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Abstract

The rising power consumption and clock frequency of VLSI
technology demand robust and stable power delivery. Ex-
tensive transient simulations on large scale power delivery
structures are required to analyze power delivery fluctuation
caused by dynamic IR-, and Ldi/dt drop as well as pack-
age and on-chip resonance. This paper develops a novel
and efficient transient simulation algorithm for the power dis-
tribution networks. The 3D TLM-ADI (Transmission-Line-
Modeling Alternating-Direction-Implicit) method, first models
the power delivery structure as three dimensional transmis-
sion line shunt node structure and transfers those equations to
the Telegraph equation. Finally, we solve it by the alternat-
ing direction implicit method. The 3D TLM-ADI method, with
linear runtime and memory requirement, is also uncondition-
ally stable which ensures that the time-steps are not limited
by any stability requirement. Numerical experimental results
show that the 3D TLM-ADI method is not only over 300,000
times faster than SPICE but also extremely memory saving and
accurate.

I INTRODUCTION

Due to the ever-increasing clock frequency and the aggres-
sively shrinking feature sizes of the VLSI technology, robust
power distribution network is crucial to ensure the quality of
power delivery of VLSI chips. This makes the issues of the
design and verification of the power grid analysis more im-
portant. The improper design of power grids can degrade the
circuit performance, and the reliability. To obtain a robust de-
sign, numerous researchers studied the impact and proposed
solutions of this problem [5, 3, 7, 9].
There are many sources of power fluctuation such as IR drop,
Ldi/dt drop, and resonance issues. Although the IR drop can
be simply examined by the DC analysis, the Ldi/dt drop is-
sues need to be analyzed by the transient simulation due to
the differentiation nature of Ldi/dt drop. Hence, extensive

transient simulations are required during the design process to
ensure the design quality of power delivery. [16] decoupled
the power delivery structure, and transistors simulation to en-
hance the simulation speed. However, owing to the tremen-
dous amount of the power delivery elements, general purpose
circuit simulators such as SPICE [12] require long runtime and
huge memory consumption.
Several techniques [8, 1, 10] have been developed to speed
up the analysis. [8] presented the transmission matrix method
to reduce the memory usage and CPU time for analysis. The
method is based on a multi-input, multi-output transfer func-
tion which enables the entire power distribution network to
be computed as the product of several small individual sparse
square matrices. [1] developed an efficient modified nodal
analysis (MNA) solver to speed up the DC and transient sim-
ulation of the power delivery circuits. This MNA Solver is
based on the preconditioned Krylov-subspace iterative method
which has been shown to be significantly faster than tradi-
tional iterative methods without preconditioning. Recently,
EE Times reported one of the most promising method, TLM-
ADI method, which was proposed by Lee and Chen [10].
They proposed to use the TLM (Transmission Line Model-
ing) [2] method to perform the time domain simulation. TLM
is close related to the FDTD (Finite Difference Time Domain)
method, which is one of the most popular and powerful com-
putational electromagnetic techniques in the microwave sim-
ulation field [14, 15]. The TLM method differs from FDTD
in the sense that it utilizes transmission line cells to model the
structure and directly solves the voltage and current quantities
while FDTD uses Yee cell structure to obtain electric and mag-
netic fields. Since voltages and currents are the major focus of
the VLSI power delivery analysis, TLM method can be ap-
plied directly to perform power delivery transient simulation.
The TLM method has been successfully applied to analyze
the two-dimensional LC networks by Gwarek [6]. Unfortu-
nately, the time step size is restricted by the minimum grid
cell size (Courant stability condition as the standard FDTD
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method [14, 15]).
Lee and Chen [10] directly solved the KCL and KVL
equations by utilizing the transmission line equations. Al-
though their method is an unconditionally stable ADI [13]
(alternating-direction-implicit) scheme for the two dimen-
sional power grid networks, it cannot be directly extended
to the three dimensional power grids. In this paper, instead
of solving the KCL and KVL equations, we first set up the
transmission line equations of the three dimensional power
grid networks. Then, we transfer those equations to the tele-
graph equation, and develop an unconditionally stable ADI
algorithm which relaxes the time-step constraint. With this
new method, the upper bound of the time step is only limited
by the accuracy requirement rather than the stability require-
ment. Thus, it greatly lightens the computational load due to
the reduction of number of time steps. Furthermore, the run-
time and memory is linear with the number of total nodes N
since the method only solves around N2/3 tridiagonal ma-
trix equations with dimension N1/3 ×N1/3 at each time step.
Extensive experimental results show that our algorithm is not
only orders of magnitude faster than SPICE but also extremely
memory saving and accurate.
The remainder of the paper is organized as follows. First, the
review of the finite-difference algorithm, and the relation be-
tween the modified nodal analysis (MNA), transmission-line-
equations (TLE), and the telegraph equation will be studied
in Section II. Then, the derivation of the 3D TLM-ADI algo-
rithm with its two main features, unconditional stability and
linear run time will be presented in Section III. Finally, the
numerical experiments and conclusion of this paper will be
given in Section IV, and V.

