Optimal Gate Sizing with Multiple Vt Assighment using
Generalized Lagrangian Relaxation

Abstract— Simultaneous gate sizing with multiple V; assignment for In general, a convex optimization problem has the form
optimal delay and power is a complicated task in modern custom designs. L
In this work, we make the key contribution of a novel gate-sizing minimize  fo(z)
and multi-V; assignment technique based on generalized Lagrangian subject to g;(z) <

0,72=1,...,m

Relaxation. Experimental results show that our technique has linear
runtime and memory usage, and can optimally tune circuits with over hi(z) =0, 1 =1

15,000 variables and 8,000 constraints in under 8 minutes (250x faster 2)
than state-of-the-art optimization solvers).

N )

wherex € R™ is an-vector of optimization variables any, g;, and
I. INTRODUCTION h; are convex objective function, convex inequality constraints, and

Transistor sizing i rucial task in modern tom desian fc(r)nvex equality constraints, respectively. An important property of
ransistor sizing 1s a crucial tas odern custo esigns 1hle convex optimization problem is that any locally optimal solution
achieving high-performance. From delay optimizatiaj [2] [3]

10 dvnamic power reductiordl. sizing olavs an important role in is also globally optimal. Essentially, this means that if one can find
y P [ 9 play P a local solution to the convex problem using any standard numerical

ZEptl(r)]gthae Z';Cl:)';:;tigeseljr'tz 51 e[;:gagceoﬁgeézﬁgr;eig r: ﬁi}g timization technique (as we do in this work), then that solution
V. assi nmenfﬂ_] [6] has alsgo become %n 2ssent'al task F;] hi ‘h o guaranteed to be the global solution as well. This is a very
¢ '9 ! in hig owerful property and is what makes posynomials an attractive form

desgns. At. present, resea_rch IS OnQO'?‘D[BJ fpr deter_mlnl_ng how for approximating characteristics such as the delay and power of a
transistor sizing can be optimally combined with miftiassignment gate

to achieve the best performance.
In this work, we make the key contribution of a novel, optimaB. Notations

timing and power gate-sizing and multi-assignment scheme. Our  The following notations will be used throughout the rest of this

technique is based on the classical theory of Lagrangian Relaxatigdper. Given a combinational circuit shown in Figitewith PI

[9] and a class of functions known as posynomidl$][ Due to  primary inputs, NG gates (excluding primary outputs), and PO

the convexity of our problem as well as the mathematically proveitimary outputs, the transistor widths af@s are the optimization

theories behind our formulations, our method is guaranteed to Yigriables to tune for minimizing some cost function, i.e. maximal

fast and accurate in finding the globally-optimal solution poingelay and total power subject to area/performance/power constraints.
Experimental results confirm the viability of our approach, as our

implemented tuning software, ‘LARTTE’, demonstrates a mere linear

runtime and memory usage, and can optimally tune circuits with over AR e P oy
15,000 variables and 8,000 constraints in under 8 minutes. This is 4
over 250x faster than SNOPTL]], a state-of-the-art optimization /%—’\N\fi ) )
solver. / L

The remainder of this paper is organized as follows. Background 7<i 5 $\>0
and posynomial modeling information are detailed in Sectiths \ % )I
andlll}, followed by the main LARTTE algorithm in Sectich/. \ }
Experimental results and concluding remarks follovMirandVI. NI } T

II. PRELIMINARIES N: auxiliary node 0: auxiliary node

In this section, we provide some background information on
posynomial functions and convex optimization problems in general.
We will also define several notations for use throughout the rest of
this paper.

Fig. 1. A combinational circuit.

The primary inputs, gates, and primary outputs are individually
referred to as a component. The output of each component is referred
A. Posynomial Functions and Convex Optimization Problems to as a node. Two additional auxiliary nodes are introduced in such
a way that one has fan-ins from all the PO primary outputs and the
other has fan-outs to all the Pl primary inputs. Every node is unique.

