al. [10] propose to
insert programmable delay elements to the clock input pins of
each intellectual property blocks in system-on-chip designs.
When the timing budgets are changed over the design cycles,
new clock schedules can be achieved without modifying the
clock tree designs, thus speed up the design convergence. Due
to the cost of programmable delay elements, both techniques
enable clock tuning only on a coarse-grain level. They are
used to achieve the clock schedule determined during design
time.

Takahashi et al. [11] propose a post-silicon clock timing
adjustment method that adjusts the clock arrival times to com-
pensate path delay variations. However, there is no systematic
ways to determine the programmable delay element locations
or to test and program the delay elements.

We present a novel clock scheduling methodology which
reduces process variations induced timing violations through
a statistical timing driven clock scheduling algorithm and a
post-silicon clock tuning scheme. False-path-aware statistical
timing analyses on path delays are performed during the design
phase and the information is used to find the optimal clock
schedule that maximized the performance yield. A small set
of flip-flops that can further improve the timing yield with
the help of programmable delay elements is identified and a
programmable delay element is inserted at the clock input of
each flip-flop. A delay-fault testing scheme is used to detect
the actual path delays in a manufactured chip and the optimal
delay configuration is obtained by linear programming.

The rest of this paper is organized as follows: in Section II
we review our clock scheduling methodology. Section III gives
the details of our statistical timing driven clock scheduling
algorithm. The benefit of post-silicon clock scheduling, a
programmable delay element design, and an insertion algo-
rithm are presented in Section IV. Methods for testing and
programming the chips are discussed in Section V, and finally
Section VI concludes this work.
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Fig. 1. The proposed clock scheduling methodology.

II. OVERVIEW OF THE METHODOLOGY

Our pre-silicon and post-silicon clock scheduling method-
ology is illustrated in Figure 1. A brief description of each
step is as follows:

• False-path-aware statistical timing analysis
It is observed that many structural paths in a circuit are
functionally un-sensitizable paths, or false paths [12],
[13], [14]. Traditionally, the clock scheduling algorithms
obtain the longest and shortest path delays by using static
timing analysis tools that usually do not consider false
paths. If all the structural longest (shortest) paths between
some pairs of flip-flops are false paths, the clock schedule
obtained based on this pessimistic expectation of path
delays will be sub-optimal. Furthermore, false paths can
affect the statistical path delay distributions significantly
[15], thus affect the decision on slack allocation. There-
fore, it is necessary to perform false-path-aware statistical
timing analysis as the first step of clock scheduling.

• Optimal pre-silicon clock scheduling
We improve the clock scheduling algorithm proposed
in [1], [2] to take statistical timing information into
consideration. The optimal clock schedule for timing
yield is obtained.

• Programmable delay element insertion
After pre-silicon clock scheduling, some paths might
still have insufficient slacks due to stringent performance
requirements. Timing violations can occur in a chip if
the path delay variations exceed the pre-allocated slacks.
By inserting programmable delay elements at the clock
input of the selected flip-flops, timing violations may be
corrected by post-silicon clock tuning.

• Test generation and compaction
The timing critical paths identified during clock schedul-
ing might not meet the timing specifications in manufac-
tured chips. Two-pattern tests are generated to excite the
longest (shortest) path delays of each timing critical path.
Since there may be several structural paths between a pair
of flip-flops, test vectors for the k longest (k shortest) true
paths need to be generated. Test compaction is performed
and a small set of test vectors that can excite multiple

longest (shortest) paths simultaneously is obtained.
• Timing verification

Timing closure on the critical paths is delayed until the
post-silicon stage for time-to-market and performance
requirements. To close the timing the compacted test
vectors are applied to excite the longest (shortest) path
delays and the outputs are compared against correct
values. The chips that pass the tests are ready for the
next processing step such as packaging.

• Delay stepping
To perform post-silicon clock scheduling on the chips that
failed the timing verification, the actual delays of critical
paths must be measured. Test vectors for each critical path
are applied repeatedly on different delay configurations
and the outputs are compared against the correct value to
determine the feasible delay range of each critical path.

• Delay element tuning
The feasible delay ranges on all critical paths are col-
lected. The optimal delay configuration is obtained by
linear programming if a feasible configuration exists.