II POWER GRID MODELING AND SIM-
ULATION WITH THE FINITE DIFFER-
ENCE METHOD

V cc

V cc

V cc

Vcc

Figure 1. Power Grids Modeling

The power distribution networks are modeled by a three di-
mensional shunt node structure of the transmission line grids
as illustrated in Figure 1. Since the structures of the ground,
and power networks are the same, Figure 1 only shows the

power delivery networks. This model results in identical for-
mulations for both the analysis of the power and ground net-
works. For simplicity, in the remainder of this paper the analy-
sis of the power distribution network is assumed. For each cell
as shown in Fig 2, the wire segments are represented by resis-
tors and inductors connected in series in x− and y− directions
with a capacitor connected to the ground networks, and the
vias are modeled as resistors and inductors connected in se-
ries in z− direction. The parameters r, l, and c are resistance
per unit length, inductance per unit length, and capacitance
per unit length, respectively. Once the circuit model has been
set up, the system matrices are created by using the transient
nodal analysis. First, the KCL at the center node Oi,j,k, and
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Figure 2. KCL and KVL for a cell

the KVL along the x−, y−, and z− directions of the center
node are applied to each cell, as shown in Figure 2. The KCL
and KVL equations for a node Oi,j,k at position (xi, yj , zk)
can be written as (The independent current sources have been
ignored for simplicity.)

C̃ijk
∂

∂t
xijk = −G̃ijkxijk (1)

Then assembling the KVL and KCL equations for each cell,
the full system equations can be represented as

C̃
∂

∂t
x + G̃x = 0 (2)

where x is the vector of nodal voltages and branch currents.
The above system equations are equivalent to the modified
nodal analysis (MNA) equations.

Connection Between MNA and Transmission-Line-Equations

After multiplying both sides of the Equation (1) by the in-
verse of C̃ijk, and approaching �x, �y, �z, and �l to ze-
ros with the uniform internodal distance assumption (�x =

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03) 
1530-1591/03 $17.00 © 2003 IEEE 



�y = �z = �l), leads to the following equations

∂v

∂t
=

1
3c

(−∂ix
∂x

− ∂iy
∂y

− ∂iz
∂z

) (3)

∂ix
∂t

=
1
l
(−∂v

∂x
− rix) (4)

∂iy
∂t

=
1
l
(−∂v

∂y
− riy) (5)

∂iz
∂t

=
1
l
(−∂v

∂z
− riz). (6)

The above equations are the general transmission line equa-
tions which can be solved by the related techniques such as
TLM and FDTD methods [14]. The procedures and con-
cepts of the general finite difference methods for solving the
three-dimensional TLE are quite simple. First, the domain
(x − y − z − t planes) of the solution is discretized by a
net with a finite number of mesh points (xi, yj , zk, tn) =
(i�x, j�y, k�z, n�t) which is denoted as “•n

i,j,k”. After
the discretization, the derivatives at each mesh point are re-
placed by the finite difference such as forward-, backward-, or
central- difference.
Applying the central difference method into Equations (3)–
(6), we can get a simple explicit finite difference updating
scheme which is an extension of the two dimensional cir-
cuit [6]. Each nodal voltage and branch current at each time
step can be easily solved since only one unknown variable ap-
pears in each difference equation. While this scheme suffers
on the Courant stability constraint [14, 15] which is

�t ≤ 1
1√
lc

√
1

(�x)2 + 1
(�y)2 + 1

(�z)2

. (7)

As the feature size of VLSI technology decreasing to 0.1 µm,
and 1/

√
lc being a half of the light speed, the Courant limit

is close to 0.3838 fs. Thus it needs around 2.57 × 106 time
steps to simulate a 1-ns period.

