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Abstract— Simultaneous gate sizing with multipleVt assignment for
optimal delay and power is a complicated task in modern custom designs.
In this work, we make the key contribution of a novel gate-sizing
and multi-Vt assignment technique based on generalized Lagrangian
Relaxation. Experimental results show that our technique has linear
runtime and memory usage, and can optimally tune circuits with over
15,000 variables and 8,000 constraints in under 8 minutes (250x faster
than state-of-the-art optimization solvers).

I. I NTRODUCTION

Transistor sizing is a crucial task in modern custom designs for
achieving high-performance. From delay optimization [1] [2] [3]
to dynamic power reduction [4], sizing plays an important role in
shaping a circuit to meet its performance targets. In recent years,
due to the exponential surge in leakage power consumption, multi-
Vt assignment [5] [6] has also become an essential task in high-end
designs. At present, research is ongoing [7] [8] for determining how
transistor sizing can be optimally combined with multi-Vt assignment
to achieve the best performance.

In this work, we make the key contribution of a novel, optimal
timing and power gate-sizing and multi-Vt assignment scheme. Our
technique is based on the classical theory of Lagrangian Relaxation
[9] and a class of functions known as posynomials [10]. Due to
the convexity of our problem as well as the mathematically proven
theories behind our formulations, our method is guaranteed to be
fast and accurate in finding the globally-optimal solution point.
Experimental results confirm the viability of our approach, as our
implemented tuning software, ‘LARTTE’, demonstrates a mere linear
runtime and memory usage, and can optimally tune circuits with over
15,000 variables and 8,000 constraints in under 8 minutes. This is
over 250x faster than SNOPT [11], a state-of-the-art optimization
solver.

The remainder of this paper is organized as follows. Background
and posynomial modeling information are detailed in SectionsII
and III , followed by the main LARTTE algorithm in SectionIV.
Experimental results and concluding remarks follow inV andVI .

II. PRELIMINARIES

In this section, we provide some background information on
posynomial functions and convex optimization problems in general.
We will also define several notations for use throughout the rest of
this paper.

A. Posynomial Functions and Convex Optimization Problems

A posynomial [10] function has the form

f(x) =
kX

j=1

cjx
α1j

1 x
α2j

2 . . . x
αnj
n (1)

where f is a real-valued function whose domainx ∈ <n is non-
negative,cj ≥ 0, andαij ∈ <. Whenk=1, f is called a monomial
function. Therefore, a posynomial function is a sum of monomials.
Posynomials have the property that they are closed under addition,
multiplication, and non-negative scaling.

In general, a convex optimization problem has the form

minimize f0(x)

subject to gi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , n

(2)

wherex ∈ <n is an-vector of optimization variables andf0, gi, and
hi are convex objective function, convex inequality constraints, and
convex equality constraints, respectively. An important property of
the convex optimization problem is that any locally optimal solution
is also globally optimal. Essentially, this means that if one can find
a local solution to the convex problem using any standard numerical
optimization technique (as we do in this work), then that solution
is guaranteed to be the global solution as well. This is a very
powerful property and is what makes posynomials an attractive form
for approximating characteristics such as the delay and power of a
gate.

B. Notations

The following notations will be used throughout the rest of this
paper. Given a combinational circuit shown in Figure1 with PI
primary inputs, NG gates (excluding primary outputs), and PO
primary outputs, the transistor widths andVts are the optimization
variables to tune for minimizing some cost function, i.e. maximal
delay and total power subject to area/performance/power constraints.
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Fig. 1. A combinational circuit.

The primary inputs, gates, and primary outputs are individually
referred to as a component. The output of each component is referred
to as a node. Two additional auxiliary nodes are introduced in such
a way that one has fan-ins from all the PO primary outputs and the
other has fan-outs to all the PI primary inputs. Every node is unique.