III. PRE-SILICON CLOCK SCHEDULING

Pre-allocating timing margins for data paths have been the
approach to deal with process variations and inaccuracies of
circuit modeling and simulation. To reduce the performance
penalty, many clock scheduling algorithms were developed
to optimize timing margins. However, most of the existing
methods do not take the statistical timing behavior of process
variations into account during clock scheduling. We review
the techniques for statistical timing analysis and combine our
efficient k longest (shortest) true path enumeration algorithm
with path-based statistical timing tools to perform false-path-
aware statistical timing analysis. A parametric shortest path
algorithm is modified to incorporate the statistical timing
information to generate the optimal clock schedule.

A. Statistical Timing Analysis

In deep sub-micron designs, statistical timing analysis on
path delays is a critical tool used to measuring the growing
impacts of process variations. There are two major approaches
to obtain path delay distributions. On one hand, a block-based
algorithm performs timing analysis by propagating the delay
distributions of intermediate nodes to the output in a breadth-
first manner. Although the runtime of block-based algorithms
is linear to the circuit size, special treatments are required
to account for correlations and reconvergence paths. On the
other hand, a path-based algorithm can handle correlations and
reconvergence of paths. However, the number of paths in a
circuit can grow exponentially with respect to the circuit size.
Therefore, efficient algorithms are required to select a set of
important paths for analysis.

Most of the statistical timing algorithms, either block-based
or path-based, do not consider false paths. In other words,
the delay distributions are obtained assuming all structural
paths are sensitizable. Liou et al. [15] combine a logically



true path selection algorithm with a statistical timer for false-
path-aware statistical timing analysis. Runtime is reduced by
selecting only the true paths for analysis and the results are
more accurate. The logically true path selection algorithm
works from PO to PI level by level. New partial paths are
created by appending the fan-in gates to the original paths.
However, a new partial path will be created only when it
is sensitizable and its expected slack is below a predefined
threshold. The expected slack is estimated by the worst case
statistical timing analysis and is subjected to error. Moreover,
the number of true paths the algorithm selects is affected by
the threshold value.

For clock scheduling, only the longest and the shortest true
paths between pairs of flip-flops are of interest. We develop an
implicit path enumeration algorithm which finds the k longest
(shortest) true paths efficiently. To find the k longest paths
between PI and PO, the expected delay (ED) from each
internal node to PO is first calculated. The algorithm traverses
from PI to PO by selecting the path with the highest ED

and the gates on the selected path are added to a dynamic
delay path tree (DPT ). For newly added gates, necessary
assignments and maximum implications are performed using
path sensitization criteria [16] to check their sensitizability.
The search continues if sensitization is successful. Otherwise,
the EDs are updated as the algorithm backtracks from the
current node of the DPT to PI . The algorithm resumes when
PO is reached or it backtracks to PI until the k longest
true paths are found. The paths are then sent to path-based
statistical timers for analysis. By taking the negative expected
delay as ED the algorithm finds the k shortest path.

Figure 2 demonstrates our path selection algorithm using
a dynamic delay path tree. The numbers on the edges of
the DPT are the EDs. The algorithm first searches along
< G1, G2 > and backtracks because G2 is not sensitizable.
The algorithm continues on < G7, G8, G9 > because it has
the highest ED from PI . After the second backtracking the
algorithm finds the longest true path < G1, G6, G4 >. The
results of maximum implication are stored in the DPT nodes
so that they can be reused when the algorithm backtracks to
a previously visited path. Although there are two structurally
longest paths, < G1, G2, G3, G4 > and < G1, G2, G5, G4 >,
they are dropped and never explicitly enumerated as soon as
< G1, G2 > is found un-sensitizable.

B. Optimal Clock Scheduling

A sequential circuit can be represented by a directed circuit
graph G = (V, E). Each vertex v ∈ V represents a flip-flop.
Each edge eij ∈ E represents one or more structural paths
from vi to vj . The flip-flop delays are counted as parts of the
path delays and the setup-time and hold-time of a flip-flop are
Tsetup and Thold. Let Ti be the clock arrival time of vi and
dij and Dij be the minimum and maximum path delays of
eij , the hold-time constraints are

Ti + dij ≥ Tj + Thold. (1)
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Fig. 2. Implicit enumeration of true paths using dynamic delay path tree.

