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Motivation: Trend of VLSI Technology

Increasing power dissipation
Decreasing supply voltage

Power Supply Voltage Roadmap
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Motivation: Why Power Grids Analysis?

roughly proportional to L(I x f) = L (P x f  / Vdd )
� I  : consuming current
� f  : clock frequency
� P : power dissipation
� Vdd : supply voltage

Power delivery quality becomes a critical issue

� Other noises such as resonance and  
electromigration also affect power grid reliability

Power fluctuation sources increase significantly
� IR-drop: ∆V = I x R = (P /Vdd ) x R
� L di/dt: ∆V = L di/dt
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Motivation: Power Grids Analysis Challenges

More than 40-million transistors on a chip
Sparse direct method takes super linear time to 
solve a matrix.
� Introduce a large amount of fill-ins
� Slow and huge memory requirement 
� SPICE takes 6 hours to finish DC analysis for  an

80,000-node circuit
� How about more than millions?
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Literature Overview

Hierarchical analysis of power distribution network (Sachin-DAC2000)
� Decoupled linear and nonlinear simulation (only for RC circuit)
� Divide and Conquer simulation for large scale simulation
� Sparsfication to reduce memory usage

Efficient large-scale RLC power grid analysis based on preconditioined
Krylov-subspace iterative methods (Chen-DAC2001)
� Incomplete cholesky decomposition and iterative method to reduce 

fillins and number of iterations -> over 100X speed up
Multigrid-like technique for power grid analysis (Sani R. Nassif-
ICCAD2001)
� Reduce the grids to a coarser structure, and the solution is mapped 

back to the original grid
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Power Grid Modeling

Vcc

On-Chip resistance and inductance

Gates Gate Capacitance  & 
DECAPS

Power Supply
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MNA and Transmission-Line-Equations

For each cell, write down KCL at center node, KVL at x- and y-
directions. Then, taking  
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Simple Explicit Finite Difference Method

Central-Finite-Difference Approximation for first derivatives
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Simple Explicit Finite Difference Method (Cont.)
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Need 2.1 millions time steps to simulate an 1ns period

No matrix inversion, only substitutions, thus the runtime is linear
Time steps are limited by stability constraint
For example, for the VLSI technology with feature size as 0.1   
and the dielectric permittivity as 4, the stability constraint is close 
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We Propose the Transmission-Line-Modeling method based 
on Alternating-Direction-Implicit (ADI)

Achievements
� We prove that our TLM-ADI method is unconditionally 

stable, no limits on time step for stability
� No large scale matrix inversion, only tridiagonal matrix 

solving. Therefore, the runtime is linear
� Solve higher dimension problem by successive lower 

dimension methods
� Alternating X and Y directions for implicit and explicit 

solving

No ADI method was applied in TLM analysis
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Illustration of ADI

Y-direction implicit X-direction implicit
Step I Step II
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Alternating-Direction-Implicit (ADI) Method 
(Cont.)

inx 2
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Step I: Form n-th to n+1/2-th time step
1. Explicitly update
2. Implicitly update
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Alternating-Direction-Implicit (ADI) Method (Cont.)

Step II: From n+1/2-th to n+1-th time step
1. Explicitly update
2. Implicitly update
3. Explicitly update        by using update node voltage

iny 1+

vn 1+

inx 1+ vn 1+

inx 1+vn 1+

iny 1+
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Analysis of ADI Method: Linear Run Time
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Tridiagonal Matrix

Time complexity: O(N)

2xmxn = 2mn =2N
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Analysis of ADI Method: Unconditionally Stability

FMF nn =+1

1. represents the spatial Fourier-transformation 
of currents and voltage at time n

2. From Step I and II of the TLM-ADI method

][ Tnn
y

n
x viin =F

where M is the gain matrix from time-step n to time-step n+1
3. We analytically solve all the eigenvalues of M and find out that 

the amplitude of all eigenvalues of M are all 1’s

We can analytically prove the TLM-ADI method is unconditionally 
stable, by using Von Neumann analysis in the LC circuit (r=0) as 
follows

Hence, TLM-ADI is unconditionally stable
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Experimental Results: Run time Comparison

Speed upRun Time (Seconds)# of Nodes

-
-

122,730.40
71,921.13
51,393.15
25,182.35
10,702.30
3,433.69

533.02
35.26

SPICE

-776.141,000,000
1180103.97184,900

-3,237.874,000,000

101970.59136,900
88058.39115,600
72734.6478,400
57718.5448,400
4327.9425,600
2362.2610,000
1130.311,600

ADI

TLM-ADI is over 1000 times faster than SPICE

Time-step: 1ps

Time period: 500ps

All simulation results are performed on an alpha workstation with 
Dual SLOTB 667 MHZ Alpha 21264 processors
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Experimental Results

Memory Usages of SPICE and TLM ADI v .s. Number of Nodes
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Experimental Results: Linear Run Time

Linear Run  Time o f  TLM ADILinear  Run  Time o f  TLM ADILinear  Run  Time o f  TLM ADILinear  Run  Time o f  TLM ADI
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Time-step: 1ps

Time period: 500ps

TLM-ADI need only 6.5 seconds to finish an iteration of 4
million-node power grid circuits, and the run time is linear
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Experimental Results: Unconditionally Stable

The Courant stability constraint is 1.9442 ps

TLM-ADI with Different Time Steps
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A snapshot of the transient response
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Conclusion

An efficient TLM-ADI algorithm for transient 
power grid simulation is developed.
TLM-ADI method is unconditionally stable, and 
its run time is linear.
The numerical simulation shows that TLM-ADI 
method not only speeds up 1000 times over the 
SPICE but also cuts down the memory 
requirement
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Thank you for your attention!