K e o Let N=PI+NG+PO+1. The nodes are labeled by indides . .,
flz) = A Yoy @) N in a reverse topological ordering of the circuit viewed as a
=t weighted directed acyclic graph (DAG). See Figfor illustration.
where f is a real-valued function whose domaine " is non- For0 < < N-1, leta; be the arrival time at nodg and letinput(:)
negative,c; > 0, anda;; € %. Whenk=1, f is called a monomial and output(i) be the set of node indices that connect directly
function. Therefore, a posynomial function is a sum of monomial the input(s) and output(s) of noderespectively. For example,
Posynomials have the property that they are closed under additiomput(0)={1, 2} andoutput(3)={1} for the circuit shown in Fig1
multiplication, and non-negative scaling. Let D andG be the set of primary input and gate(including primary

A posynomial [L0] function has the form



TABLE |

outputs) component indices in the circuit, respectively. For example,
MODEL FITTING ERROR MEAN AND STANDARD DEVIATION

D={4,5,6} and G={1, 2,3} for the circuit shown in Figl1l. For

1 € G, let W, be the parameter controlling the widths of all the [ Gae [ Wn | Dev. ][ Gae | Mn [ Dev. ]| Gae | Mn | Dev. ]|
1 1 InvPD -0.1 3.5 Na6TP -0.2 4.7 No4PL -2.7 6.0
NMOSs and PMOSS(adJUSted bY’)al'atIO), Vt"L and VtPi be the I:\\//PL -2.6 5.6 N:?PD -0.2 4.4 NgATP 0.1 32
NMOS and PMOS threshold voltages respectivély, be the load VTP |01 |25 || Na7PL | -0 | 18 [["No5PD | -01 | 21
. v .. Na2PD -1.2 6.5 Na7TP -0.2 4.8 No5PL -0.0 1.8
capacitance of, and s; be the output slew of. For simplicity of Na2PL | 00 | 1.6 || NaBPD | 02 | 45 || NostP | 02 | 47

p ) i p plicity

presentationg; ands; can be either the rising or the falling version. e T L e [ BT
f . . 1 Na3PL -0.0 1.8 Na9PD -0.2 4.9 No6TP -0.1 3.2
Let i, D, P‘_iy"‘”mci’ and Pleakagei denote the_5|e.W’ prOpagatlon Na3TP | -0.2 12 NadPL | -0.0 19 No7PD | -0.1 23
delay, dynamic power, and leakage power functions refspectively. Na@PD | 03 | 56 [| NaoTP [ 03 | 51 [ NoreL | 28 | G5
. Na4PL -0.! 1. No2PD -0. . No7TP -0.1 .
Finally, Let L.,, and U,,, be the lower and upper bound &V, NadTP | -02 | 45 || NozPL | 25 | 54 || NosPD | 04 | 24
respectively,L¢n, and U, be the lower and upper bound ®f,, RasPL 00|18 [ NesPD |07 |63 || NeBte |01 |0
respectively, andL.,, and U, be the lower and upper bound of Na5TP [ 02 | 47 [ No3PL | 26 | 56 || NooPD [ -01 [ 26
. z v Na6PD -0.2 4.5 No3TP -0.1 2.9 No9PL -2.8 5.5
Vip, respectively. Na6PL | -00 | 18 No4PD | 02 | 45 NogTP | -01 | 31

I1l. POSYNOMIAL DELAY AND POWER APPROXIMATIONS

The benefits of using posynomials as a form of approximation wéseir errors contained withink10%. For illustration purpose, the
described earlier in SectiditrAl In this section, we detail the processposynomial approximation we found for the propagation delay of
by which we generated accurate, posynomial characterizationsao€MOS inverter is shown below in equatidnAll other forms for
the delay and power(both dynamic and leakage) behavior of all other gates are omitted due to space limitation.
simple CMOS gates. These forms will be used in the core LARTTE
algorithm, as we will show in SectictV. 1 1
Di;(Wy,,CL,» Vin,, Vip;,s5) = (3.92¢ )V}nﬂ/;pb

1.80e~ )W, tCP?