The setup-time constraints are

Ti + Dij ≤ CP + Tj − Tsetup, (2)

where CP is the clock period. A feasible clock schedule
can be obtained by applying the Bellman-Ford shortest path
algorithm [17], [18] on the timing graph GCP : replacing each
edge eij in G with an h-edge from vi to vj with edge weight
w(eij) = dij − Thold and an s-edge from vj to vi with edge
weight w(eji) = CP − Dij − Tsetup.

A clock schedule determined at design time is not always
feasible for every manufactured chips since dij and Dij are
random variables. It is important to utilize the statistical timing
information of dij and Dij to find the optimal clock schedule
that maximizes the performance yield. As we define the slack
of eij in GCP as δ(eij) = Ti + w(eij) − Tj , larger slacks
can be achieved through clock scheduling. However, the total
slack on a cycle c =< v1, v2, . . . , vk, v1 >,

δ(c) =
∑

eij∈c

δ(eij) =
∑

eij∈c

w(eij), (3)

is a limited resource and slacks of an edge cannot be arbitrarily
increased. Therefore, clock scheduling can be viewed as the
process of distributing cycle slacks to edges.

To optimize the timing yield, cycle slacks should be dis-
tributed to an edge according to the standard deviation of its
associated path delays. We define the normalized slack of h-
edge eij as λh(eij) =

Ti+µ(dij)−Thold−Tj

σ(dij)
and that of s-edge

eji be λs(eji) =
Tj+CP−µ(Dij )−Tsetup−Ti

σ(Dij ) . The optimal clock
schedule can be obtained by a graph-theoretical algorithm.
First, the edge weight of an h-edge eij in GCP is replaced by
a parametric edge weight of µ(dij)−Thold −σ(dij)λ and the
edge weight of an s-edge eji is replace by a parametric edge
weight of CP − µ(Dij)− Tsetup −σ(Dij)λ. This step yields
a parametric timing graph GCP (λ). A clock schedule that
does not cause any negative cycle in GCP (λ̂) guarantees all
edges have normalized slacks of at least λ̂. The optimal clock
scheduling problem is to find a clock schedule that maximizes
λ given a parametric timing graph GCP (λ).



Traditional clock scheduling Optimal clock scheduling
Circuits # pivot # contract yield(%) CPU(s) # pivot # contract yield(%) Improvement CPU(s)

s1488 0 6 72.3 0.4 4 6 75.1 3.9% 0.4
s1494 0 6 77.9 0.4 4 6 78.8 1.1% 0.4
s5378 107 179 63.8 0.4 169 179 64.2 0.6% 0.5

s9234.1 160 210 74.1 0.7 167 210 84.2 13.6% 0.8
s13207.1 276 620 60.2 1.9 397 620 60.2 0.0% 2.0
s35932 1790 1728 64.3 5.3 1108 1728 98.7 53.5% 11.9
s38417 1893 1636 74.0 66.3 1641 1636 88.6 19.7% 79.9

s38584.1 1722 1426 72.8 7.6 1699 1426 84.7 16.3% 9.9

TABLE I

COMPARISONS OF OPTIMAL CLOCK SCHEDULING AND TRADITIONAL CLOCK SCHEDULING.

Held et al. [1] and Albrecht et al. [2] use a parametric
shortest path algorithm [7] to solve a special case of the
problem where σ(·)

�
1. We adopt the algorithm and assign

σ(·) using statistical timing information. To find the optimal
clock schedule, we start from a feasible clock schedule T0

obtained by applying the Bellman-Ford shortest path algorithm
on GCP (λ0), where λ0 = 0. Since CP is always chosen to
be greater than the optimal clock period CP ∗, which can
be obtained by [4], T0 always exists. Path pivoting [7] is
performed and new pairs of (λk,Tk) are found where λk ≥
λk−1. When a zero-cost cycle is detected, the cycle contraction
[7] step is performed. The zero-cost cycle corresponds to a
cycle in the circuit where the normalized slack on the cycle
cannot be increased further. The current clock schedule on
the cycle is thus optimal and the cycle can be contracted and
replaced by a super vertex. The timing constraints between the
rest of the circuit and the vertices on the cycle are updated
and imposed to the super vertex. In other words, the edges
from/to the cycle are replaced by new edges from/to the super
vertex. When σ(·)

�
1 multiple edges from vi to vj can always

be collapsed into one edge by discarding non-dominant ones.
In our formulation, multiple edges might need to be kept if
their parameter coefficients are different. The path pivoting
and cycle contraction steps are repeated until the timing graph
becomes a single super vertex.