Connection Between TLE and Telegraph-Equation

In order to solve Equations (3)–(6), we can first differenti-
ate Equations (3)–(6) with respect to t, x, y, and z, then com-
bine the results with Equation (3). This leads to a telegraph
equation as

∂2v

∂t2
+ a

∂v

∂t
− b(

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
) = 0 (8)

where a = r/l, and b = 1/3lc.
Hence, we can solve the telegraph equation (8) instead of solv-
ing the transmission line equations (3)–(6). Extending the one
dimensional simple implicit FDTD method [11] of the tele-
graph equation to the above three dimensional telegraph equa-

tion, Equation (8) becomes to

vn+1
i,j,k − 2vn

i,j,k + vn−1
i,j,k

(�t)2
+ a

vn+1
i,j,k − vn−1

i,j,k

2�t

−b

{
vn+1

i+1,j,k − 2vn+1
i,j,k + vn+1

i−1,j,k

(�x)2
+

vn+1
i,j+1,k − 2vn+1

i,j,k + vn+1
i,j−1,k

(�y)2

+
vn+1

i,j,k+1 − 2vn+1
i,j,k + vn+1

i,j,k−1

(�z)2

}
= 0 (9)

Although this simple implicit scheme is unconditionally sta-
ble, we need to solve a heptadiagonal system of algebraic
equations at each time step. Therefore, the computational time
is extremely huge.

III THE 3D TLM-ADI METHOD

In this section, we will derive the 3D TLM-ADI scheme
of the simple implicit FDTD method (9) by using an general
ADI procedure [4]. After the derivation, the two main fea-
tures of the 3D TLM-ADI algorithm, unconditional stability
and linear run time, will be dressed. Finally, we will extend
our proposed method to the power grids with nonuniform in-
ternodal distances.
The ADI method is a well known method for solving the par-
tial differential equation (PDE). The main feature of ADI is to
sweep directions alternately. In contrast to the standard finite
difference formulation with only one iteration to advance from
the nth to (n+1)th time step, the formulation of ADI method
requires multi-level intermediate steps to advance from the nth

to (n + 1)th time step.
The Equation (9) can be rewritten as

(I +
3∑

m=1

Am)vn+1
i,j,k − 2c0vn

i,j,k + c1v
n−1
i,j,k = 0 (10)

where the operators of I , Am’s, and the constants of c0, c1 are
defined as

Ivn
i,j,k

�
= vn

i,j,k (11)

A1v
n
i,j,k

�
= −ρx(vn

i+1,j,k − 2vn
i,j,k + vn

i−1,j,k) (12)

A2v
n
i,j,k

�
= −ρy(vn

i,j+1,k − 2vn
i,j,k + vn

i,j−1,k) (13)

A3v
n
i,j,k

�
= −ρz(vn

i,j,k+1 − 2vn
i,j,k + vn

i,j,k−1) (14)

c0
�
=

1
(�t)2

/(
1

(�t)2
+

a

2�t
) (15)

c1
�
= (

1
(�t)2

− a

2�t
)/(

1
(�t)2

+
a

2�t
). (16)

The constants of ρx, ρy , and ρz are

ρp =
b

(�p)2
/(

1
(�t)2

+
a

2�t
) p = x, y, z. (17)
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After setting v
n+1(∗)
i,j,k = 2vn

i,j,k−vn−1
i,j,k which is a prediction of

vn+1
i,j,k by the extrapolation method, and splitting Equation (10)

by utilizing an ADI procedure as [4], we get the following
recursion relations

(I + A1)v
n+1(1)
i,j,k = −(A2 + A3)v

n+1(∗)
i,j,k

+(2c0vn
i,j,k − c1v

n−1
i,j,k), (18)

(I + A2)v
n+1(2)
i,j,k = v

n+1(1)
i,j,k + A2v

n+1(∗)
i,j,k , (19)

(I + A3)v
n+1(3)
i,j,k = v

n+1(2)
i,j,k + A3v

n+1(∗)
i,j,k , (20)

where v
n+1(1)
i,j,k , v

n+1(2)
i,j,k are the intermediate solutions and the

desired solution is vn+1
i,j,k = v

n+1(3)
i,j,k .