Let N=PI+NG+PO+1. The nodes are labeled by indices0, . . . ,
N in a reverse topological ordering of the circuit viewed as a
weighted directed acyclic graph (DAG). See Fig.1 for illustration.
For 0 ≤ i ≤ N-1, letai be the arrival time at nodei, and letinput(i)
and output(i) be the set of node indices that connect directly
to the input(s) and output(s) of nodei respectively. For example,
input(0)={1, 2} andoutput(3)={1} for the circuit shown in Fig.1.
Let D andG be the set of primary input and gate(including primary



outputs) component indices in the circuit, respectively. For example,
D={4, 5, 6} and G={1, 2, 3} for the circuit shown in Fig.1. For
i ∈ G, let Wgi be the parameter controlling the widths of all the
NMOSs and PMOSs(adjusted by aγ ratio), Vtni and Vtpi

be the
NMOS and PMOS threshold voltages respectively,CLi be the load
capacitance ofi, and si be the output slew ofi. For simplicity of
presentation,ai andsi can be either the rising or the falling version.
Let Ti, Di, Pdynamici

, andPleakagei
denote the slew, propagation

delay, dynamic power, and leakage power functions ofi respectively.
Finally, Let Lwi and Uwi be the lower and upper bound ofWgi

respectively,Ltni and Utni be the lower and upper bound ofVtni

respectively, andLtpi
and Utpi

be the lower and upper bound of
Vtpi

respectively.

III. POSYNOMIAL DELAY AND POWER APPROXIMATIONS

The benefits of using posynomials as a form of approximation was
described earlier in SectionII-A . In this section, we detail the process
by which we generated accurate, posynomial characterizations of
the delay and power(both dynamic and leakage) behavior of all
simple CMOS gates. These forms will be used in the core LARTTE
algorithm, as we will show in SectionIV.

A. Posynomial Parametric Regression

Regression analysis was performed to generate the posynomial
approximations. In other words, we tried to best fit a set of SPICE-
simulated data points to the general posynomial equation. A posyn-
omial parametric regression problem has the following form:

Posyfit: minimize
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subject to cj ≥ 0, 1 ≤ j ≤ k (3)

wherex ∈ <n is a n-vector of tunable parameters (i.e. Wgs, Vts,
etc.), c ∈ <k and α ∈ <k×n are the unknown characterization
coefficients to be determined, andb ∈ <k is a k-vector of SPICE-
simulated sample data values corresponding to a particular metric
which we are trying to approximate (i.e. delay, power, etc.).

B. Sample Data Point Generation

To generate the necessary data for curve-fitting, we first designed a
series of experiments such that the worst-case delay, leakage power,
and dynamic power of all the various gates can be captured. This was
done with slew effects taken into account for the highest accuracy.
Then, for each gate, we exhaustively ran tens of thousands of SPICE
simulations(in 0.1µm technology) to obtain a meaningful sample of
data points for use in regression analysis inIII-C.

C. Posynomial Characterizations

After enough sample data points have been collected, we then
used a general SQP package, CFSQP [12], to solve the parametric
regression problem for the needed coefficients ‘c’ and ‘α’ in equa-
tion 3. This was performed as follows. First, we guess a value for the
vector ‘α’ and its dimension ‘k’. Then, using that ‘α’, ‘k’, and the
available SPICE-simulated sample data point vector ‘b’, we solve the
corresponding least-squares problem in equation3 for the coefficient
vector ‘c’ (using CFSQP). We iteratively and exhaustively repeat this
procedure for different guesses of ‘α’ and ‘k’ until we obtain a least-
square error that is below a certain threshold level, at which point
we will have found an accurate posynomial approximation for the
particular metric involved(i.e. delay, power, etc.). This posynomial
approximation process was performed for every relevant metric of
every simple CMOS gate (i.e. NAND, NOR, etc.) until the resulting
fitting errors for all the gates came out to have at least 90% of

TABLE I
MODEL FITTING ERROR MEAN AND STANDARD DEVIATION

Gate Mn. Dev. Gate Mn. Dev. Gate Mn. Dev.

