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ABSTRACT
This paper presents an efficient hierarchical 3D capacitance
extraction algorithm — ICCAP. Most previous capacitance
extraction algorithms introduce intermediate variables to fa-
cilitate the hierarchical potential calculation but still pre-
serve the leaf panels as the basis. In this paper, we discover
that those intermediate variables are fundamentally much
better basis than leaf panels. As a result, we are able to ex-
plicitly construct the sparse potential coefficient matrix and
solve it with linear memory in linear runtime. Further-
more, the explicit sparse formulation not only enables the
usage of preconditioned iterative Krylov subspace methods
but also the reordering technique. A new reordering tech-
nique is proposed to further reduce over 20% of memory
consumption and runtime in comparison to no reordering
techniques applied. Experimental results demonstrate the
superior runtime and memory consumption of ICCAP over
previous approaches while achieving similar accuracy.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids — simulation, verification.

General Terms: Algorithms.

Keywords: Boundary element method, capacitance, para-
sitic extraction, interconnect, iterative methods.

1. INTRODUCTION
With the reduced feature size and the increased operation

frequency, extracting self and coupling capacitances associ-
ated with on-chip interconnects and packages has become
increasingly important for determining the functionality and
performance of very large scale integration (VLSI) design [1].
Boundary element method (BEM) has been adopted as

the main approach for 3D capacitance calculation. To nu-
merically solve the integral equation associated with BEM,
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the conductor surfaces are discretized into much smaller
panels, and surface charges on those most delicate panels
(leaf panels) are assumed to be uniform. Therefore, a dense
linear system Pq = v is formulated, where P ∈ Rn×n is
referred to as the potential coefficient matrix and q, v ∈ Rn

are leaf panel charges and potentials respectively.
HiCap [2] and PHiCap [3] propose a hierarchical algo-

rithm, which can be represented by a multiple-tree structure
as shown in Fig. 1. The root panel of each tree structure
corresponds to a conductor surface or a dielectric interface.
If the estimated potential coefficient between the two panels
is larger than a threshold value P�, they are further divided
into smaller panels. Otherwise, a link recording the poten-
tial coefficient is created between these two panels.
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Figure 1: Hierarchical BEM algorithms.

The multiple-tree structure can be fully described by a
link matrix H ∈ RN×N and a structure matrix J ∈ RN×n

[3], where N is the number of all panels and n the number
of leaf panels. Each row of J corresponds to a panel, either
leaf or non-leaf, and each column corresponds to a leaf panel.
The (i, j) entry in J is 1 if panel i contains the leaf panel j,
and is 0 otherwise [3]. For any two panels with no links in
between, the corresponding entries in H are zero.
Since in every elementary tree, the parent panel charge

is the sum of the charges on its two child panels, all panel
charges can be represented by charges on leaf panels,

qN = Jq, (1)

where qN ∈ RN is the vector of all panel charges. Let
vN ∈ RN denote the vector of potentials induced by links
on individual panels, it is obtained that

vN = HqN . (2)

Since the potential on a parent panel distributes to its two
children, the leaf panel potential vector is equal to

v = JT vN . (3)



So the potential coefficient matrix can be formulated as

P = JTHJ. (4)

Therefore P is developed based on charges on leaf panels.

2. ICCAP ALGORITHM
Since every panel charge can be represented by a unique

linear combination of charges on leaf panels as in Eq. 1,
the set of leaf panel charges is a basis and leaf panels are
corresponding basis panels.
However, since leaf panels interact with each other through

links between themselves or their upper-level parent panels,
every entry in the corresponding potential coefficient matrix
P is non-zero, and hence the total number of fill-ins is n2.
Consequently, if we take all leaf panel charges as the basis,
the corresponding potential coefficient matrix in Eq. 4 will
be the densest one.
Fortunately, for a given panel refinement, there are many

possible bases. For example, for the multiple-tree structure
in Fig. 1, Fig. 2 shows another set of basis, which includes
two non-leaf panels c and e. The corresponding structure
matrix J 0 of the new basis is also shown in Fig. 2.
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Figure 2: Another basis for a panel refinement.

