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Abstract— Frequency dependent interconnect analysis is chal-
lenging since lumped equivalent circuit models extracted at
different frequencies exhibit distinct time and frequencydomain
responses, and consequently, the analysis of a single equivalent
circuit is inapplicable to evaluate the interconnect behavior at
other frequencies. In this paper, we present a wide frequency
range interconnect extraction and analysis methodology. First,
an improved reluctance-based extraction algorithm is proposed
to generate compact interconnect models at some sample fre-
quencies. Then, DLSCF (Discrete Least Square Curve Fitting)
techniques are employed to produce approximation polynomi-
als to calculate parasitics at other frequencies. Finally,after
transferring those approximation polynomials into power series
of s and substituting them into the MNA (Modified Nodal
Analysis) formula, we develop and apply the WIFRIM (Wide
Frequency Range Interconnect Moment Matching) algorithm to
calculate moments of arbitrary orders. Since WIFRIM only needs
to decompose a sparse conductance matrix once, it results in
significant speedup while providing accuracy within 1% error.

I. I NTRODUCTION

The irrepressible march toward smaller integrated circuit
and faster operation frequency has made accurate and efficient
analysis of on-chip interconnects a critical issue for guar-
anteeing signal integrity and satisfying design specifications.
However, the increasing visibility of high frequency effects,
such as skin effect, proximity effect, and substrate effect,
leads to inherently frequency dependent interconnect models.
Those lumped equivalent circuit models extracted at different
frequencies may exhibit distinct time and frequency domainre-
sponses. Apparently, it is impractical to perform extraction and
simulation at every frequency within a wide frequency range
of interest. Therefore, how to efficiently analyze frequency
dependent interconnects has become one of the designer’s high
priority concerns.

One difficulty of constructing interconnect models is to
capture the long-range inductive effects. Reluctance-based
methods [1]–[4] have been proved to be accurate and efficient.
Those methods benefit from the great locality and shielding ef-
fect of reluctance, and hence lead to superior sparse reluctance
matrices compared to the traditional PEEC-based methods [5],
[6]. Furthermore, the reluctance matrix is stable and positive
diagonal dominant, which makes it even more attractive for
circuit simulation.

Most existing inductance and reluctance extraction algo-
rithms utilize static formulae to calculate inductance values.
One prerequisite of applying those formulae is that the cur-
rent density along a conductor segment is evenly distributed.
However, as frequency grows over1gHz, the skin depth
of a conductor segment varies from1µm to 20µm, while
its width may far exceed the skin depth, especially for
global interconnects within the upper metal layers. There-
fore, conductor segments are necessarily discretized intomore
delicate filaments and currents within those thin filaments
are assumed uniform. Although discretization captures non-
uniformly distributed currents, it also increases the model size
dramatically. Furthermore, different frequencies give rise to
different discretization schemes, and hence result in various
equivalent circuit models.

Simulating those interconnect models is even more arduous
due to their astounding sizes. Moment matching techniques
[7]–[9] have been extensively studied to evaluate interconnect
systems in the past decade. However, existing moment match-
ing methods are applicable when lumped RLKC circuits are
invariant and independent of frequency. Therefore, the whole
frequency domain spectrum can only be obtained by extracting
and simulating different frequency dependent models many
times, since the simulation result of one model is exclusively
valid for the particular frequency at which it is extracted.

Unsatisfied with those existing interconnect modeling and
simulation problems, this paper proposes an efficient method-
ology to generate interconnect models and perform frequency
dependent interconnect analysis. Our contributions in this
paper are as follows: (1) we device a new reluctance extraction
algorithm with simultaneous parallel filaments reduction.This
method can generate compact circuit models without incurring
additional computation time and sacrificing any accuracy; (2)
we propose to simply extract circuit models at several sample
frequencies and then apply DLSCF to obtain approxima-
tion polynomials to calculate parasitics at other frequencies.
Advanced discrete curve fitting techniques are employed to
solve numerical problems while guaranteeing the convergence.
The comparison with state-of-the-art extraction tools, such as
SonnetR©, shows that approximation polynomials of a reason-
able order provide sufficient accuracy within0.1% error; (3)
we derive and apply WIFRIM algorithm to calculate moments



of arbitrary orders with the consideration of model variation
at different frequencies. The obtained moments therefore can
be used to evaluate the interconnect behavior within a wide
frequency range.

