The Development of a 2D Transmission-Line-Modeling Alternating-Direction-Implicit Method

Yu-Min Lee

Charlie Chung-Ping Chen

Department of Electrical and Computer Engineering University of Wisconsin-Madison

Sponsored by Avant! Corp. and Intel Corp.

Outline

Motivation

- Power Grid Modeling and Transmission-Line-Equations
- Finite Difference Method
- Transmission-Line-Modeling
 - Alternating-Direction-Implicit Method
- Experimental Results
- Conclusion

Motivation: Trend of VLSI Technology

* Data from International Technology Roadmap for Semiconductors (ITRS)

University of Wisconsin-Madison

Motivation: Why Power Grids Analysis?

Power fluctuation sources increase significantly

- IR-drop: $\Delta V = I \times R = (P^{1}/Vdd) \times R$
- L di/dt: $\Delta V = L di/dt$

roughly proportional to $L(I \times f) = L (PI \times fI) / Vdd$

- I : consuming current
- f : clock frequency
- P : power dissipation
- Vdd : supply voltage
- Other noises such as resonance and electromigration also affect power grid reliability

Power delivery quality becomes a critical issue

Motivation: Power Grids Analysis Challenges

- More than 40-million transistors on a chip
- Sparse direct method takes super linear time to solve a matrix.
 - Introduce a large amount of fill-ins
 - Slow and huge memory requirement
 - SPICE takes 6 hours to finish DC analysis for an 80,000-node circuit
 - How about more than millions?

Literature Overview

- ♦ Hierarchical analysis of power distribution network (Sachin-DAC2000)
 - Decoupled linear and nonlinear simulation (only for RC circuit)
 - Divide and Conquer simulation for large scale simulation
 - Sparsfication to reduce memory usage
- Efficient large-scale RLC power grid analysis based on preconditioned Krylov-subspace iterative methods (Chen-DAC2001)
 - Incomplete cholesky decomposition and iterative method to reduce fillins and number of iterations -> over 100X speed up
- Multigrid-like technique for power grid analysis (Sani R. Nassif-ICCAD2001)
 - Reduce the grids to a coarser structure, and the solution is mapped back to the original grid

University of Wisconsin-Madison

Power Grid Modeling

On-Chip resistance and inductance

MNA and Transmission-Line-Equations

• For each cell, write down KCL at center node, KVL at x- and ydirections. Then, taking $\Delta x - 0$, $\Delta y - 0$, $\Delta l - 0$

Simple Explicit Finite Difference Method

Central-Finite-Difference Approximation for first derivatives

Simple Explicit Finite Difference Method (*Cont.***)**

♦ No matrix inversion, only substitutions, thus the runtime is linear
♦ Time steps are limited by stability constraint $\Delta t \leq \sqrt{lc} \sqrt{1/(\Delta x)^2 + 1/(\Delta y)^2}$ For example, for the VLSI technology with feature size as 0.1 µm and the dielectric permittivity as 4, the stability constraint is close to 0.47 fs.

Need 2.1 millions time steps to simulate an 1ns period

We Propose the Transmission-Line-Modeling method based on Alternating-Direction-Implicit (ADI)

No ADI method was applied in TLM analysis

Achievements

- We prove that our TLM-ADI method is unconditionally stable, no limits on time step for stability
- No large scale matrix inversion, only tridiagonal matrix solving. Therefore, the runtime is linear
- Solve higher dimension problem by successive lower dimension methods
- Alternating X and Y directions for implicit and explicit solving

Alternating-Direction-Implicit (ADI) Method (Cont.)

Step I: Form n-th to n+1/2-th time step

- 1. Explicitly update $i_x^{n+\frac{1}{2}}$
- 2. Implicitly update $v^{n+\frac{1}{2}}$
- 3. Explicitly update $i_y^{n+\frac{1}{2}}$ by using updated node voltage $v^{n+\frac{1}{2}}$

Alternating-Direction-Implicit (ADI) Method (Cont.)

Step II: From n+1/2-th to n+1-th time step

- 1. Explicitly update i_y^{n+1}
- 2. Implicitly update v^{n+1}
- 3. Explicitly update i_x^{n+1} by using update node voltage v^{n+1}

 i_{v}^{n+1}

Analysis of ADI Method: Unconditionally Stability

We can analytically prove the TLM-ADI method is **unconditionally stable**, by using Von Neumann analysis in the LC circuit (r=0) as follows

1. $\mathbf{F}^n = \begin{bmatrix} i_x^n & i_y^n & v^n \end{bmatrix}^T$ represents the spatial Fourier-transformation of currents and voltage at time n

2. From Step I and II of the TLM-ADI method

 $\longrightarrow \mathbf{F}^{n+1} = \mathbf{M} \mathbf{F}^n$

where \mathbf{M} is the gain matrix from time-step n to time-step n+1

3. We analytically solve all the eigenvalues of M and find out that the amplitude of all eigenvalues of M are all 1's

Hence, TLM-ADI is unconditionally stable

Experimental Results: Run time Comparison

All simulation results are performed on an alpha workstation with Dual SLOTB 667 MHZ Alpha 21264 processors

	Speed up	Run Time (Seconds)		# of Nodes	
		ADI	SPICE		
	113	0.31	35.26	1,600	
	236	2.26	533.02	10,000	
	432	7.94	3,433.69	25,600	
	577	18.54	10,702.30	48,400	
	727	34.64	25,182.35	78,400	
	880	58.39	51,393.15	115,600	
	1019	70.59	71,921.13	136,900	
	1180	103.97	122,730.40	184,900	
Гт	-	776.14	-	1,000,000	
	-	3,237.87		4,000,000	

Time-step: 1ps

Time period: 500ps

TLM-ADI is over 1000 times faster than SPICE

Experimental Results

Memory Usages of SPICE and TLM ADI v.s. Number of Nodes

Experimental Results: Linear Run Time

Linear Run Time of TLM ADI

TLM-ADI need only 6.5 seconds to finish an iteration of 4 million-node power grid circuits, and the **run time is linear**

Experimental Results: Unconditionally Stable

TLM-ADI with Different Time Steps

The Courant stability constraint is 1.9442 ps

University of Wisconsin-Madison

A snapshot of the transient response

 An efficient TLM-ADI algorithm for transient power grid simulation is developed.
TLM-ADI method is unconditionally stable, and

its run time is linear.

The numerical simulation shows that TLM-ADI method not only speeds up 1000 times over the SPICE but also cuts down the memory requirement