Since each basis has its distinct structure matrices J 0, the
related potential coefficient matrix P 0 = J 0THJ 0 has differ-
ent densities. Therefore, it’s desirable that one can choose a
basis so that its related potential coefficient matrix is sparse.

2.1 New Basis Panels

Theorem 1. Assume the structure matrix and the poten-
tial coefficient matrix corresponding to a basis are J and P
respectively. If the current basis contains two panels j and k,
which are child panels of panel i, then arbitrarily eliminating
one of them (say k) and adding their parent panel i to the
basis gives another set of basis panels. The new structure
matrix J 0 corresponding to the new basis can be obtained by

J 0j = Jj − Jk;

J 0i = Jk.

where Ji represents the column corresponding to panel i in
J . And the new potential coefficient matrix P 0 is given by

P 0 = ETPE,

where E is an elementary transformation matrix.

Theorem 2. The basis which includes all root panels and
all left-hand side panels will lead to a sparse potential coef-
ficient matrix containing O(n) non-zero entries.
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Figure 3: Generating new basis panels.

We use an example to gain a clear idea of those impor-
tant theorems. As shown in Fig. 3.(a), leaf panels 6 and
7 are children of panel 4. Now, we move one basis panel
from panel 7 to its parent panel 4 as shown in Fig. 3.(b).
Apparently this movement results in a new basis since all
panel charges still can be represented by charges on the new
set of panels. The new J 0 matrix is shown on right hand
side in Fig. 3.(b).
The column corresponding to panel 4 in J 0 is identical

to the column corresponding to panel 7 in J , since upper
level panels originally gathering the charge on panel 7 still
collect the charge on panel 4. So the column of panel 4 in
J 0 “inherits” the column of panel 7 in J . On the contrary,
since the charge on panel 4 is the sum of charges on panels 6
and 7, upper level panels now only need to gather the charge
on panel 4 and do not need the charge on panel 6. So the
column corresponding to panel 6 in J 0 is

J 06 = J6 − J7. (5)

Furthermore, Eq. 5 can be represented in a matrix form as
J 0 = JE, where E is an elementary transformation matrix.

E =


. . .

1 0
−1 1

. . .

 panel 6
panel 7

(6)

Consequently, the relation between the new potential coef-
ficient matrix P 0 and P can be written as P 0 = J 0THJ 0 =
(JE)TH(JE) = ETPE.
It is important to notice that this transformation only

changes the column and row related to panel 6. P 0 is ob-
tained by subtracting the column and row of panel 7 from
the column and row of panel 6. Since links on upper level
panels introduce identical fill-ins in columns and rows of
panel 6 and 7, the subtraction cancels out identical terms
and creates many zeros in P 0.
Moving basis panels upward can be executed continuously

as shown in Fig. 3.(c) and 3.(d). In each step, many zeros
are created by eliminating identical terms and previously
created zero entries will not be destroyed in the later steps.
At the end, the result basis will include root panels and
left-hand side (LHS) panels. So in the new potential matrix
P 0, the number of non-zeros is comparable with the total



number of links in the multiple tree structure, which has
been proven to be O(n) [2]. This property has also been
observed in the experiment as shown in Fig. 4.
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Figure 4: Comparison of non-zeros in H and P 0.

The selection of basis panels is not unique since in each
elementary operation, we can either eliminate right-hand
side (RHS) panels or LHS panels. However, the construction
of J 0 will be simplified by choosing the basis in Theorem 2.

2.2 Direct Formulation of J 0 in Linear Time

Theorem 3. In the column J 0i corresponding to a basis
panel i, each entry Jij is 1 if panel i contains the right-hand
side panel j. If panel i is not a root panel, then each entry
Jij is −1 if the parent of panel i contains the right-hand side
panel j.

The above theorem can be illustrated by a small example
in Fig. 5.(a). Panel 2 is a LHS panel and has been included
in the new basis. Panel 5 and 7 are its underlying RHS
panels and hence the corresponding entries in J 0 are filled
by 1. The parent of panel 2 contains RHS panel 3, so that
the corresponding entry in J 0 is −1.
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Figure 5: Efficient construction of J 0.