We have clearly supported the motivation for the new
methodology. The discussion proceeds (Section II) with de-
scribing the details of the WIFRIM algorithm. Section III
presents the new extraction algorithm and DLSCF techniques.
Meaningful experimental results (Section IV) and a summary
of our work (Section V) conclude this paper.

II. W IDE FREQUENCYRANGE MOMENT MATCHING

In the introduction section, we have presented the outline
of our interconnect analysis methodology:

• Extract parasitics at selected sample frequencies;
• Generate approximation polynomials by using DLSCF;
• Apply the WIFRIM algorithm to calculate moments.

Since the ultimate goal of interconnect analysis is to guarantee
that it satisfies the design specifications by examining its time
and frequency characteristics, the WIFRIM algorithm will be
introduced before presenting other techniques.

Parasitic matrices for a given interconnect system are es-
sentially frequency dependent. Assume for now that those
parasitic matrices, including the conductance matrixG, the
capacitance matrixC, the reluctance matrixK, and the induc-
tance matrixL, can be represented in power series ofs

G(s) =
MX

i=0

Gis
i, C(s) =

MX
i=0

Cis
i,

K(s) =
MX

i=0

Kis
i, L(s) =

MX
i=0

Lis
i. (1)

Parasitic matrices at a particular frequencyω = 2πf can be
produced by simply substitutings = jω into (1). How to
express thos parasitic matrices in approximation polynomials
will be discussed in Section III.

A. WIFRIM for Extracting Inductance
In the case that inductances are extracted for a general

interconnect system, the equivalent circuit can be represented
in terms of MNA equations in the Laplace domain as� �
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whereG and C contain the stampings of conductances and
capacitances respectively.Al and Ai represent the adjacency
matrices of inductances and independent current sources.Vn

andIl denote node voltages and inductance current variables.
L is the dense inductance matrix containing self and mutual
inductance information.

Based on the assumption that parasitic matricesG, C, and
L can be expressed in power series ofs as shown in (1), it
is obvious that the stamping conductance matrixG and the
stamping capacitance matrixC in (2) can also be represented
in power series ofs

G =
MX

k=0

Gksk, C =
MX

k=0

Cksk, (3)

where

Gk = AT
g GkAg, Ck = AT

c CkAc. (4)

Ag andAc denote the adjacency matrices of conductances and
capacitances, respectively.

To illustrate the idea of the new moment matching method,
we expand both sides of (2) into Taylor series around zero
frequencys = 0 and by using (3), we get� �
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where mv
k, mi

k and uk, the coefficients of thekth term in
the Taylor series, are known as thekth moment ofVn, Il

andIs respectively. The basic idea of moment matching is to
represent the finite unknown moments of the left hand side
of the above equation in terms of the known moments of the
right hand side, and use the obtained moments to approximate
the whole frequency domain spectrum of a circuit.

Rearranging the terms on the left hand side in the above
equation gives:
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By matching the coefficients ofs in (5), the WIFRIM algo-
rithm can be expressed by the following equations
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• whenk > M + 1,
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It can be seen that WIFRIM only needs to decompose the
sparse matrixPL
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once and the high-order

moments only depend on lower-order ones, and hence can be
generated iteratively.

B. WIFRIM for Extracting Reluctance
Due to its sparsity and stability, reluctance has been adopted

as an efficient method to model inductance effects. The MNA
equations for reluctance is similar to (2) and the only change
is thatL is replaced byK−1� �
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The reluctance matrixK is much sparse compared with the
inductance matrixL and can be obtained by a new extraction
algorithm given in the next section.



To take the full advantage of the sparsity ofK, we multiply
both sides of (10) by

"
I 0
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#
and get� �
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Similarly, by substituting (3) into (11) and expanding the input
vector and the MNA variable vector into Taylor series about
s = 0, we get� �
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Rearranging the terms on the left hand side in (12) gives
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By matching the coefficients ofs in (13), the WIFRIM
algorithm of reluctance can be obtained as follows
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It is clear that the WIFRIM algorithm for reluctance also only
requires to decompose the sparse matrixPK
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once and the moment calculation process is the same as that
of inductance.