2.14)W, *CL, Vip,

A. Posynomial Parametric Regression +(
+(

2.,2\7/0.511/0.5
+ (6.23¢*)V,, P Wy,
+(
+(

Regression analysis was performed to generate the posynomial
approximations. In other words, we tried to best fit a set of SPICE-
simulated data points to the general posynomial equation. A posyn-
omial parametric regression problem has the following form: 1.2231)\/;3;”

2 2.90e" )WV, 1V,55

X ) ) . tp;
Posyfit: minimize ey ag® ™ — by + (3.61e=5)W, 05V VS
_ g=1 2 + (1.42e71)s,05
subjectto ¢; >0, 1<j<k (3)

+LONW, O ViR V! (4)
wherex € R™ is an-vector of tunable parameters (i.e. ¥/ V;s, . . ) ) )
etc), ¢ € R* anda € R**" are the unknown characterization For the slew-related term in equ_atlat; j € _mput(z) where_
coefficients to be determined, ande R* is a k-vector of SPICE- * (D u g). Note that each |nd|_V|duaI ter_m in the _posynomlal
simulated sample data values corresponding to a particular mefifProximation may _not ha_ve any dlrec_t Phys'ca' meaning due to the
which we are trying to approximate (i.e. delay, power, etc.). nature of the multl-dlmenS|on§I curve-fitting and guessing proce_dgre.
Tablell shows the model fitting error mean and standard deviation
B. Sample Data Point Generation for the characterized gates. Prefixes Inv, Na, and No in the table
To generate the necessary data for curve-fitting, we first designeteresent Inverter, NAND, and NOR gates. Suffixes TP, PL, and PD
series of experiments such that the worst-case delay, leakage po@@pote delay, leakage power, and dynamic power respectively.
and dynamic power of all the various gates can be captured. This was
done with slew effects taken into account for the highest accuracy.
Then, for each gate, we exhaustively ran tens of thousands of SPICEVe now present the main LARTTE algorithm. Problem formula-
simulations(in 0.Lm technology) to obtain a meaningful sample ofions and theories involving optimality conditions are detailed to give
data points for use in regression analysidlIFCl insights to the superior runtime and performance of LARTTE.

IV. THE LARTTE ALGORITHM

C. Posynomial Characterizations A. Delay and Total Power Optimization: Problem Formulation

After enough sample data points have been collected, we thenrhe problem of minimizing the maximum delay and total power
used a general SQP package, CFSQ8, [to solve the parametric subject to arrival time and slew constraints can be formulated as a
regression problem for the needed coefficients ‘c’ andin equa- general, large-scale nonlinear constrained optimization problem as
tion/3. This was performed as follows. First, we guess a value for tlfiellows:
vector ‘o’ and its dimension ‘k’. Then, using that', ‘k’, and the
available SPICE-simulated sample data point vector ‘b’, we solve the
corresponding least-squares problem in equéadidor the coefficient

minimize  a1@o + a2 Peakage(Wg, Vin, Vip, s)
+ 063]3dynamic(ng Cr,Vin, Vip, 5)

vector ‘¢’ (using CFSQP). We iteratively and exhaustively repeat this subject to a; < ao, j € input(0)

procedure for different guesses of ‘and ‘k’ until we obtain a least- aj +D; <a;, i € GNVJ € input (i)
square error that is below a certain threshold level, at which point D;<a;, i€D

we will have found an accurate posynomial approximation for the T, < si, i € (DUG)

particular metric involved(i.e. delay, power, etc.). This posynomial
approximation process was performed for every relevant metric of
every simple CMOS gate (i.e. NAND, NOR, etc.) until the resulting
fitting errors for all the gates came out to have at least 90% of Lip, < Vip; < Utp;, 1€G ®)

Lu; < Wy, <Uuy, i€
Ltn,i < thi < Utmw 1€G



where a1, a2 and as are user-specified weighting factors to the Ly, \/;;il <1, thiUt;j <1l,ieg (7)
normalized maximum delayio, normalized total leakage power