C. Comparisons

The parametric shortest path algorithm can be viewed as
a graph-theoretical version of the simplex algorithm [19], in
which a basic feasible solution is moved to another basic
feasible solution with increasing objective through row piv-
oting on the simplex tableau. Young et al. [7] prove that for
a graph with |V | = n and |E| = m, the parametric shortest
path algorithm takes O(nm + n2logn) time on the special
case where σ(·)

�
1. Although the worst case running time

of the simplex algorithm is exponential in some specially
synthesized problems, it usually takes much less time for
general problems [20]. We have found that the number of
iterations required for obtaining the optimal clock schedule
is comparable to the number of iterations used in solving
the special case. Furthermore, the performance yield of the
optimal clock schedule is significantly increased in many
benchmark circuits.

Table I shows the difference of runtime and yield on IS-

CAS89 benchmark circuits between our optimal clock schedul-
ing algorithm using false-path-aware statistical timing infor-
mation and the traditional clock scheduling algorithm with
only static structural longest/shortest path delay information.
Gaussian distributions with (µ, σ) = (1, 0.15) are used for
gate delays and each gate is assumed independent. The clock
periods are chosen so that the timing yields of traditional clock
schedules are between 60% to 80%. The clock arrival times
of all primary inputs and outputs are assumed the same and
the corresponding vertices are contracted to a single super
vertex before clock scheduling. Monte Carlo simulations are
performed and false path information is used to calculate the
timing yields for both traditional and optimal clock schedules.
The experiments are conducted on a Pentium III 1GHz PC.

D. Clock Skew Uncertainty and Clock Tree Synthesis

In section III-B, unintentional clock skews are not taken into
account because the clock tree design may or may not have
been completed before clock scheduling. Several options are
available in considering unintentional clock skew during clock
scheduling. The first option is to design the initial clock tree
based on an estimated clock schedule. The initial clock tree is
analyzed and the clock skew uncertainties σ(Ti−Tj) are added
to the coefficients of λ in GCP (λ). After clock scheduling,
the wire widths and buffer strengths of the initial clock tree
are adjusted for the new clock schedule and σ(Ti − Tj) are
re-analyzed. It can take several iterations to obtain the clock
tree and the optimal clock schedule. Alternatively, clock tree
can be designed for zero skew, then it can be analyzed for
σ(Ti − Tj) and following this the optimal clock schedule
can be computed. In the final implementation, flip-flops with
different internal delays can be used or additional local clock
buffers are inserted [21], [22] to meet the optimal clock
schedule computed above. However, flip-flops with internal
delays might consume more power than regular flip-flops.

Besides convergence and power consumption issues, clock
tree synthesis performed before clock scheduling cannot take
advantage of the critical path information that is available
after clock scheduling. This can cause serious performance
and yield problems. In the case of a balanced H-tree centered
at the origin, two flip-flops that are close to the origin but
located in the first and the third quadrant have large clock
skew uncertainty because they are driven by two completely
different clock distribution paths. Thus, in the presence of a
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critical path between this pair of flip-flops, the timing yield of
the whole circuit could be seriously degraded. Therefore, it is
necessary to consider the available slacks on each path during
clock tree synthesis to control the clock skew uncertainties.
The minimum of σ(Ti − Tj) is bounded by the physical
separation of vi and vj . We can first estimate σ(Ti−Tj) based
on the distance between vi and vj , and use the estimations
along with the statistical timing information on path delays to
perform clock scheduling. After the optimal clock schedule is
obtained, we would have the available slacks between every
pair of flip-flops. If the available slack between vi and vj is
abundant, we can allow the subtrees driving vi and vj to be
merged closer to the clock source to reduce clock tree power.
Otherwise, we require two subtrees to be merged earlier to
achieve the estimated clock skew uncertainty.