The difference between WIFRIM and ordinary moment
matching algorithm is that WIFRIM expresses parasitic matri-
ces in power series so as to consider the parasitic variations at
different frequencies. For ordinary moment matching methods,
the computational time of simulatingN sample frequencies
requiresN matrix decompositions,N matrix-vector multipli-
cations, andN vector additions. While WIFRIM only involves
one sparse matrix decomposition, at mostM + 1 matrix-
vector multiplications andM + 2 vector additions, where
M is the highest order of approximation polynomials. Since
the dominant computational time is in matrix decomposition
and we will show in the experiment section that low-order
approximation polynomials are sufficient to satisfy the desired
accuracy, WIFRIM is an efficient algorithm to generate mo-
ments while taking frequency dependent effects into account.

III. E FFICIENT EXTRACTION AND APPROXIMATION

We have presented in the previous section that WIFRIM can
generate moments under the assumption that parasitic matrices
can be represented in power series ofs. In this section, we
propose an improved reluctance extraction algorithm to extract
parasitics at some sample frequencies. Those discrete sample
values are utilized by DLSCF to construct approximation
polynomials, which can be employed by WIFRIM to calculate
moments of arbitrary orders.

A. Reluctance Extraction with Parallel Filament Reduction
Generally, the first stage of interconnect analysis is to

model the interconnect system as a lumped RLKC circuit. To
capture skin and proximity effects, conductor segments are
logarithmically discretized into filaments according to their
geometries, skin depths, and the current extraction frequency.
For an interconnect system containingNc conductor segments,
assuming that thekth segment is meshed intonk filaments,
the total number of filaments within the system will be

Nf =

NcX
k=1

nk. (18)

Obviously Nf is much larger thanNc, especially at high
frequencies.

Each filament is thin enough such that the current can be
approximated uniformly distributed inside the filament. Then
the currentÎi and the voltage drop̂Vi

1 on filamenti can be
given by

R̂iiÎi + jω

NfX
j=1

L̂ij Îj = V̂i. (19)

The filament DC resistancêRii can be calculated from

R̂ii =
l̂i

σâi

, (20)

whereσ is the conductivity of the conductor.̂li and âi are
its length and cross-section area respectively. The mutual
partial inductance between filaments,L̂ij , has the following
formulation

L̂ij =
µ0

4πâiâj

h Z
âi

Z
âj

Z
l̂i

Z
l̂j

d~lid~lj

‖~ri − ~rj‖
dâidâj

i
. (21)

Because the current inside each filament is assumed to be
uniformly distributed, (21) can be accurately integrated by
Grover’s or Hoer’s Formulae [10], [11].

(19) can be written in a matrix form:

(R̂ + jωL̂) · Î = V̂ , (22)

whereR̂ is anNf × Nf diagonal matrix containing filament
DC resistances and̂L is theNf×Nf partial inductance matrix.
They are known by applying (20) and (21) after conductor
segments are discretized into filaments.Î and V̂ are filament
current and potential drop vectors respectively. The filament
impedance matrix̂Z(ω) ∈ CNf×Nf is given by

Ẑ(ω) = R̂ + jωL̂. (23)

Physically, a bundle of filaments within the same conductor
segment can be treated as parallel branches. Merging parallel

1A little hatˆ is used to distinguish the symbols for filaments from those
for conductor segments



elements can be facilitated by using admittance instead of
impedance. Let̂Y (ω) ∈ CNf×Nf be the filament admittance
matrix. Then,

Ŷ (ω) · V̂ = Î. (24)

From (24), it is clear that theith column of Ŷ (ω) can be
obtained by setting theith element inV̂ to one and the rest
elements inV̂ to zero, and then solving (22) to obtain the
current distribution vector̂I, which is equal to theith column
of Ŷ (ω). Instead of directly invertinĝZ(ω), Ŷ (ω), therefore,
can be constructed by solving (22)Nf times.

However, this mathematical treatment is physically impos-
sible, since we cannot set the voltage drop along one filament
to one while keeping all the voltage drops of its parallel
filaments zero. Consequently, in order to calculate the current
distribution within conductork, we need to simultaneously set
voltages along all itsnk filaments to one.

