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Abstract— State of the art statistical timing analysis (STA)
tools often yield less accurate results when timing variables
become correlated due to global source of variations and path
reconvergence. To the best of our knowledge, no good solution is
available dealing both types of correlations simultaneously.

In this paper, we present a novel extended pseudo-canonical
timing model to retain and evaluate both type of correlation
during statistical timing analysis with minimum computation
cost. Also, an intelligent pruning method is introduced to enable
trade-off runtime with accuracy.

Tested with ISCAS benchmark suites, our method shows both
high accuracy and high performance. For example, on the circuit
c6288, our distribution estimation error shows 15× accuracy
improvement compared with previous approaches.

I. INTRODUCTION

It is well-known that the timing performance of future gen-
erations of deep-submicron micro-architecture will be domi-
nated by several factors. IC manufacturing process parameter
variations will cause device and circuit parameters to deviate
from their designed value. Low supply voltage for low-
power applications will reduce noise margin, causing increased
timing delay variations. Due to dense integration and non-ideal
on-chip power dissipation, rising temperature of substrate may
lead to hot spot, causing excessive timing variations.

Classical worst case timing analysis produces timing predic-
tions that are often too pessimistic and grossly conservative.
On the other hand, statistical timing analysis (STA) that
characterizes timing delays as statistical random variables
offers a better approach for more accurate and realistic timing
prediction.

In literatures, there are two distinct approach for STA: path
based STA and block based STA. The fundamental challenge
of the path based STA [1]–[4] is its requirement to select a
proper subset of paths whose time constraints are statistically
critical. This task has a computation complexity that grows
exponentially with respect to the circuit size, and hence can
not be easily scaled to handle realistic circuits.

This potential difficulty has motivated the development of
block base STA [5]–[10] that champions the notion of pro-
gressive computation. Specifically, statistical timing analysis is
performed block by block in the forward direction in the circuit
timing graph without looking back to the path history. As such,
the computation complexity of block based STA will grow
linearly with respect to the circuit size. To even further speed
up the computation, Gaussian assumption has been widely
adopted( [6], [9], [10]) with small accuracy penalty, and all

internal timing random variables in a circuits are forced to
follow the Gaussian distribution.

However, to realize the full benefit of block based STA,
one must solve a difficult problem that timing variables in
a circuit could be correlated due to either global variation (
[6], [7], [10]) or path reconvergence( [5], [9]). As illustrated
in the left hand side of Figure 1, global correlation refers
to the statistical correlation among timing variables in the
circuit due to global variations such as inter- or intra-die
spatial correlations, same gate type correlations, temperature
or supply voltage fluctuations, etc. Path correlation, illustrated
in the right hand side of Figure 1, refers to the correlation
resulting from the phenomenon of path reconvergence, that
is, timing variables may share a common subset of gate or
interconnect along their path histories.
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Fig. 1: Global Correlations (left) and Path Correlation(right)

The importance of the path correlation comes from the fact
that each gate in the circuit will have some local variations
which are independent to other gates in the circuit. These
local variations will propagate towards the circuit output and
cause additional correlations. However, the correlations caused
by sharing some of these local variations because of path
reconvergence, cannot be correctly captured by any algorithm
that deals with global variations only.

Several preliminary solutions have been proposed to deal
with these correlations. In [6], [7], [10] the dependence on
global variations is explicitly represented using a canonical
timing model. However, none of these approaches has taken
into account the path correlations. In [9], a method based on
common node detection is introduced to deal with the path
correlations. However, this method does not address the issue
of dependence on global variations.

In this paper, we present a systematic STA solution that
takes into account correlations caused by both global variations
and path reconvergence. Specifically,

• We extend the commonly used canonical timing model to



represent all timing variables in the circuit as a weighted
linear combination of a set of Gaussian random variables.
A variation vector, consisting of all the weights, is
then used to explicitly represent both global and path
correlation information.

• We develop a pseudo-canonical timing model which relax
the requirement of the independence between the global
variation sources involved in the original canonical timing
model. With such, the expensive principle component
analysis is avoided and total computation time is saved.

• We further explore the sparse structure of the variation
vector and develop a flexible vector format so that the
non-significant entries of the variation vector are dynam-
ically dropped during computation. According to sim-
ulations on ISCAS circuits, this technique significantly
curtails the amount of storage and computation required
for our method.