InvPD -0.1 3.5 Na6TP -0.2 4.7 No4PL -2.7 6.0
InvPL -2.6 5.6 Na7PD -0.2 4.4 No4TP -0.1 3.2
InvTP -0.1 2.5 Na7PL -0.1 1.8 No5PD -0.1 2.1
Na2PD -1.2 6.5 Na7TP -0.2 4.8 No5PL -0.0 1.8
Na2PL -0.0 1.6 Na8PD -0.2 4.5 No5TP -0.2 4.7
Na2TP -0.1 3.4 Na8PL -0.0 1.8 No6PD -0.1 2.2
Na3PD -0.4 6.7 Na8TP -0.3 4.9 No6PL -2.7 6.1
Na3PL -0.0 1.8 Na9PD -0.2 4.9 No6TP -0.1 3.2
Na3TP -0.2 4.2 Na9PL -0.0 1.9 No7PD -0.1 2.3
Na4PD -0.3 5.6 Na9TP -0.3 5.1 No7PL -2.8 6.5
Na4PL -0.0 1.8 No2PD -0.8 6.6 No7TP -0.1 3.0
Na4TP -0.2 4.5 No2PL -2.5 5.4 No8PD -0.1 2.4
Na5PD -0.2 4.9 No2TP -0.1 3.2 No8PL -2.8 5.6
Na5PL -0.0 1.8 No3PD -0.7 6.3 No8TP -0.1 3.0
Na5TP -0.2 4.7 No3PL -2.6 5.6 No9PD -0.1 2.6
Na6PD -0.2 4.5 No3TP -0.1 2.9 No9PL -2.8 5.5
Na6PL -0.0 1.8 No4PD -0.2 4.5 No9TP -0.1 3.1

their errors contained within±10%. For illustration purpose, the
posynomial approximation we found for the propagation delay of
a CMOS inverter is shown below in equation4. All other forms for
all other gates are omitted due to space limitation.
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For the slew-related term in equation4, j ∈ input(i) where
i ∈ (D ∪ G). Note that each individual term in the posynomial
approximation may not have any direct physical meaning due to the
nature of the multi-dimensional curve-fitting and guessing procedure.

TableI shows the model fitting error mean and standard deviation
for the characterized gates. Prefixes Inv, Na, and No in the table
represent Inverter, NAND, and NOR gates. Suffixes TP, PL, and PD
denote delay, leakage power, and dynamic power respectively.

IV. T HE LARTTE ALGORITHM

We now present the main LARTTE algorithm. Problem formula-
tions and theories involving optimality conditions are detailed to give
insights to the superior runtime and performance of LARTTE.

A. Delay and Total Power Optimization: Problem Formulation

The problem of minimizing the maximum delay and total power
subject to arrival time and slew constraints can be formulated as a
general, large-scale nonlinear constrained optimization problem as
follows:

minimize α1ā0 + α2P̄leakage(Wg, V tn, V tp, s)

+ α3P̄dynamic(Wg, CL, V tn, V tp, s)

subject to aj ≤ a0, j ∈ input(0)

aj + Di ≤ ai, i ∈ G ∩ ∀j ∈ input(i)

Di ≤ ai, i ∈ D
Ti ≤ si, i ∈ (D ∪ G)

Lwi ≤ Wgi ≤ Uwi , i ∈ G
Ltni ≤ Vtni ≤ Utni , i ∈ G
Ltpi

≤ Vtpi
≤ Utpi

, i ∈ G (5)



where α1, α2 and α3 are user-specified weighting factors to the
normalized maximum delaȳa0, normalized total leakage power
P̄leakage, and normalized total dynamic power̄Pdynamic functions
respectively.α1+α2+α3=1. The weights are there to allow the
overall importance to be divided amongst the various terms based on
application-specific conditions, i.e. the percentage of time the circuit
spends in idling mode, etc. The weighting factors also enable tradeoff
analysis between delay, leakage, and dynamic power to be performed
easily.Wg, Vtn andVtp are vectors of tunable parameters consisting
of the parameters controlling the widths of all transistors and tran-
sistorVts respectively.CL ands are vectors of load capacitance and
slews.

From simple rearrangement, equation5 can be transformed into the
following geometric program, which we will denoted as the primal
problem (PP).

PP : minimize α1ā0 + α2P̄leakage(Wg, V tn, V tp, s)

+ α3P̄dynamic(Wg, CL, V tn, V tp, s)

subject to
aj

a0
≤ 1, j ∈ input(0)

aj + Di

ai
≤ 1, i ∈ G ∩ ∀j ∈ input(i)

Di
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≤ 1, i ∈ D

Ti
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U−1

tpi
≤ 1, i ∈ G (6)

In general,PP is not in the form of a convex optimization
problem. However, posynomials can be readily transformed into
convex form by the following simple exponential transformation of
the variables [10]: Let x represent the vector of all tunable parameters,
and transform each entryxi in x to a new variableyi, wherexi =
eyi . After that, y is used to represent the vector of all new tunable
parameters and is thus used in the tuner. After tuning is complete,
the original targets,xi’s, can be easily recovered from the optimal
yi’s via exponentiation.