Prearage, and normalized total dynamic poweymams. functions where parameters with & superscript represent those after an

respectively. a1 +as+as—=1. The weights are there to allow theexponential_ change of variables. The reason why this Iogarithmic_—
overall importance to be divided amongst the various terms based§ sforr_natlon was qone was beca_u_se_emplrlcal_ly, we found that this
application-specific conditions, i.e. the percentage of time the Cirleﬁ)[_rmulatlon resul_ted in greater stability in our tuning process than_the
spends in idling mode, etc. The weighting factors also enable trade ﬂglnal formulation, PP. The log function also couples nicely with

analysis between delay, leakage, and dynamic power to be perfor exponential function to reduce the complexity of the optimality
' ' nditions(to be shown later).

. . ... CO
easily. Wy, Vi, andV, are .vectors of tunable paramgters consstmﬁ From[, we can form the general Lagrangian functid[by
OT the parameters controlling the widths of al transistors and tra itroducing non-negative Lagrange multipliers to relax each arrival
sistor V;s respectivelyC'r, ands are vectors of load capacitance andime and slew constraint into the objective function. Simple bounds

sle';/vs. ol . b . dintoth on the transistor widths arld:s are not relaxed. For example, fpE
rom simple rearrangement, equai®oan be transformed into the . A . 0
following geometric program, which we will denoted as the primd*Put(0), let Ajo denote the multiplier for the constraihi(*Z=) <
problem @P). 0. Fori € GNVj € input(i), let )\fi denote the multipliers for the
. _ . % +D} . .. .
PP : minimize a1 + a2 Peakage (Wg, Vin, Vip, s) COﬂStralntﬁn(?) <0, and fori € (DUG) NVj € input(i),
+ @3 Paynamic(Wg,Cr, Vin, Vip, s) let \; denote the multipliers for the constrairits( T) < 0. For
. a; . . Lo e’ *
subject to i <1, j € input(0) i € D, let A/, denote the multipliers for the constraintg =) < 0.
a; + D; A o ‘ Finally, let A be the vector of all the multipliers introduced. Then,
B <1, i € GNVj € input(i) the general Lagrangian function can be written as:
T
Ds <1,ieD L(Wg,Vin,Vip,a,s,\) = a1e® + @2 Pt okage (W9, Vin, Vip, s)
Yaf + a3 Pl namic(We,CL, V"tn, Vip, s)
—<1,i€(PUg) < e
R - . + Xyl S
Lwiqu <1, ngUwi <1,i€g j€input(0) e”o ,
Lfn1‘/t;71 <1, V;tn,Ut;j <1l,i€eg N >< > )\Al ea; n D:‘ =
_1 —1 . T L
Ltp, Vtm S L Vip, Utm <L i€g ® i€G jE€input(i) ’ et
In general, PP is not in the form of a convex optimization N > =< S L
problem. However, posynomials can be readily transformed into 1e(DUG) j€input(s) I esi
convex form by the following simple exponential transformation of > D
the variablesI(]: Let = represent the vector of all tunable parameters, + A In —F
e

and transform each entry; in x to a new variabley;, wherex,; = i€D
e¥". After that,y is used to represent the vector of all new tunable 8
parameters and is thus used in the tuner. After tuning is completene | agrangian relaxation subproblem associated with a particular
the original targetsz;’s, can be easily recovered from the optimatixed Lagrange multiplier valug. (LRS/)) is then:

y;'S via exponentiation.