Since min(X, Y ) = −max(−X,−Y ), in the interests of
brevity, in the rest of this paper, we will only discuss the MAX
operator, with the understanding that the same results can be
easily adapted to the MIN operator.

The rest of the paper is organized as following: In section
II, previous block based STA methods are reviewed briefly;
Section III describes the vectorized timing format and a theo-
rem used for correlation decompose; Section IV is the detailed
algorithm and technique to reduce computation complexity.
Section V presents a real implementation of our method in
C/C++ and the testing result with ISCAS85 benchmark suites;
Section VI gives the conclusions.

II. CANONICAL TIMING MODEL

In timing analysis field, the circuit is modeled as a timing
graph, where nodes are used to represent the gate/wire in
the circuit and there will be some delay, called node delay,
associated with them. Signals propagate through these nodes
will add their delays into its arrival time. Node delay and
arrival time are usually called timing variables of the circuit.

Different from classical timing analysis, the statistical
timing analysis models timing variables as random vari-
ables, which are characterized by its probability density func-
tion(p.d.f.) or cumulative distribution function(c.d.f.). The pur-
pose of statistical timing analysis is then to estimate the arrival
time distribution at the primary output of the circuits knowing
input arrival time distributions and all internal node delay
distributions. This is accomplished through two operators [5]:

• ADD: When an input arrival time X propagates through
a node delay Y , the output arrival time will be Z = X+Y

• MAX : When two arrival times X and Y merge in
a node, a new arrival time Z = max(X, Y ) will be
computed before the node delay is added.

[6], [7], [10] proposed a canonical delay model to address
the node delay correlations through sharing global variations.
In particular, they model each of the node delay as a summa-
tion of three terms:

ni = µi + αiRi +
∑

j

βi,jGj (1)

where ni(i = 1, 2, ...) are random variables corresponding to
the the ith node delay in the timing graph; µi is the expected
value of ni; Ri, (named node variation), is a zero-mean, unity
variance Gaussian random variable representing the localized
statistical uncertainties of ni; Gj represents the jth global
variation, and is also modeled as a zero-mean, unity variance
Gaussian random variable; {Ri} and {Gj} are additionally
assumed to be mutually independent; the weight parameters α i

(named node sensitivity) and βi,j(named global sensitivities)
are deterministic constants, explicitly expressing the amount of
dependence of ni on each of the corresponding independent
random variables.

With this canonical representation, the correlation (covari-
ance) between any two node delays, n i and nk, can be easily
evaluated.

cov(ni, nk) = E{(ni − µi)(nk − µk)} =
∑

j

βi,jβk,j (2)

Note that random variables {Ri, Rk, Gj(j = 1, 2, ...)} are
mutually independent.

This canonical timing model is very good for node de-
lay(gate delay or interconnect delay) modeling. But it is not
sufficient to model the arrival time. When an arrival time is
somehow mapped into this canonical timing model as done
in [10], some important path information will be dropped and
the accuracy will be compromised.

For example, referring back to Figure 1(b), arrival time
X and Y share the common history of node p. So between
them, there will be some extend of correlation caused by the
node p’s local variation Rp. But X and Y have only one
term of local variation of RX and RY respectively in their
canonical representations. And according to the assumption
from the canonical timing model, RX and RY are assumed
to be independent to each other, so the correlation caused by
Rp in node p is incorrectively ignored.

Another significant disadvantage of the original format
of the canonical model is that it requires the independence
between the global variation sources Gi. This requirement,
as stated in [10], will be satisfied by Principle Component
Analysis(PCA) before the timing analysis. But we think it
is not reasonable to exclude the computation complexity of
PCA from the overall performance evaluation of the statistical
timing analysis because the complexity of the PCA grows as
quickly as O[M 3] where M is the total number of global
variation sources considered. Due to the important spatial
correlation between global variation sources, the number of
global variation sources have to be included in the PCA will
easily go up to thousands and so that PCA itself will be a very
timing consuming step.