IV. PROGRAMMABLE DELAY ELEMENT INSERTION

The pre-silicon clock scheduling technique tackles timing
uncertainty issue by allocating slacks at design time. However,
this static approach has its limitations due to two reasons: 1)
the processes in new technologies are becoming more difficult
to control, and 2) current design trend tends to use fewer gate
levels between sequential elements in order to push the clock
frequency. As a result, the relative path delay uncertainty is
increasing. For example, the delay of an inverter chain with n

inverters each having an independent gaussian delay, (µ, σ),
is also a gaussian distribution, (nµ,

√
nσ). The relative path

delay uncertainty is 1√
n
× σ

µ
, which increases as n decreases

or process uncertainty increases.
The optimal clock schedule for each chip can be determined

separately to maximize the performance yield if clock schedul-
ing can be performed after the chips are manufactured. Figure
3 illustrates the benefit of post-silicon clock scheduling over
pre-silicon clock scheduling for a sequential circuit containing
three flip-flops and three combinational blocks. The path
delays of each combinational block are independent gaussian
distributions, which are (1, 0.05), (3, 0.09), and (2, 0.07). The
optimal pre-silicon clock schedule is also shown in the figure.
At a clock period of 2.1, post-silicon clock scheduling achieves
a 99.2% performance yield, as oppose to 78.7% with the
optimal pre-silicon clock schedule.
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Fig. 4. A programmable delay element circuit and its delay curves for
different delay ranges.

We first propose our programmable delay element design
and use the clock scheduling information from section III-B
to insert delay elements at selected locations to enable post-
silicon clock scheduling through fine-grain clock tuning.

A. PDE Design

It is desirable to have delay elements with constant delay
steps to facilitate post-silicon clock tuning. In [10], a tapped
delay line circuit with a multiplexor to connect the clock
output to different points on a clock buffer chain is used.
Since the entire buffer chain is switching all the time, this
design consumes significant power. Moreover, it requires as
many control signals as the number of delay steps. Takahashi
et al. [11] use a digital-analog converter to adjust the con-
trolling voltage of a buffer. The adjustable buffer in a 0.18µm

technology gives a minimum of 30ps delay step. However, due
to the nonlinear characteristic of the design, the delay steps
are not equal.

Figure 4 shows the schematic of a programmable delay
element design and its delay curves in a 0.13µm technology
with input slew rate at 0.1ns. The sizes of the transmission
gates and their capacitance loads are adjusted to account for
the parasitic capacitors and the nonlinearity of the transmission
gate resistances. There are three benefits of this design: 1) its
delay steps are almost constant, 2) the three control signals are
directly used to generate eight different delay configurations,
and 3) different delay ranges required at different locations can
be achieved by adjusting the loading capacitors. The delay
curves of three delay elements tuned for delay ranges of
100ps, 140ps, and 180ps are shown in Figure 4. The power
consumption of the largest delay element operating at 180ps

is roughly twice as much as that of a D-type flip-flop.

B. Methodology for PDE Insertion

Let T
∗ be the optimal clock schedule, λ∗(eij) be the

normalized slack of eij given by T
∗, and λmin(v) be the

minimum λ∗ of all in-edges and out-edges of v. All the
paths connected from/to v have normalized slacks of at least
λmin(v). A vertex v or an edge e is timing critical if
λmin(v) < λth or λ∗(e) < λth, where λth is the normalized
slack threshold.



Flip-flop counts according to λmin(v)
Circuits 1∼2 2∼3 3∼4 4∼5 5∼6 6+ <6
s1488 2 2 1 1 0 0 100%
s1494 1 3 1 0 1 0 100%
s5378 0 0 0 0 6 173 3.4%

s9234.1 0 3 9 2 5 191 9.0%
s13207.1 0 0 0 8 0 612 1.3%
s35932 0 0 0 128 160 1440 16.7%
s38417 0 0 111 36 8 1481 9.5%

s38584.1 0 17 48 24 12 1325 7.1%

TABLE II

FLIP-FLOP COUNTS ACCORDING TO THE MINIMUM NORMALIZED SLACKS

OF THE CONNECTED PATHS.

v1 v2
v3

v4

v5 v6

v7

v8

s

h

s s

s

h

s s

s

(a) (b) (c)

Fig. 5. The timing critical subgraph of GCP with 3 components.

Table II shows the flip-flop counts according to λmin(v).
Most of the circuits have less than 17% timing critical flip-
flops at λth = 6 except the two small circuits, s1488
and s1494. Tradeoffs between clock tuning capability and
area/power can be made by choosing λth. For example, if we
choose λth = 5 the number of candidate locations for delay
element insertion in s35932 drops from 16.7% to 7.4%.