Theorem 4. The new structure matrix J 0 and the new
potential coefficient matrix P 0 corresponding to the new basis
in Theorem 2 have O(n) entries.

Assume a complete tree structure containing n leaf nodes
andm = lgn levels with root node in level 0. In level i, there
are 2i−1 LHS panels. Each LHS panel in level 1 to level m
introduces 2m−2i+2 fill-ins. So the total number of fill-ins
in J 0 is given by m+

Sm
i=1 2

i−1(2m−2i+2) = 4n− lgn−4.
So non-zeros in J 0 is O(n). Similarly, we can prove that J
contains O(nlgn) non-zeros. That is the reason why PHiCap
[3] has O(nlogn) runtime and memory consumption.
Also the total number of fill-ins in P 0 is O(n). Denote the

maximum number of links on one panel to be Cmax. Cmax

must be a constant, otherwise the total number of links in
H will not be O(n). Thus for links on each individual panel,
we can calculate the maximum number of fill-ins created in
P 0. For example, for links on a non-basis panel in level 1,
such as the one shown in Fig. 6.(b), the maximum number
of non-zeros they will create is 2 ∗ Cmax. For a complete
tree, the total number of panels that introduce i ∗Cmax fill-
ins is n/2i−1, and hence the total number of fill-ins in P 0

is less than Cmaxn
Slgn

i=0(i + 1)/2
i = Cmax(4n − lgn − 3).

Therefore, the total number of non-zeros in P 0 is O(n).
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Figure 6: Comparison of non-zeros in J and J 0.

2.3 Extracting E from J 0

We have shown in Theorem 1 that P 0 = ETPE. By
substituting it into P 0q0 = v0, we get

ETPEq0 = v0. (7)

Also we know that the original system is Pq = v. So these
two equations can be satisfied by setting

v0 = ET v, (8)

q = Eq0. (9)

From q = Eq0, we can see that E is the coefficient matrix
when leaf panel charges are represented by charges on new
basis panels. Since all panel charges can be expressed by
qN = J 0q0, so that E has been included in J 0.
Since P 0 only contains O(n) entries, the new linear sys-

tem can be solved much more efficiently by preconditioned
iterative matrix solvers, such as PCG and GMRES. Also no-
tice that since the new basis includes all root panels, after
solving q0, root panel charges are already contained in q0.

2.4 Potential Coefficient Matrix Reordering
The distribution of non-zeros in P 0 affects the number of

fill-ins in preconditioners produced by incomplete Cholesky
or LU factorization. Directly applying minimum degree re-
ordering (MMD) may still be expensive for large-scale design
applications. So we propose a heuristic cost-free reordering
method called Level-Oriented Reordering (LOR).
According to the selection of the new basis, it is reason-

able to expect that columns and rows related to lower level
basis panels contain more zeros than upper level basis pan-
els, since fill-ins introduced by links on upper level panels
can mostly be eliminated. So the basic idea of LOR is to
assign basis panels in upper levels with larger indexes, thus
most non-zeros will be in the lower right-hand side corner.
LOR can be easily implemented by a bottom-up breadth-
first search after the panel refinement process.



2.5 Complexity Analysis
The first step of ICCAP to select n basis panels based

on Theorem 2 can be done by scanning all N = 2n − 1
panels to determine which are roots and LHS panels and
hence takes O(n) time. The second step of constructing J 0

is equivalent to inserting O(n) non-zeros in J 0 and hence is
also O(n). E is contained in J 0 and does not require extra
time. P 0 has been proved to contain O(n) non-zeros, so that
the construction of P 0 = J 0THJ 0 can also be done in O(n).