LRS/\: minimize £, (Wg,Vitn,Vip,a,s)
B. Generalized Lagrangian Relaxation with Logarithmic Constraint subject to Ly, Wyt <1, Wo,Ugl <1,i€G
Transformations Lin;Vipi <1, Vin, Uyt <1, i €6
From PP, after making the necessary exponential variable transfor- Lip, Vt;il <1, Vi, Ut;i <1,icg (9

mations, the next step is to make a Logarithmic transformation on the _ _ _ o
non-simple constraints by taking the natural log of both sides. SinceFrom basic theory on the Lagrangian functicd8]| it is known
the logarithmic function is monotonically increasing, this can be doriat there exists a vector value affor which the optimal solution

without affecting the final result. The newly transformed problem igf LRS/A is actually equal to the optimal solution of the original
problem,PP. Hence, if we can find thia value, then we can find the

the following:
desired optimal solution of the original problem, PP (through solving
. LRS/N).
minimize  a1e™ + a2 Pleakage(Wg, Vin, Vip, s) Before we discuss our strategy for finding the corracvalue,
+ a3 Piynamic(Wg,CrL, Vin, Vip, s) we shall first present a key part of our algorithm which is largely
0 responsible for the excellent runtime of LARTTE.
subjectto In(—) <0, j € input(0) i " )
e“g C. First-Order KKT Necessary Condition For The Lagrangian Func-
ln(e j -:*D,. )<0, i €GNYj € input(i) tion Solution
7 For a given Lagrangian function that we are interested in solving,
In ( Di )<0,ieD proven mathematical theorie$d tell us that for a particular vector
6“1 value A to be the correct, optimal solution multiplier, the first-
L order Kuhn-Karush-Tucker (KKT) necessary condition must hold.

65117 . ) Under the first-order KKT condition, the gradient of the Lagrangian
LWy, " <1, Wy, Uy, <1, 1€6 function with respect to all variable parameters must be equal to
Lin,Vigd <1, Vin,Upt <1, i€ G 0. Thatis,Vw; £2=0, Vv, £3=0, andVy, L =0for1<i<



. ALGORITHM LARTTE:
NG+PO. A|SO,V,J,;< L3=0andV,,Lx=0for1 <i < PH-NG+PO. Output: optimal gate-sizing and; allocation solution

Therefore, in trying to find out what the correct, optimal multiplief 1.k := 1 /* iteration number */

value A should be, we need only consider cases where the above A = arbitrary initial vector of constraint multipliers satisfyiriti0)
L L e . . Initialize all optimization tunable parameters
conditions are satisfied. This *filtering’ process is the key to dramatic;. soves RS/ by calling L-BFGS-B to minimizeC (Wg, Vin, Vip, a, s, A)

runtime reduction. until optimal solution found and then compuig, . . . , api+ne+pPo and
By taking V,» £,=0 andV,: £,=0 to the Lagrangian, we obtain| , 1, .’ *PIRCLPO

. : - ; ", . . 3. /* Adjust multipliers X */
the following required optimality condition on the arrival time and for i :': 0 to PFI)+NG+PO do

slew constraint multipliers: foreach; € ingut (i) do
ot Ok
A _ al AL e d if i=0
Ajo = aqe®o i * ag ', 4
ici a* " Ok
sempt(@ ) A . 2 IADT ficg
4 < )\A}C ce% ANEW . _ s e%i
Aji = et . 1€(DUG) o X Dt Ok .
jE€input(s) kzocoutput(i) € © T Dk . § Afix 2k if i € D
A S b w0k
s _ > Mg ODp A 0Ty = S I if i e (DUG)
)\Jl - a* D* 9s* + T* 9s* 7t ei
jEinput(i) k£0coutput(s) € @ T Dg 9% k i ProjectA};”" to the nearest point satisfyind@)
ap* oP* ) 4. k:=k+1
+ao leakage , dynflm267 ie(DUg) (10) 5. Goto step 2 until the cost functions P and LRS /X converge to within
OsY Os} a specified tolerance

L. . L 6. Discretize theV; solutions
Note that each line idC applies to an individual set of components 7. Solve LRS /A by calling L-BFGS-B to find the optimal solution

of A and is independent to the other lines. For example, if a particular TABLE I

vector value\™ is to be deemed a candidate for the correct, optimal LARTTE ALGORITHM.
multiplier A, then all of its outgoing PO multiplier components (from

a PO gate to the sink node 0) must sum up tevpe”o . Furthermore,

for all gates inD U G, all of their incoming multipliers (from

fan-in gates) must sum up to their outgoing multipliers multiplie. Vt Discretization and LARTTE Summary

by af‘: In considering only those values of* which satisfy Up to now, we have treated the parametéras a continuously