For example, to model the spatial correlation, the chip is
usually partitioned into grids and each grid will be associated
with m global variations. So the total number of global
variation sources will be proportional to the number of grids
used to represent the chip area. If the chip is partitioned into
10×10 grid, the total number of global variations will be M =
100m. This number maybe tolerable but the coarse grid may



not be sufficient to accurately model the spatial correlation
of global variations between different grid locations. If we
partition the chip with 100× 100 to get more accurate spatial
correlation model, the total number of global variations will
now be M = 10000m which is beyond the reasonable range
for cases where a fast PCA is demanded. To be a fact, for a
real chip with dimension of 10mm× 10mm, 100× 100 grids
will only have grid cell with size of 100µm× 100µm which
is not yet small enough for high quality spatial correlation
modeling.

III. EXTENDED PSEUDO-CANONICAL TIMING MODEL

The canonical timing model [6], [7], [10] is a powerful tool
to represent the numerous timing variables for a given circuit.
However, as pointed out in the previous section, in its original
format, it can only handle node delay correlations caused
by global variations. Furthermore, the original format of
canonical timing model requires a computationally expensive
PCA which may prohibit it from using in cases where large
number of global variations are correlated with each other. In
this work, we propose an extended pseudo-canonical timing
model(EPCT) that is capable of capture all the correlation
between any pair of timing variables in the circuit be it a node
delay or an arrival time. And also it removes the requirement
of a PCA procedure for its validation.

A. Extended Pseudo-Canonical Timing Model

We notice an important fact that it is not necessary to have
the canonical format to be able to evaluate the correlations
caused by global variation sources. So we propose a Pseudo-
Canonical Timing Model for node delay as following:

ni = µi + αiRi +
∑

j

βi,jGj (3)

which, compared with the commonly used canonical model in
equation (1), relaxes the requirement of the independence of
the global variations and so that the global variations G j may
be CORRELATED.

With such pseudo-canonical timing model, the correlation
between two node delays can be evaluated as:

cov(n1, n2) =
∑

i

∑
j

β1,iβ2,jcov(Gi, Gj) (4)

Assume that there are N nodes and M global variations in
the timing graph, if every node delay can be modeled by the
pseudo-canonical format of Equation (3), then every timing
variable, including all the node delays and arrival times will
then have a extended pseudo-canonical timing(EPCT) model
as:

X = µX +
N∑

i=1

αX,iRi +
M∑

j=1

βX,jGj (5)

where Ri and Gj are independent to each other although there
will possibly correlations between Gjs.

With this equation, both global and path correlations can
be handled elegantly. More specifically, global variations are

represented by the set of global sensitivity terms {βX,j}, and
dependence on path history are represented by non-zero node
sensitivity terms αX,k.

B. Variation Vector

Equation (5) can be rewritten in a compacted vector format
as

X ∼ L(µX , αX , βX) = µX + α∗
Xr + β∗

Xg (6)

where “*” means transpose and

r ≡ [R1, · · · , RN ]∗ ∼ N(0, I)
g ≡ [G1, · · · , GM ]∗ ∼ N(0,Σg) (7)

are mutually independent local variation vector and global
variation vector respectively. 0 is a zero vector and Σg =
E{gg∗} is the covariance matrix of global variations and
generally not equal to the unit matrix I due to the poten-
tial correlations existing between global variations. αX =
[αX,1, αX,2, ..., αX,N ]∗ and βX = [βX,1, βX,2, ..., βX,M ]∗ are
deterministic vectors called Variation Vector(v.v.) of X .

Authors in [10] proves the correlation evaluation formula
between timing variables represented by the canonical timing
model of equation (1). We here prove a similar formula for
correlation evaluation between time variables expressed with
the EPCT model as equation (5) or (6).

Theorem 1: Given timing variables X ∼ L(µX , αX , βX)
and Y ∼ L(µY , αY , βY ), the correlation between them can
be evaluated as:

cov(X, Y ) = α∗
XαY + β∗

XΣgβY (8)
Proof: By definition:

cov(X, Y ) = E{(X − µX)(Y − µY )}
= cov(α∗

Xr, α∗
Y r) + cov(α∗

Xr, β∗
Y g)

+cov(α∗
Y r, β∗

Xg) + cov(β∗
Xg, β∗

Y g)
= E{α∗

Xrr∗αX} + E{β∗
Xgg∗βX}

= α∗
XαY + β∗

XΣgβY

where the independence between r and g is applied.
For the variance of a time variable, it is easy to get:
Corollary 1: Given timing variable X ∼ L(µX , αX , βX),

its variance is:

σ2
X = α∗

XαX + β∗
XΣgβX (9)

This corollary is actually the special case when X = Y of
theorem 8.