3. EXPERIMENTAL RESULTS
ICCAP is implemented in C + + language. All experi-

ments are executed on Sun-Blade 2000 with one 1.2 GHz
UltraSPARC-III processor, 1G RAM and OS Sorlaris 8.
First we test the Level-Oriented Reordering (LOR) method

embedded in the panel refinement process by using the bus
4 × 4 benchmark. Original lower and upper triangular fac-
tors from incomplete LU factorization contain 29017 and
24546 non-zeros respectively. By adopting LOR, the num-
ber of fill-ins is dramatically reduced by 30%. The result is
comparable with directly applying MMD which in this case
results in 22129 and 19633 fill-ins in L and U .
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Figure 7: preconditioners from incomplete LU
factorization with different reordering schemes
(RelativeResidue = 0.01).

Table 1 compares the performance of three algorithms:
FastCap, HiCap, and ICCAP. The convergence tolerance is
set to 0.01 and error is calculated with respect to FastCap.
Compared to FastCap, ICCAP is 40 − 80 times faster and
with much less memory. Compared to HiCap, for the bus
12×12 benchmark, ICCAP exhibits nearly 5 times speedup.
HiCap represents P as a block matrix and hence the real
storage of P is O(n). All H, J , and P 0 in ICCAP contain
O(n) non-zeros, so that the memory consumptions of IC-
CAP and HiCap are in the same order. Also it shows that
HiCap and ICCAP have comparable accuracy.
We do not have access to PHiCap [3] and cannot com-

4× 4 Bus, Unit List: Time(Sec), Memory(MB)

Algorithm Time Iteration Memory Error Panels
FastCap 8.03 18.63 26.27 — 2736
HiCap 0.49 8.7 0.99 0.60% 2176
ICCAP 0.20 1.12 0.581 0.76% 2182
6× 6 Bus, Unit List: Time(Sec), Memory(MB)
Algorithm Time Iteration Memory Error Panels
FastCap 35.55 14.4 65.19 — 5832
HiCap 1.33 14.5 1.73 1.42% 3168
ICCAP 1.04 1.08 1.54 1.50% 3468
8× 8 Bus, Unit List: Time(Sec), Memory(MB)
Algorithm Time Iteration Memory Error Panels
FastCap 67.4 12 114.5 — 10080
HiCap 3.60 13.4 3.07 1.63% 4224
ICCAP 1.44 1.43 2.94 1.91% 4656
12× 12 Bus, Unit List: Time(Sec), Memory(MB)
Algorithm Time Iteration Memory Error Panels
FastCap 357.99 18.1 297.8 — 22032
HiCap 18.13 15.1 3.95 1.08% 6240
ICCAP 4.24 1.41 3.68 1.18% 6874

Table 1: Simulation results comparison.

pare to it explicitly. Published results show PHiCap is 2−3
times faster than HiCap for the testing benchmarks in Ta-
ble 2. Based on the comparison with HiCap, we can expect
ICCAP to be faster than PHiCap as well. Also for testing
cases in Table 2, normally ICCAP converges in less than
2 iterations while PHiCap needs about 3 iterations. Also,
the main disadvantage of PHiCap is its memory consump-
tion due to the explicit formulation of transformation ma-
trix while ICCAP directly formulates the sparse matrix P 0.
Also [3] shows that PHiCap has lower accuracy than HiCap.
So ICCAP can be superior to PHiCap in terms of memory
and accuracy.
Also we use ICCAP and HiCap to test large files contain-

ing more conductors. The result is shown in Table 2. For
these test files, ICCAP can converge within four iterations
and shows more significant speedup compared to HiCap.

Cond Num 32 36
Algorithm HiCap ICCAP HiCap ICCAP
Time 48.76 10.42 81.14 12.35

Iteration 15.8 2.58 18.6 3.26
Memory 6.79 5.93 8.58 8.17
Panels 8448 8536 9504 9658

Table 2: Comparison with HiCap for large cases.

4. CONCLUSION
This paper presents a fast 3-D capacitance extraction al-

gorithm, ICCAP. ICCAP proposes a novel technique for
sparsifying and reordering the potential coefficient matrix.
The sparse transformation is performed by simply switching
basis from leaf panels to a new set of panels. Thus cost-
efficient preconditioners can be easily constructed to greatly
speedup iterative matrix solvers.
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