The physical meaning of the obtained current distribution is
that: the summation of all the filament currents within thekth

conductor is its admittance, while the summation of filament
currents within thelth conductor is its coupling with conductor
k. These values are stamped into the conductor admittance
matrix Y (ω) ∈ CNc×Nc , which is obtained directly by solving
(22) Nc times.

Original Reluctance Extraction

ijy ijr ijk

New Reluctance Extraction

1kv
kkk yi

+

- kll yi

+

-

kkk yi

1kv
kll yi

Fig. 1. Physical Explanation of Original Reluctance Extraction Method and
Our Improved Reluctance Extraction Method.

Elements withinY (ω) represent admittances which are
composed of two parts:

yij = gij + jxij , (25)

wheregij is the conductance andxij is the susceptance. The
most straight forward way is to synthesizeyij as serially
connected resistance and reluctance. The equivalent resistance
rij and reluctancekij will be

rij =
gij

g2
ij + x2

ij

,

kij = −
ω(g2

ij + x2
ij)

xij

. (26)

Those synthesized values are stamped into the conductance
matrixG and the reluctance matricesK to construct equivalent
circuit models. In this paper, we apply FastCap to obtain

the capacitance matrixC. The detailed extraction algorithm
is summerized in Table I.

There are two reasons that this new extraction method
is more efficient than the original one. First, we only need
to solve (22)Nc times instead ofNf times. Second, the
dimension of the obtained conductor admittance matrixY (ω)
is much smaller than that of the filament admittance matrix
Ŷ (ω) and hence results in more compact models.

TABLE I

EXTRACT RELUCTANCE WITH SIMULTANEOUS FILAMENTS REDUCTION.

INPUT: An interconnect system includingn conductor segments;
Extraction frequencyf of interest.

OUTPUT: Parasitic matricesG andK.
BEGIN

For each conductori in the interconnect system, do the following:
a. Search its neighboring conductorsΥi by adopting one

window selection algorithm, such as [3], [4];
b. Discretize all the conductors withinΥi into filaments;
c. Calculate the filament impedance matrixZi

f
;

d. Set entries in the voltage vectorV i
f

corresponding to filaments
in conductori to one while others to zero.

e. Obtain the filament current distributionIi
f

by solving (22);
f. The self admittance of conductori equals to the sum of filament

currents within conductori; the summation of filament currents
in conductorj is the coupling between conductori and j;

g. Synthesize admittance into serial resistance and reluctance by
applying (26).

f. Stamp those values into parasitic matricesG andK respectively.
END

B. Parasitics Approximation by DLSCF

Albeit the efficiency of our improved extraction algorithm,
it is still impractical to construct interconnect models at
every frequency of interest. Therefore, we propose to apply
DLSCF to obtain approximation polynomials, which can be
used as close-form formulae to calculate parasitics at arbitrary
frequencies. Furthermore, these approximation polynomials
are essential to our WIFRIM algorithm discussed previously.

Assume we have extracted parasitics for a given intercon-
nect system atN sample frequencies:ω1, ω2, · · ·, ωN . A set
of parasitic valuesp1, p2, · · ·, pN at those sample frequencies
is to be approximated by the polynomial of degreeM

y(ω) =
MX

k=0

akφk(ω), (27)

where φ0(ω), φ1(ω), · · ·, φM (ω) are appropriately chosen
polynomial base functions.

The residualr(ωi) at a particular frequencyωi of a certain
approximation is defined as

r(ωi) = pi − y(ωi) = pi −
MX

k=0

akφk(ωi). (28)

The best approximation in the least square sense is the one for
which the sum of the residuals squared over the whole domain
is least

NX
i=1

[pi −
MX

k=0

akφk(ωi)]
2 = minimum. (29)



By imposing the condition in (29), it is obtained that

∂

∂aj

n NX
i=1

[pi −
MX

k=0

akφk(ωi)]
2
o

=

NX
i=1

φj(ωi)[pi −
MX

k=0

akφk(ωi)] = 0, (30)

wherej = 0, 1, · · · , M . Rearranging the terms and interchang-
ing the summation overi andk gives

MX
k=0

ak

NX
i=1

φj(ωi)φk(ωi) =
NX

i=1

piφj(ωi), (31)

and hence leads toM+1 simultaneous linear equations, called
normal equations. Unknown coefficientsak in (27) can be
obtained by solving the normal equations in (31).