B. Generalized Lagrangian Relaxation with Logarithmic Constraint
Transformations

From PP, after making the necessary exponential variable transfor-
mations, the next step is to make a Logarithmic transformation on the
non-simple constraints by taking the natural log of both sides. Since
the logarithmic function is monotonically increasing, this can be done
without affecting the final result. The newly transformed problem is
the following:

minimize α1e
a∗0 + α2P

∗
leakage(Wg, V tn, V tp, s)

+ α3P
∗
dynamic(Wg, CL, V tn, V tp, s)
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where parameters with a∗ superscript represent those after an
exponential change of variables. The reason why this logarithmic-
transformation was done was because empirically, we found that this
formulation resulted in greater stability in our tuning process than the
original formulation, PP. The log function also couples nicely with
the exponential function to reduce the complexity of the optimality
conditions(to be shown later).

From 7, we can form the general Lagrangian function [13] by
introducing non-negative Lagrange multipliers to relax each arrival
time and slew constraint into the objective function. Simple bounds
on the transistor widths andVts are not relaxed. For example, forj ∈
input(0), let λA

j0 denote the multiplier for the constraintln( e
a∗j

e
a∗0

) ≤
0. For i ∈ G ∩ ∀j ∈ input(i), let λA

ji denote the multipliers for the

constraintsln( e
a∗j +D∗i

e
a∗

i
) ≤ 0, and for i ∈ (D ∪ G) ∩ ∀j ∈ input(i),

let λS
ji denote the multipliers for the constraintsln( T∗i

e
s∗

i
) ≤ 0. For

i ∈ D, let λA
mi denote the multipliers for the constraintsln( D∗i

e
a∗

i
) ≤ 0.

Finally, let λ be the vector of all the multipliers introduced. Then,
the general Lagrangian function can be written as:

L(Wg, V tn, V tp, a, s, λ) = α1ea∗0 + α2P ∗leakage(Wg, V tn, V tp, s)

+ α3P ∗dynamic(Wg, CL, V tn, V tp, s)

+
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The Lagrangian relaxation subproblem associated with a particular
fixed Lagrange multiplier valueλ (LRS/λ) is then:

LRS/λ : minimize Lλ(Wg, V tn, V tp, a, s)

subject to LwiW
−1
gi

≤ 1, WgiU
−1
wi

≤ 1, i ∈ G
LtniV

−1
tni

≤ 1, VtniU
−1
tni

≤ 1, i ∈ G
Ltpi

V −1
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≤ 1, Vtpi
U−1

tpi
≤ 1, i ∈ G (9)

From basic theory on the Lagrangian function [13], it is known
that there exists a vector value ofλ for which the optimal solution
of LRS/λ is actually equal to the optimal solution of the original
problem,PP . Hence, if we can find thisλ value, then we can find the
desired optimal solution of the original problem, PP (through solving
LRS/λ).

Before we discuss our strategy for finding the correctλ value,
we shall first present a key part of our algorithm which is largely
responsible for the excellent runtime of LARTTE.

C. First-Order KKT Necessary Condition For The Lagrangian Func-
tion Solution

For a given Lagrangian function that we are interested in solving,
proven mathematical theories [13] tell us that for a particular vector
value λ to be the correct, optimal solution multiplier, the first-
order Kuhn-Karush-Tucker (KKT) necessary condition must hold.
Under the first-order KKT condition, the gradient of the Lagrangian
function with respect to all variable parameters must be equal to
0. That is,∇W∗

gi
Lλ=0, ∇V ∗tni

Lλ=0, and∇V ∗tpi
Lλ=0 for 1 ≤ i ≤



NG+PO. Also,∇a∗i Lλ=0 and∇s∗i Lλ=0 for 1 ≤ i ≤ PI+NG+PO.
Therefore, in trying to find out what the correct, optimal multiplier
value λ should be, we need only consider cases where the above
conditions are satisfied. This ‘filtering’ process is the key to dramatic
runtime reduction.