The timing critical vertices and edges form a subgraph of
GCP , which consists of zero or more strongly connected com-
ponents. Figure 5 shows a subgraph with three components, in
which h-edges are represented by dashed arcs and s-edges are
represented by solid arcs. A straight-forward delay element
insertion algorithm inserts a delay element for each timing
critical flip-flop, which requires eight delay elements in this
example. A better approach is to calculate the opportunity
of each vertex, which is defined as the performance yield
improvement it can achieve by inserting a delay element at
this vertex.

Two important metrics are required to evaluate the oppor-
tunity: the first is λmin(v) and the second is the path delay
correlations. A larger λmin(v) corresponds to less timing vio-
lation probabilites of the paths connected to v, and less yield
improvement headroom. Path correlations affect the possibility
of correcting a timing violation by post-silicon clock tuning.
Strong correlations between path delays can come from several
sources. For example, dij and Dij may be strongly correlated
because the longest structural paths and shortest structural
paths share common logic gates. Paths located close together
can also exhibit strong correlations on their delays due to intra-
die and inter-die variations.

The closed form solution of the opportunity can be obtained
for a critical component containing one cycle. For a critical
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component with multiple cycles, one can use Monte Carlo
simulation to evaulate the opportunity, or use λmin(v) and path
delay correlations for estimation. Consider a case in which all
path delays are strongly correlated and setup-time violations
occur simultaneously on all s-edges in Figure 5. In Figure
5(a), it may be possible to remove the setup-time violation
by increasing T1 or decreasing T2 without causing hold-time
violation on e21. In Figure 5(b), it may be possible to increase
T3 and T4 together, or decrease T4 and T5 together without
causing hold-time violation on e53. However, in Figure 5(c)
it is not possible to remove the setup-time violations by post-
silicon clock tuning. Therefore, the opportunities of v6, v7,
and v8 can be lower than that of v1 ∼ v5 even if their λmin

values are lower.
Further delay element reduction can be achieved by explor-

ing the circuit structure. For example, the path delays of the
bit lines in a data bus can be highly correlated if they are
routed in close proximity. As shown in Figure 6, we can use
a single delay element for the whole bus instead of a separate
delay element for each bit.

V. POST-SILICON CLOCK TUNING

Post-silicon clock scheduling can further improve the timing
yield by removing timing violations in manufactured chips. It
can also speed up time-to-market by avoiding rigorous circuit
simulations on all process variation corners to achieve timing
closure on the last few timing critical paths. Post-silicon timing
verification is the first step to close the timing on the critical
paths. Multiple two-pattern tests for each critical path are
applied to excite the actual longest (shortest) path delays. Test
compaction is performed to reduce the test application time.

The chips that pass the timing verification are ready for
the next manufacturing step. Chips with timing violations on
the paths without PDEs are discarded. The rest of the chips
need to go through post-silicon clock scheduling. First, the
feasible delay range of each critical path is obtained through
delay stepping. A feasible solution can be generated by linear
programming.

A. Test Generation and Compaction

Two-pattern tests which have single or multiple transitions
can be used to check for timing violations. Conventional two-
pattern test generators typically generate either robust or non-
robust two-pattern test sets [23], [24]. Robust tests are guar-
anteed to detect timing failures on the target path regardless



# # total # critical Ratio
Circuits FF pairs true paths true paths (%)
s1488 266 3848 180 4.7
s1494 266 3902 176 4.5
s5378 2313 48258 2503 5.2

s9234.1 3260 407574 16371 4.0
s13207.1 4721 1488814 24569 1.7
s35932 7595 236290 10368 4.4
s38417 34351 3677596 115736 3.1

s38584.1 20444 1400198 11611 0.8

TABLE III

NUMBER OF TIMING CRITICAL PATHS WITH SLACKS LESS THAN 6σ.
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Fig. 7. Example of requirement on test diagnostic capability.