D: : . . .
equatiorL0 as solution candidates for the correct, optimal multiplief-naple parameter. This was done because the Lagrangian Relaxation
A, our tuning process can significantly cut down on runtime b chnique is a technique for continuously differentiable optimization

avoiding unnecessary computation involving impossibtandidates. Proplems. Obviously, this is a problem because in practice, there are
Using equatioril0, we now present our method for solving for theusually only a fixed and limited number of varying devices to

correct, optimal\ value(and consequently the optimal solution of ou?,hoos,e from(due t(()jlfabnc.atlon |ssu|es). He.nci, n ocrjdertr? rectify this
original problem as well). situation, we must discretize ol solutions in the end to the nearest

allowableV; value. For example, if we find that after tuning, one of
D. lterative Multiplier Adjustment for Determining Optimal our transistors has an optim&, solution value of 0.17V, but we
can only choose between a device with 0.2#Vand a device with
finding the desired\ vector. First, we arbitrarily pick a starting 0'16\/‘./“ then We.WO.UId d|§cr¢t|ze thls_tran5|_stoVs solution to be
) e . 0.16V instead. This discretization step is carried out at the end of the
lambda value which satisfies equatid®), For example, we started . : . . .
x tuning process for all transistors and their corresponding continuous

H H A aye®0 :
by assigning each of th&j, to be 15—, where N is the number of v solutions.

inputs to sink node 0(the number of actual primary outputs). All other o may question the validity of this ‘solve-continuous-then-

multiplier components were assigned in a similar way via revergfsoretize' heuristic, since the solution after discretization may no
topological order. After an initial\" guess was formed, we then nqer correspond to the optimal solution in the original problem.
iteratively update\” using a modified sub-gradient approach showfyqyever, as will be shown in our experimental resuilts (Sectipn

in Tablell, line 3, to form a new guess at every iteratin.is a step e gojution after discretization is actually always very close to
size value which was initialized to be 1 and gradually modified OV@he ideal, optimal solution in the original problem. This will be
iterations using a Trust-Region approads][ We continue to iterate yomonstrated to hold even when the numberVed to discretize

and make new guesses for the correct, optimal valug oftil our o5 s small (i.e 4, which was the value used in this work). Hence,
LRS/A\* value converges to that of the PP value, at which point we . strategy is justifiable and sound.

will have found our desired multipliek, which is just equal to the
A* at the stopped iteration.

We employ an iterative, modified sub-gradient methdad] [for

LARTTE has now been fully presented and is summarized in Table
II! for clarity.

E. SolvingLRS/A V. EXPERIMENTAL RESULTS

Our LARTTE algorithm terminates when the solution &8RS/ We implemented LARTTE in C/C++ and ran all our experiments
converges to that of PP. In order to do this, we must presemh a 1.0GHz P4 machine with 1.0Gb of RAM. The stopping criterion
a method for solving the unconstrained optimization problem iof LARTTE was set to whePP andLRS/\ agree to within 1.0%.
LRS/X (neglecting simple bound constraints). Since the field dfower and upper bounds of transistor widths were 2 and 1.1
unconstrained optimization is matur&3], we resort to using an um respectively. FoV;, the lower and upper bounds were 0.14V and
off-the-shelf unconstrained solver in L-BFGS-BE[ to do this. L- 0.26V.Vpp was 1.0V and a 0.1 activity factor was used. Input slew
BFGS-B implements the well-known BFGS-methdd|[ which has ranged from 30 to 15(s. For multi-V; selection, (Tabldll), the
been proven to be exceptional for handling large-scale unconstrairiedr V; values were made to be available for discretization: 0.14V,
problems with limited memory usage. The efficiency provided b§.18V, 0.22V, and 0.26V. All SPICE simulations were done in 0.1
L-BFGS-B contributes largely to the fast runtime of LARTTE. um technology with multiple Vt transistor models. We conducted our



experiments on the ISCAS85 benchmarks, where the number of gatgs
ranged from 214 to 3,512 and the total number of tunable parameters
from 654 to 15,198. Tabldll] shows the LARTTE optimization |
results.