By taking∇a∗i Lλ=0 and∇s∗i Lλ=0 to the Lagrangian, we obtain
the following required optimality condition on the arrival time and
slew constraint multipliers:
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, i ∈ (D ∪ G) (10)

Note that each line in10 applies to an individual set of components
of λ and is independent to the other lines. For example, if a particular
vector valueλ∗ is to be deemed a candidate for the correct, optimal
multiplier λ, then all of its outgoing PO multiplier components (from
a PO gate to the sink node 0) must sum up to beα1e

a∗0 . Furthermore,
for all gates inD ∪ G, all of their incoming multipliers (from
fan-in gates) must sum up to their outgoing multipliers multiplied

by ea∗i
e

a∗
i +D∗

k

. In considering only those values ofλ∗ which satisfy

equation10 as solution candidates for the correct, optimal multiplier
λ, our tuning process can significantly cut down on runtime by
avoiding unnecessary computation involving impossibleλ candidates.

Using equation10, we now present our method for solving for the
correct, optimalλ value(and consequently the optimal solution of our
original problem as well).

D. Iterative Multiplier Adjustment for Determining Optimalλ

We employ an iterative, modified sub-gradient method [14] for
finding the desiredλ vector. First, we arbitrarily pick a starting
lambda value which satisfies equation (10). For example, we started

by assigning each of theλA
j0 to be α1ea∗0

N
, where N is the number of

inputs to sink node 0(the number of actual primary outputs). All other
multiplier components were assigned in a similar way via reverse
topological order. After an initialλ∗ guess was formed, we then
iteratively updateλ∗ using a modified sub-gradient approach shown
in TableII , line 3, to form a new guess at every iteration.θk is a step
size value which was initialized to be 1 and gradually modified over
iterations using a Trust-Region approach [15]. We continue to iterate
and make new guesses for the correct, optimal value ofλ until our
LRS/λ∗ value converges to that of the PP value, at which point we
will have found our desired multiplierλ, which is just equal to the
λ∗ at the stopped iteration.

E. SolvingLRS/λ

Our LARTTE algorithm terminates when the solution ofLRS/λ
converges to that of PP. In order to do this, we must present
a method for solving the unconstrained optimization problem in
LRS/λ (neglecting simple bound constraints). Since the field of
unconstrained optimization is mature [13], we resort to using an
off-the-shelf unconstrained solver in L-BFGS-B [16] to do this. L-
BFGS-B implements the well-known BFGS-method [13], which has
been proven to be exceptional for handling large-scale unconstrained
problems with limited memory usage. The efficiency provided by
L-BFGS-B contributes largely to the fast runtime of LARTTE.

ALGORITHM LARTTE:
Output : optimal gate-sizing andVt allocation solution
1. k := 1 /* iteration number */

λ := arbitrary initial vector of constraint multipliers satisfying (10)
Initialize all optimization tunable parameters

2. SolveLRS/λ by calling L-BFGS-B to minimizeLλ(Wg, V tn, V tp, a, s, λ)
until optimal solution found and then computea1, . . . , aPI+NG+PO and
s1, . . . , sPI+NG+PO

3. /* Adjust multipliersλ */
for i := 0 to PI+NG+PO do

foreachj ∈ input(i) do

λNEW
ji :=

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

λA
ji ∗

�
e

a∗j
e

a∗0

�θk

if i = 0

λA
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if i ∈ G
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i

�θk
if i ∈ D

λS
ji ∗

�
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e

s∗
i

�θk
if i ∈ (D ∪ G)

ProjectλNEW
ji to the nearest point satisfying (10)

4. k := k + 1
5. Goto step 2 until the cost functions ofPP andLRS/λ converge to within

a specified tolerance
6. Discretize theVt solutions
7. SolveLRS/λ by calling L-BFGS-B to find the optimal solution

TABLE II
LARTTE ALGORITHM .

F. Vt Discretization and LARTTE Summary

Up to now, we have treated the parameterVt as a continuously
tunable parameter. This was done because the Lagrangian Relaxation
technique is a technique for continuously differentiable optimization
problems. Obviously, this is a problem because in practice, there are
usually only a fixed and limited number of varyingVt devices to
choose from(due to fabrication issues). Hence, in order to rectify this
situation, we must discretize ourVt solutions in the end to the nearest
allowableVt value. For example, if we find that after tuning, one of
our transistors has an optimalVt solution value of 0.17V, but we
can only choose between a device with 0.24VVt and a device with
0.16V Vt, then we would discretize this transistor’sVt solution to be
0.16V instead. This discretization step is carried out at the end of the
tuning process for all transistors and their corresponding continuous
Vt solutions.