IV. PROPAGATING MEAN AND VARIATION VECTOR

In a timing graph, the mean and variation vectors of a
node delay is obtained from technology extraction. A STA
algorithm, instead, will take those node’s means and variation
vectors as its input and calculate the mean and variation vector
for all arrival times in the entire circuit.



A. Exploration of Sparsity

Since there are N nodes and M global variations in a timing
graph, the length of the local variation α will be N and
the length of global variation vector β will be M which is
the same as the rank of the correlation matrix Σg . So for
every step of arrival time propagation in the timing analysis,
the computation complexity will be O(N + M 2). And the
overall timing analysis computation will have complexity of
O(N(N + M2)) ≈ O(N2 + NM2) since there will be N
steps of arrival time propagations.

Although the correlation matrix Σg will be dense and have
rank of M which is the same as the total number of global
variation sources. However, while working with benchmark
circuits, we noticed that many components in the variation
vectors have very small values, indicating that their contribu-
tions to the overall correlation evaluation is insignificant. By
setting these small coefficient to zero, the variation vector will
become a sparse vector that contains many zero components.

Motivated by this observation, we developed a novel tech-
nique called the flexible vector format to exploit the sparsity
of the variation vector. For this purpose, a drop threshold is
selected so that if αX,i or βX,j is smaller than this threshold,
it is deemed to have small value and will be placed into a
drop candidate pool to be pruned from the variation vector
representation.

However, dropping αX,i or βX,j with small magnitude is
the same as applying truncation to the variation vector. In sub-
sequent computations, the quantization error may accumulate,
causing non-negligible error. This is a problem that can not
be overlooked for large circuits. Our solution to this problem
is to lump those components in the drop candidate pool into
a single correction term

xpool =
√∑

x2
dropped Components (10)

B. Complexity and Path Correlation Length

Using this drop and pool mechanism, the actual number of
non-zero terms in β will be much smaller than M . Assuming
there are m global variation sources for a single node, the
average number of non-zero terms in β will be either (1) m if
the time variable is a node delay; or (2) MC = m× q << M
if the time variable is an arrival time and q is proportional to
the logic depth of the circuit. So, using equation (8) to evaluate
the correlation between time variables, the complexity for a
single evaluation will have complexity of O[M 2

C + Γ] where
the average number of non-zero terms in local variation vector
α is Γ.

Using this drop and pool mechanism, what is really dropped
in the local variation vector α during computation is then
the path correlation. So the length of the local variation
vector actually gives a good indication to the extent of path
correlation in the circuit. The path correlation length(Γ) of
the circuit is then defined as the average length of the pruned
local variation vectors for a given drop threshold.

Theoretically speaking, the path correlation length will be
the number of critical nodes which are in the statistically

critical paths. Specifically, If a node is not in any statistically
critical paths, its variation will be automatically dropped. On
the other hand, if the node is in one critical path but is not
statistically important, it will be dropped too. So by studying
the variation vector in the circuit output, it is easy to know
which path is critical and which node is critical for circuit
performance and this is very important information to help
designer improve the circuit design.

In real circuits, usually only a few paths are statistically
critical and so that only a few nodes in the circuit will
survive the variation vector propagation. So the computation
complexity of our method will be O[(Γ + M 2

C) · N ].
Since Γ << N and MC << M , the total complexity

will then be O[N ] and a significant reduction of computation
and storage is achieved with the drop and pool mechanism.
Compared with the PCA-based approach, the complexity
saving is even larger since there the complexity will be
O[M3 + (MC + Γ)N ] ≈ O[M3 + N ] even the drop and
pool mechanism is used. So the extended pseudo-canonical
timing model actually results in a big saving in computation
complexity when the total number of global variations is large.

V. SIMULATION RESULTS AND DISCUSSIONS

The above described algorithm has already been imple-
mented in C/C++ and tested by ISCAS85 benchmark circuits.