8
T

Runtime (s)
8
T

A. Optimal Timing and Power Gate-Sizing ah@l Assignment

100 |

In Tablellll, the ‘optimize delay’ columns show the maximum
delay before and after tuning, with only timing involved in the "L/ e e
objective function ¢1=1, az=a3=0). All transistors have a nominal t Fotvaravies o0 T dotvaraes © " e
Vi value of 0.18V. After obtaining the best possible delay value
from sizing optimization alone, we then try to optimize the total @ (®)
power consumption subject to that same optimal-delay value. HenEE,' 2._ The (a) runtime and (b) storage requirements of LARTTE vs. number
the solution obtained from tuning the power consumption will bé variables.
guaranteed to have a critical path delay not exceeding the optimal
delay value shown in the ‘optimize delay’ column. For power tuningrcyit used was c432. It can be seen that any more than 4 available
the dynamic and leakage power terms were arbitrarily assigned eqpal results in minor savings.
weights (In practice, these weights should be assigned based on
application-specific conditions, such as the percentage of time the
target circuit spends in idle mode). The resulting optimized powes-
solution from tuning both the transistor widths akigs are shown ing s S soseoc]
the ‘optimize total power’ columns. This is compared to the poweroo 1 %ﬁmz,
consumption of the circuit after tuning for delay only (with nominglzm» A -
V;s). The table shows an average of over 58% total power reduction. | :
can be achieved with the same delay target using simultaneous é@gg\n
sizing and multi¥; assignment. The table also shows that LARTFE, [ 1
has a mere linear runtime and memory usage requirement (S€2 Fig. s s 20 22 e
as well). Lastly, in order to justify our strategy of first treatifg Py b g perp s
as a continuous variable, then discretizing in the end, we show the (@) (b)
leakage power consumption of the various tested circuits before and
after discretization in Tablél. As expected, the discretized solutionfig: 3. ~Dynamic power vs. delay (a) and Leakage power vs. delay (b)
is always inferior to the continuous solution. However, it can be segﬁde'c’ﬁ curves for c2670.
that the difference in leakage power consumption before and after
discretization is relatively trivial in all of the tested circuits. This
suggests that our heuristic works fairly well in practice and can result
in a solution point which is not too far from the globally optimals..|
solution. £ el

To gauge the effectiveness and runtime of LARTTE, we empllis)y

25x10" -

a state-of-the-art general-purpose large-scale convex optimization
O 3.520x10" |

solver in SNOPTI11]] to solve the same primal problem. The runtinge

Memory (MB)
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results are tabulated in Tallle, where it can be seen that our methéé‘“‘“" [ ol ]
is over 250x faster. Furthermore, we verified that our LARTTE>[ ‘ ‘ ‘ ] ST ‘ ‘ ‘
solution agreed with that from SNOPT to within 1% in all cases. *= = St teme o soe o oy avane T
Surveying the literature, we find that another previously-propose

sizing-with-Vt-assignment techniqui&{] took over 1.5 hours to tune (@ (b)

a circuit with only 5318 transistors on a Sparc 60. This is obwous‘yi _4. (a) Dynamic vs. leakage power trade-off curve for c2670 (b) Effects
much slower than LARTTE, as c¢7552 has many more compone@‘g\,ariabbvt on power reduction.

and takes only 7.2 minutes to finish with LARTTE. i8] it

was reported that their concurrent sizing-with-scheme achieves

on average 37% total power reduction, which is again inferior to V! CONCLUSION, SHORTCOMING, AND FUTURE WORK
LARTTE. Similarly, in [18], their dual V; with sizing method can In this work, we made the key contribution of a novel gate-sizing
reduce total power by 50% without any timing optimization. As wand multi¥; assignment technique using Lagrangian Relaxation. Our
have shown, LARTTE can achieve a higher power savings on tsplution is mathematically guaranteed to find the most timing and
of delay optimization. Many other work&l 9] [20] exhibit similar power-optimal solution point due to the use of accurate, convex
inferiority to LARTTE. posynomial approximations.