of the signal arrival times of the side inputs. Whereas non-
robust tests can only guarantee the fault detection when no
other path-delay fault is present. However, robust and non-
robust tests do not provide diagnostic capability and a test
may produce incorrect output even if the path under test does
not have timing fault. Consider the example in Figure 7. A
two-pattern test for < P2, P3 > might excite the delay fault
on P1. As a result, incorrect result can be captured at FF3

even if < P2, P3 > does not have path delay fault. Although
this effect is desirable for conventional delay fault testing, it
is not suitable for post-silicon clock tuning. If timing failure
exists only on < P1, P3 >, it may be possible to adjust the
PDE of FF1 to correct the timing violation. Therefore, it is
important to distinguish the timing failure on < P1, P3 >

from that of < P2, P3 >. A single transition test provides the
required diagnostic capability. However, single transition test
may not exist for some paths. Delay fault diagnosis techniques
[25], [26] can be used or DFT techniques are required to make
the path single transition testable for these paths.

Table III shows the number of sensitizable structural paths
that are timing critical for λth = 6, or have slacks less than
6σ. It is evident that less than 5% of the true paths need to be
tested. The numbers of critical true paths in Table III are the
upper bounds for the numbers of single transition tests since a
single transition test usually can test multiple paths. Static or
dynamic compactions can reduce the number of tests as long
as the reduced test set provides the same diagnostic capability.
Fault diagnosis is required only for the paths connected to
PDEs, or the tunable paths. Conventional robust or non-robust
tests can replace single transition tests to examine non-tunable
critical paths to achieve further compaction if they don’t cause
ambiguity on tunable paths.
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Fig. 8. The delay fault testing scheme for post-silicon clock scheduling.

B. Timing Verification

During timing verification, the tests for non-tunable paths
are applied first. Since timing failure on non-tunable paths can
not be recovered by post-silicon clock tuning, the chips that
failed in this step can be discarded. Next, the tests for tunable
paths are applied. The chips that pass the test can be sent to
the next manufacturing step and the remaining chips need to
go through post-silicon clock scheduling.

Figure 8 shows the delay fault testing scheme for post-
silicon clock scheduling. The circuit contains 16 flip-flops that
are driven by an H-tree. Each critical component is driven by
the same clock branch to reduce the unintentional clock skew.
Only timing critical edges are shown in the figure with solid
arcs as s-edges and dashed arcs as h-edges.

Four types of flip-flops are used depending on the require-
ments of two-pattern test capability and tuning capability.
First, the flip-flops that are to launch transitions must be able
to hold two values. The enhanced scan filp-flop which can
hold current value during scan operation (SHFF) [27] can be
used for this purpose. Since non-critical paths do not need to
be tested, enhanced scan flip-flops are used only at the sources
of the critical paths. Note that an s-edge eij corresponds to a
long path from vj to vi. A flip-flop on a critical cycle but not
a source of any critical path can be a regular scan flip-flop.

Filp-flops with tuning capability are selected by the PDE
insertion method described in section IV. Three additional
storage elements are attached to each PDE and those storages
can be included or separated from the regular scan chain.

C. Delay Stepping and PDE Tuning

The actual longest (shortest) path delay of each timing
critical path can be measured by applying single transition
tests from its source and observe its outputs. For an h-edge
eij the PDE delays of vi and vj are first set to their maximum
and minimum to give it the largest slack. If the outputs



contain errors, no feasible configuration exists and the chip
is discarded. Otherwise the PDE delay of vi is reduced and
the PDE delay of vj is increased until an error is detected.

Once all the path delays are known, a set of PDE config-
urations can be calculated using traditional clock scheduling
algorithms with extra constraints on the tuning range of each
PDE. Linear programming can be used to solve such problems.
If a feasible solution exists, the configurations are scanned into
the PDEs and the chip undergoes another timing verification
step. The second timing verification is necessary because the
delay steps of each PDE may not be constant and rounding
the solutions of linear programming into discrete PDE config-
urations introduces errors. Branch-and-bound algorithms can
be used to perturb the configurations and reduce the yield loss
due to these errors.

VI. CONCLUSION AND FUTURE WORK

We present a pre-silicon and post-silicon clock scheduling
methodology that improves the timing yield through the use
of false-path-aware statistical timing analysis and post-silicon
clock tuning. Compared to a traditional clock scheduling al-
gorithm, our methodology achieves an average of 13.6% yield
improvement for benchmark circuits. We plan to integrate
clock tree synthesis into our methodology. We would also like
to extend our methodology to removing cross-talk delay faults
and other types of timing faults through post-silicon clock
tuning.
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