Before testing, however, all benchmark circuits are re-
mapped into a library which has gates of not, nand2, nand3,
nor2, nor3 and xor/xnor. All library gates are implemented
in 0.18µm technology and their delays are characterized by
Monte Carlo simulation with Cadence tools assuming all varia-
tion sources, either process variations or operational variations,
follow Gaussian distribution.

For illustration purpose, only three parameter variation are
considered global: channel length(L), supply voltage(Vdd) and
temperature(T). All other variation sources, specified in the
0.18µm technology file, are assumed to be localized in the
considered gate only.

A. Accuracy and Performance

Monte Carlo simulation results with 10,000 repetitions are
used as “Golden Value” for each benchmark circuit. Each
repetition is a process of static timing analysis by fixing global
and node variation into a set of randomly sampled values. The
global variations are sampled once for each repetition while
node variation for each gate is newly sampled every time when
the gate is computed.

To elaborate the importance of including the path reconver-
gence correlation, A STA methods called CTM is implemented
with canonical timing model where no path correlations are
considered.

Table I summarizes the arrival time distribution parameters
at the primary output of each testing circuit from Monte
Carlo(M.C.), CTM and our method of EPCTM which is
implemented with extended pseudo-canonical timing model.
µ and σ are mean and standard variation of the distribution.
τ97 = µ + 2σ is the delay estimation at confidence level of



97%. The accuracy of STA methods compared with Monte
Carlo method, is evaluated in Table II.

STA CPU Delay Distribution[ps]
Circuit Method Time[s] µ σ τ97

M.C. 6.449 1288.8 219.3 1727.5
CTM 0.010 1348.6 216.0 1780.7

c432 EPCTM 0.030 1299.0 220.4 1739.9
M.C. 8.182 1073.6 178.9 1431.4
CTM 0.010 1125.4 178.3 1482.0

c499 EPCTM 0.030 1084.8 180.5 1445.8
M.C. 14.831 1445.4 266.3 1977.9
CTM 0.010 1463.1 264.2 1911.5

c880 EPCTM 0.050 1447.6 264.9 1977.3
M.C. 19.007 1445.4 251.4 1948.3
CTM 0.010 1529.4 249.0 2027.4

c1355 EPCTM 0.071 1460.9 250.7 1962.3
M.C. 35.801 1828.2 327.3 2482.8
CTM 0.030 1881.7 326.5 2534.7

c1908 EPCTM 0.150 1841.9 328.4 2498.6
M.C. 72.163 2097.0 382.9 2862.8
CTM 0.050 2161.8 379.7 2921.2

c2670 EPCTM 0.181 2104.4 382.9 2870.1
M.C. 84.020 2747.2 498.8 3744.8
CTM 0.050 2850.3 500.6 3851.5

c3540 EPCTM 0.240 2752.3 502.1 3756.5
M.C. 140.832 2399.3 441.7 3282.6
CTM 0.080 2474.1 441.3 3356.7

c5315 EPCTM 0.641 2404.8 442.2 3289.2
M.C. 114.235 6740.1 1286.8 9313.6
CTM 0.070 7290.8 1273.1 9836.9

c6288 EPCTM 5.198 6775.9 1275.1 9326.2
M.C. 202.972 1911.7 348.7 2609.0
CTM 0.110 1974.3 352.5 2679.3

c7552 EPCTM 0.571 1916.6 353.8 2624.2

TABLE I: Testing Results for ISCAS Benchmarks

Table II shows that CTM have significantly larger error in
mean estimation than EPCTM. This is reasonable because
CTM will overestimate the mean at every MAX operation
due to smaller correlation considered and this over estimation
is accumulated through distribution propagation. It is also
interesting to notice that CTM and EPCTM give similar
accuracy in variance estimation. This is possibly because of
the fact that the variance is dominated by global variation in
the tested cases.

Of course, Monte Carlo simulation gives the best STA
results but with big runtime penalty. EPCTM runs order-of-
magnitude faster but can provide both mean and variance
estimation almost as accurate as Monte Carlo does if most of
the path correlations are considered as the cases of EPCTM
shown in Table I and II.

To further elaborate the accuracy of EPCTM, Figure 2 shows
the p.d.f. and c.d.f. for circuit c6288 from three methods:
Mont Carlo and two methods of EPCTM and CTM. Apparently
enough, EPCTM shows excellent accuracy since most path
correlation is considered.