By simultaneously optimizing for delay, dynamic power, and Although our experimental results validate the effectiveness of
leakage power using varying weights, LARTTE can also be usedLARTTE, there is currently one shortcoming with our approach that
to explore several tradeoff relationships between delay, leakage avel would like to acknowledge. That is, in the tuning process, the
dynamic power. Fig3 shows the dynamic power versus delay angmos-to-nmos ratier was not tunable. We actually statically assigned
leakage power versus delay optimal tradeoff curves for a 12-bit ALlthis ratio for each gate based on sound heuristics involving fan-in
and Fig.4(a)shows the dynamic power versus leakage power optimebunt and gate type information. Obviously, not being able to tune
tradeoff curve for the same 12-bit ALU. In Fig(b), we show the -~ can non-trivially reduce the optimization space. The reason why
effects of varying the number df;s available for discretization. The this problem exists was because of the way we simulated our SPICE



TABLE Il

RESULTS OF OPTIMIZATION ONISCAS’85BENCHMARK CIRCUITS

Circuit # of # of # of Optimize Delay (ps) Optimize Total Power (0.1mW) Leakage Power Memory
Name | Gates | Var. Constr. [ Min. size Sizing % Sizing Sizing % Runtime (s) Speed Before After (MB)
nom.V; nom.V; nom.V; multi-V; SNOPT | LARTTE up Discretize | Discretize
c432 214 654 473 1620 1230 24.1 1.25 0.59 52.9 31 5 5.9 7.66e-6 7.67e-6 1.0
c499 514 1716 1059 1060 895 15.6 3.49 1.46 58.3 290 10 29.7 1.71e-5 1.74e-5 15
c880 383 1665 987 1070 872 185 3.41 1.35 60.4 341 42 8.1 1.90e-5 1.91e-5 15
c1355 546 1908 1227 1070 914 14.6 5.62 2.93 47.9 269 9 29.7 4.43e-5 4.47e-5 15
c1908 880 3315 1781 1500 1220 18.7 7.22 3.07 57.5 1316 57 23.0 4.21e-5 4.24e-5 2.5
c2670 | 1193 5397 2903 1860 1520 18.3 10.7 4.09 61.9 7915 107 74.0 3.93e-5 3.95e-5 3.5
c3540 | 1169 7446 3824 2170 1800 17.1 14.7 6.02 58.9 20773 222 93.6 5.44e-5 5.48e-5 4.5
c5315 | 2307 | 10656 5932 1900 1590 16.3 19.8 8.42 57.4 | 64424 330 195.2 9.28e-5 9.32e-5 6.0
c6288 | 2416 8016 5120 6070 5170 14.8 15.8 4.66 70.4 | 25326 299 84.7 1.85e-5 1.89e-5 5.0
c7552 | 3512 | 15198 8011 1520 1250 17.8 27.8 12.6 54.6 | 117067 431 271.6 1.35e-4 1.36e-4 8.5

sample data points (vector b in Sectitif-B) in the posynomial [14] H. Tennakoon and C. Sechen, “Gate sizing using lagrangian relaxation
characterization process. Due to time limitation, we had to carry out

the thousands of SPICE simulations in such a way that the static H%
assigned ratio was always inherently enforced. Hence, because ©

posynomial approximations were generated based on a fixdde
tuning process had to also abide by thisalue to preserve accuracy.[16]
We intend to correct this issue in a future work by spending more
time on the posynomial characterization process and adding in a ngY|
constraintL., < ~; < U,, for each gate i.
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