One may question the validity of this ‘solve-continuous-then-
discretize’ heuristic, since the solution after discretization may no
longer correspond to the optimal solution in the original problem.
However, as will be shown in our experimental results (SectionV),
the solution after discretization is actually always very close to
the ideal, optimal solution in the original problem. This will be
demonstrated to hold even when the number ofVts to discretize
from is small (i.e 4, which was the value used in this work). Hence,
our strategy is justifiable and sound.

LARTTE has now been fully presented and is summarized in Table
II for clarity.

V. EXPERIMENTAL RESULTS

We implemented LARTTE in C/C++ and ran all our experiments
on a 1.0GHz P4 machine with 1.0Gb of RAM. The stopping criterion
of LARTTE was set to whenPP andLRS/λ agree to within 1.0%.
Lower and upper bounds of transistor widths were 0.2µm and 1.1
µm respectively. ForVt, the lower and upper bounds were 0.14V and
0.26V. VDD was 1.0V and a 0.1 activity factor was used. Input slew
ranged from 30 to 150ps. For multi-Vt selection, (TableIII ), the
four Vt values were made to be available for discretization: 0.14V,
0.18V, 0.22V, and 0.26V. All SPICE simulations were done in 0.1
µm technology with multiple Vt transistor models. We conducted our



experiments on the ISCAS85 benchmarks, where the number of gates
ranged from 214 to 3,512 and the total number of tunable parameters
from 654 to 15,198. TableIII shows the LARTTE optimization
results.

A. Optimal Timing and Power Gate-Sizing andVt Assignment

In Table III , the ‘optimize delay’ columns show the maximum
delay before and after tuning, with only timing involved in the
objective function (α1=1, α2=α3=0). All transistors have a nominal
Vt value of 0.18V. After obtaining the best possible delay value
from sizing optimization alone, we then try to optimize the total
power consumption subject to that same optimal-delay value. Hence,
the solution obtained from tuning the power consumption will be
guaranteed to have a critical path delay not exceeding the optimal
delay value shown in the ‘optimize delay’ column. For power tuning,
the dynamic and leakage power terms were arbitrarily assigned equal
weights (In practice, these weights should be assigned based on
application-specific conditions, such as the percentage of time the
target circuit spends in idle mode). The resulting optimized power
solution from tuning both the transistor widths andVts are shown in
the ‘optimize total power’ columns. This is compared to the power
consumption of the circuit after tuning for delay only (with nominal
Vts). The table shows an average of over 58% total power reduction
can be achieved with the same delay target using simultaneous gate-
sizing and multi-Vt assignment. The table also shows that LARTTE
has a mere linear runtime and memory usage requirement (see Fig.2
as well). Lastly, in order to justify our strategy of first treatingVt

as a continuous variable, then discretizing in the end, we show the
leakage power consumption of the various tested circuits before and
after discretization in TableIII . As expected, the discretized solution
is always inferior to the continuous solution. However, it can be seen
that the difference in leakage power consumption before and after
discretization is relatively trivial in all of the tested circuits. This
suggests that our heuristic works fairly well in practice and can result
in a solution point which is not too far from the globally optimal
solution.

To gauge the effectiveness and runtime of LARTTE, we employ
a state-of-the-art general-purpose large-scale convex optimization
solver in SNOPT [11] to solve the same primal problem. The runtime
results are tabulated in TableIII , where it can be seen that our method
is over 250x faster. Furthermore, we verified that our LARTTE
solution agreed with that from SNOPT to within 1% in all cases.
Surveying the literature, we find that another previously-propose
sizing-with-Vt-assignment technique [17] took over 1.5 hours to tune
a circuit with only 5318 transistors on a Sparc 60. This is obviously
much slower than LARTTE, as c7552 has many more components
and takes only 7.2 minutes to finish with LARTTE. In [8], it
was reported that their concurrent sizing-with-Vt scheme achieves
on average 37% total power reduction, which is again inferior to
LARTTE. Similarly, in [18], their dual Vt with sizing method can
reduce total power by 50% without any timing optimization. As we
have shown, LARTTE can achieve a higher power savings on top
of delay optimization. Many other works [19] [20] exhibit similar
inferiority to LARTTE.