B. Performance and Path Correlation Length

It has been mentioned in Section IV-B that path correlation
length (Γ) is an interesting macro property of the simulated
circuit and gives a good indication of the extent of the path
correlation existing in that circuit. For the above ISCAS
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Fig. 2: p.d.f. and c.d.f. comparison for c6288 from three
methods

Circuit Mean Error(δµ) Variance Error(δσ)
CTM EPCTM Improve CTM EPCTM

c432 4.64% 0.79% 5.9x 1.50% 0.50%
c499 4.82% 1.04% 4.6x 0.34% 0.89%
c880 1.22% 0.15% 8.1x 0.79% 0.53%

c1355 5.81% 1.07% 5.4x 0.95% 0.28%
c1908 2.93% 0.75% 3.9x 0.24% 0.27%
c2670 3.09% 0.35% 8.8x 0.84% 0.00%
c3540 3.75% 0.19% 19.7x 0.36% 0.66%
c5315 3.12% 0.23% 13.6x 0.09% 0.11%
c6288 8.17% 0.53% 15.4x 1.06% 0.65%
c7552 3.27% 0.25% 13.1x 1.09% 1.46%

TABLE II: Distribution Errors

circuits, the path correlation length(Γ) at drop threshold of 1%
is summarized in Table III where the run time improvement
is also shown when EPCTM is compared with Monte Carlo.

From Table III, we can firstly conclude that the correlation
length Γ is much smaller than the circuit size and basically
independent on the circuit size since it remains about 10− 20
when circuit size changes dramatically. This observation helps
the conclusion we made before about the complexity reduction
of our method by using the technique of flexible vector format.

Secondly, the only exceptional high path correlation length
among the tested circuits happens with the circuit c6288
which is known as a 16-bit array multiplier. Since there
are large amount of equal delay paths in the circuit, large



Name c432 c499 c880 c1335 c1908
Gate Counts 280 373 641 717 1188

Γ 22.0 11.1 14.2 19.3 27.0
CPU Improve 217x 273x 297x 268x 239x

Name c2670 c3540 c5315 c6288 c7552
Gate Counts 2004 2485 3865 2704 5355

Γ 15.4 21.2 14.4 80.9 16.0
CPU Improve 399x 350x 220x 22x 355x

TABLE III: Path Correlation Length and Runtime
Improvement over Monte Carlo

path correlation length is natural: Few node variation can be
dropped due to the equal importance.
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Fig. 3: Run time Complexity of EPCTM

Shown in the figure 3 is the run time complexity of the
proposed timing algorithm EPCTM where the run time and
circuit size of all circuits except c6288 are shown. From
the figure, it is clear that the run time is almost linear with
respecting to the circuit size even when the circuit size changes
dramatically. This result clearly demonstrates our complexity
discussion in section IV-B.

To study the relationship between path correlation length
and the accuracy of the STA method, An experiment is
conducted for circuit c6288 and results are shown in figure
4 where the error in τ97 and path correlation length are
both plotted against the drop threshold. It is clear that the
path correlation length drops sharply when the drop threshold
changes slightly from zero and maintain almost constant
after that. But the error changes readily when drop threshold
changes. This phenomenon proves the efficiency of the drop
mechanism introduced in this work since it means we can
sacrifice very little accuracy to gain very significant reduction
in the path correlation length and so that save significant
amount of CPU time since the run time of the proposed STA
method is proportional to the path correlation length.

VI. CONCLUSIONS

This paper presents a novel method for block-based statisti-
cal timing analysis. Applying the generally accepted Gaussian
assumption, we firstly disclose that the MAX operation can
be approximated by linear supposition of its inputs. Secondly
we extend the commonly used canonical timing model into a
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Fig. 4: Path correlation length(Γ) and Error in 97% delay
(δτ97) when drop threshold changes

vectorized format, variation vector. We also disclose a novel
method to decompose correlated timing variables into inde-
pendent ones to simplify computation. With these theoretical
progress, we are able to evaluate and propagate the global and
path correlation systematically in the circuit timing graph.

We also design a novel algorithm which treat both global
and path correlation simultaneously and systematically. This
algorithm, with the help with a new flexible vector format
achieves high accuracy and high performance at the same time
as tested by ISCAS circuits and compared with Monte Carlo
results.
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