Finally, expanding A1, A2, and A3 on the left hand sides of
Equations (18)–(20), we get the 3D TLM-ADI algorithm as in
Table 1.

The 3D TLM-ADI Algorithm
Input= vn

i,j,k, vn−1
i,j,k ∀i, j, k Output= vn+1

i,j,k ∀i, j, k
Begin
Sub-Iteration 1:
−ρxv

n+1(1)
i+1,j,k + (1 + 2ρx)vn+1(1)

i,j,k − ρxv
n+1(1)
i−1,j,k; ∀i, j, k

= −(A2 + A3)v
n+1(∗)
i,j,k + (2c0vn

i,j,k − c1v
n−1
i,j,k)

Sub-Iteration 2:
−ρyv

n+1(2)
i,j+1,k + (1 + 2ρy)vn+1(2)

i,j,k − ρyv
n+1(2)
i,j−1,k

= v
n+1(1)
i,j,k + A2v

n+1(∗)
i,j,k ; ∀i, j, k

Sub-Iteration 3:
−ρzv

n+1(3)
i,j,k+1 + (1 + 2ρz)v

n+1(3)
i,j,k − ρzv

n+1(3)
i,j,k−1

= v
n+1(2)
i,j,k + A3v

n+1(∗)
i,j,k ; ∀i, j, k

End

Table 1. The 3D TLM-ADI algorithm

III.1 UNCONDITIONAL STABILITY

The general way of verifying the stability of a finite-
difference kind algorithm is to put a elemental solution into the
algorithm, and make sure that the amplitude of the propaga-
tion gain is no more than one. By applying the Von Neumann
analysis [15], we can analytically prove that our 3D TLM-ADI
method is unconditionally stable. Consider the elemental so-
lution of Equation (8),

vn
i,j,k = KneI(ikx�x+jky�y+kkz�z), (21)

where kx, ky , and kz are the wavenumbers along the x−, y−,
and z− direction, respectively, and K is propagation gain.
Putting this elemental solution into the 3D TLM-ADI algo-
rithm, and with some manipulation we get

K =
Λ + c0 ±

√D
(1 + Rx)(1 + Ry)(1 + Rz)

(22)

where Rx, Ry, and Rz are

Rp = 4ρp sin2(kp�p/2) p = x, y, z, (23)

and

D =
√

(Λ + c0)2 − (1 + Rx)(1 + Ry)(1 + Rz)(Λ + c1)

Λ = RxRy + RyRz + RzRx + RxRyRz.

By Examining the amplitude of K, we are able to prove that
the 3D TLM-ADI algorithm is unconditionally stable in the
following theorem.

Theorem 1 The 3D TLM-ADI algorithm is unconditionally
stable.
Proof: To prove that the 3D TLM-ADI method is uncondi-
tionally stable, we need to show the amplitude of the gain fac-
tor K is less than or equal to 1. Let’s consider the following
two cases,

• Case 1: D ≥ 0
From Equations (15) and (23), we know that Λ + c0 is
greater or equal to 0. Hence,

|K| ≤ Λ + c0 +
√D

(1 + Rx)(1 + Ry)(1 + Rz)

=
Λ + c0 +

√D
Λ + c0 + Rx + Ry + Rz + c0 − c1

.

After substituting D into the above equation and simpli-
fying it, we get |K| ≤ 1.

• Case 2: D ≤ 0

|K|2 =
Λ + c1

(1 + Rx)(1 + Ry)(1 + Rz)

=
Λ +

1
(�t)2

− a
2�t

1
(�t)2

+ a
2�t

Λ + 1 + Rx + Ry + Rz

≤ 1.

Therefore, the 3D TLM-ADI method is unconditionally stable
from the above derivations. ♦

III.2 LINEAR RUNTIME

There are three sub-iterations need to be performed for each
time step. By analyzing the run time of each sub-iteration as
shown in Table 1, we are able to prove the computational load
of the 3D TLM-ADI algorithm is linear time at each time step
in the following theorem.