By simultaneously optimizing for delay, dynamic power, and
leakage power using varyingα weights, LARTTE can also be used
to explore several tradeoff relationships between delay, leakage and
dynamic power. Fig.3 shows the dynamic power versus delay and
leakage power versus delay optimal tradeoff curves for a 12-bit ALU,
and Fig.4(a)shows the dynamic power versus leakage power optimal
tradeoff curve for the same 12-bit ALU. In Fig.4(b), we show the
effects of varying the number ofVts available for discretization. The
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Fig. 2. The (a) runtime and (b) storage requirements of LARTTE vs. number
of variables.

circuit used was c432. It can be seen that any more than 4 available
Vts results in minor savings.
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Fig. 3. Dynamic power vs. delay (a) and Leakage power vs. delay (b)
trade-off curves for c2670.
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Fig. 4. (a) Dynamic vs. leakage power trade-off curve for c2670 (b) Effects
of variableVt on power reduction.

VI. CONCLUSION, SHORTCOMING, AND FUTURE WORK

In this work, we made the key contribution of a novel gate-sizing
and multi-Vt assignment technique using Lagrangian Relaxation. Our
solution is mathematically guaranteed to find the most timing and
power-optimal solution point due to the use of accurate, convex
posynomial approximations.

Although our experimental results validate the effectiveness of
LARTTE, there is currently one shortcoming with our approach that
we would like to acknowledge. That is, in the tuning process, the
pmos-to-nmos ratioγ was not tunable. We actually statically assigned
this ratio for each gate based on sound heuristics involving fan-in
count and gate type information. Obviously, not being able to tune
γ can non-trivially reduce the optimization space. The reason why
this problem exists was because of the way we simulated our SPICE



TABLE III
RESULTS OF OPTIMIZATION ONISCAS’85 BENCHMARK CIRCUITS

Circuit # of # of # of Optimize Delay (ps) Optimize Total Power (0.1mW) Leakage Power Memory
Name Gates Var. Constr. Min. size Sizing % Sizing Sizing % Runtime (s) Speed Before After (MB)

nom.-Vt nom.-Vt nom.-Vt multi-Vt SNOPT LARTTE up Discretize Discretize
c432 214 654 473 1620 1230 24.1 1.25 0.59 52.9 31 5 5.9 7.66e-6 7.67e-6 1.0
c499 514 1716 1059 1060 895 15.6 3.49 1.46 58.3 290 10 29.7 1.71e-5 1.74e-5 1.5
c880 383 1665 987 1070 872 18.5 3.41 1.35 60.4 341 42 8.1 1.90e-5 1.91e-5 1.5
c1355 546 1908 1227 1070 914 14.6 5.62 2.93 47.9 269 9 29.7 4.43e-5 4.47e-5 1.5
c1908 880 3315 1781 1500 1220 18.7 7.22 3.07 57.5 1316 57 23.0 4.21e-5 4.24e-5 2.5
c2670 1193 5397 2903 1860 1520 18.3 10.7 4.09 61.9 7915 107 74.0 3.93e-5 3.95e-5 3.5
c3540 1169 7446 3824 2170 1800 17.1 14.7 6.02 58.9 20773 222 93.6 5.44e-5 5.48e-5 4.5
c5315 2307 10656 5932 1900 1590 16.3 19.8 8.42 57.4 64424 330 195.2 9.28e-5 9.32e-5 6.0
c6288 2416 8016 5120 6070 5170 14.8 15.8 4.66 70.4 25326 299 84.7 1.85e-5 1.89e-5 5.0
c7552 3512 15198 8011 1520 1250 17.8 27.8 12.6 54.6 117067 431 271.6 1.35e-4 1.36e-4 8.5

sample data points (vector b in SectionIII-B ) in the posynomial
characterization process. Due to time limitation, we had to carry out
the thousands of SPICE simulations in such a way that the statically
assigned ratio was always inherently enforced. Hence, because our
posynomial approximations were generated based on a fixedγ, the
tuning process had to also abide by thisγ value to preserve accuracy.
We intend to correct this issue in a future work by spending more
time on the posynomial characterization process and adding in a new
constraintLγi ≤ γi ≤ Uγi for each gate i.
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