Theorem 2 The run time of 3D TLM-ADI algorithm is O(N)
at each time step, where N = Nx × Ny × Nz is the number
of total nodes.
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Figure 3. Mesh Points

Proof: Let’s consider the Sub-Iteration 1 in Table 1. We can
divide the set of these N nodes by Ny ×Nz subsets with each
one containing Nx points in the x− direction, as illustrated
in Figure 3. Since only three unknown variables need to be
solved in the updating equation with each (i, j, k), the coeffi-
cient matrix Φj,k associated with updating v•,j,k′ s is a tridiag-
onal matrix at each subset. Therefore, the run time of updating
v•,j,k′s is linear with O(Nx). There are Ny × Nz subsets in
Sub-Iteration 1. Hence, the computational load of the Sub-
Iteration 1 is O(Nx ×Ny ×Nz) at each time step.
The run time of Sub-Iteration 2, and 3 is also O(N) by the
similar way. Hence, the total run time of the 3D TLM-ADI
algorithm is O(N) at each time step. ♦

III.3 NON-UNIFORM GRIDS

Generally, the internodal distance (�x, �y, and �z) may
be different for different cells. Hence, we are going to ex-
tend the 3D TLM-ADI method to handle this situation, as il-
lustrated in Figure 4. The parameters r, and l are resistance
per unit length, and inductance per unit length, respectively.
The Ci,j,k is the equivalent capacitance, and the �xi±1/2,j,k,
�yi,j±1/2,k, and �zi,j,k±1/2 are the internodal distances in
the x−, y−, and z− directions for a cell which the center point
is Oi,j,k, respectively.
We first set up the KCL and KVL equations for each cell, and
utilize the same derivation of Equations (8)–(9). The three di-
mensional telegraph equation becomes

vn+1
i,j,k − 2vn

i,j,k + vn−1
i,j,k
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where a = r/l, and bi,j,k = 1/lCi,j,k.
After utilizing the same procedure of Section III, the recur-

sion relations of the 3D TLM-ADI method for the nonuni-
form internodal distance case have the same form as Equa-
tions (18)–(20) except the definition of the operators, Am’s
(see Appendix A).
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Figure 4. Non-Uniform Internodal Distance Cell

IV EXPERIMENTAL RESULTS

The 3D TLM-ADI algorithm is implemented in C language
and performed on a Pentium IV 1.2GHZ machine. The r,
l, and c are equal to 0.03 Ω/µm, 1.26 pH/µm, and 0.024
fF/µm, respectively. The length of each wire segment is
between 15 µm and 100 µm, and the resistance of via is 3
Ω. Numerical results are also carried out by using the MNA
Solver [1], and the general circuit simulator SPICE.
The comparison of run time and memory usages are shown

at Figure 5 with ten time-step period. The power grid model
introduced in Section II is used to construct the test sets. The
size of the test circuits starts from one thousand three hundred
and fifty nodes (15×15×6) to one million eight thousand and
six hundred nodes (410× 410× 6). Figure 5(a), and (b) show
that the 3D TLM-ADI method is not only about 455 times
faster than the MNA Solver [1], and over 11, 000 times faster
than SPICE even for the grid size is only around 30, 000 nodes
(70 × 70 × 6), but also extremely memory saving. The same
tendency that the speed up increases with larger circuit size is
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ory usages between the 3D TLM-ADI, PCG and
SPICE
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also shown in Figure 5(a). Figure 5 also demonstrates that the
memory requirement and run time for the 3D TLM-ADI are
both linear with the total number of nodes.
To present the accuracy of the 3D TLM-ADI algorithm, we
simulate a RLC circuit with nine hundred (15 × 15 × 4)
nodes, and 0.1 ps time step. The Courant stability constraint
is 0.31749 ps in this case. Figure 6 shows that the waveform
of the 3D TLM-ADI method agrees well as SPICE’s at an ar-
bitrary node in the power grids.
The unconditional stability of the 3D TLM-ADI method is
demonstrated in Figure 7 with a 75-node RLC circuit. The
Courant stability constraint is 1.5874 ps in this case. Figure 7
shows that the time step of the 3D TLM-ADI method is not
limited by the above stability constraint but only limited by
the accuracy requirement.
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Figure 6. DC transient response comparison be-
tween SPICE and the 3D TLM-ADI method

V CONCLUSION

We have developed, and implemented an efficient ADI al-
gorithm for the transient power grids simulation, and proved
its unconditional stability and linear run time. The numerical
experimental results also show that the 3D TLM-ADI algo-
rithm not only speeds up orders of magnitude over the SPICE
but also reduces lots of the memory requirements and the re-
sults agree well with the SPICE’s.
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Appendix A
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