Although base functionφ(x) in the approximation function
y(ω) in (27) can be simply chosen as monomials, the formu-
lated normal equations of the least square problem are usually
ill-conditioned. Fortunately, the notorious numerical problem
associate with solving a set of ill-conditioned simultaneous
normal equations can be avoided by choosingφ(ω) as mutu-
ally orthogonal polynomials.

A set of functionsg1, g2, · · ·, gn is said to be mutually
orthogonal if

nX
k=1

gi(xk)gj(xk) =

�
0 i 6= j
Qi i = j

. (32)

If one chooses the functionsφ(ω) as mutually orthogonal
polynomials, substituting (32) into (31) gives

ak

NX
i=1

φ2
k(ωi) =

NX
i=1

piφk(ωi), k = 0, 1, · · · , M. (33)

Apparently, the use of orthogonal polynomials results in a set
of decoupled equations, i.e. every normal equation yields one
unknown. Hence, coefficientsak can be easily obtained as

ak =

PN
i=1

piφk(ωi)PN
i=1

φ2
k
(ωi)

, k = 0, 1, · · · , M. (34)

In this paper, we adopt discrete Forsythe orthogonal poly-
nomials [12] as our approximation base functionsφ(ω). The
main advantage is that the orthogonal Forsythe polynomial
approximation can be easily transferred into monomial ap-
proximation, and the coefficients of monomial approximation
can be directly calculated without explicitly formulatingthose
Forsythe polynomials. Therefore, parasitic matricesG, C, and
K can be represented in power series ofω

G(ω) =
MX

i=0

Giω
i, C(ω) =

MX
i=0

Ciω
i, K(ω) =

MX
i=0

Kiω
i. (35)

It is also straightforward to show thatG, C, and K can be
transferred into power series ofs = jω

G(s) =
MX

i=0

G̃is
i, C(s) =

MX
i=0

C̃is
i, K(s) =

MX
i=0

K̃is
i, (36)

where fork = 0, 1, 2, · · ·

G̃4k = G4k, G̃4k+1 = −jG4k+1,

G̃4k+2 = −G4k+2, G̃4k+3 = jG4k+3. (37)

C̃i’s and K̃i’s in (36) can be obtained similarly.

The significance of the obtained approximation polynomials
in (35) and (36) is not limited to calculate parasitics at arbitrary
frequencies. What makes it really attractive is that it can be
incorporated into our WIFRIM algorithm to generate moments
for the entire frequency range.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the accuracy and efficiency
of the proposed interconnect analysis method. All the simula-
tions are run on an IntelR© PentiumR© 4 2.4gHz system with
512 MB memory.

To validate our frequency dependent interconnect analysis
methodology, it is important to show that DLSCF can approxi-
mate real parasitic values accurately. For comparison purpose,
we use one of the state-of-the-art full-wave simulation tools,
SonnetR©, to capture parasitic variations with respect to fre-
quency.
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Fig. 2. DLSCF: Discrete Least Square Curve Fitting (M: the highest order
of approximation polynomials; N: the number of sample points).

Figure 2 shows that low-order polynomials are sufficient to
approximate real parasitics accurately. Extracting parasitics at
six sample frequencies and using approximation polynomials
of order five can provide accuracy within0.1% error as
shown in Figure 3. The reason why DLSCF can achieve
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Fig. 3. DLSCF Percentage Error Curve.

high accuracy with low-order approximation polynomials is
that, within 20gHz, the variation of parasitics with respect



to frequency is basically monotone instead of fluctuant. For
instance, the inductance decreases as frequency increasesas
shown in Figure 2. It is the simple shape of the parasitic curve
that makes low-order approximation possible.

Next, we apply WIFRIM to analysis a Power/Ground net-
work from a real IC design. Technologies in [7] are applied to
obtain the final time and frequency domain information after
the first twenty moments are calculated by WIFRIM. Although
it is not necessary, sample frequencies are evenly distributed
since one may interest in both the low and high frequency
domain responses.

To perform time domain analysis, we apply a1V step
voltage input at one end of the power line and test the response
at the other end. The waveforms with different sample points
and approximation orders are shown in Figure 4. To test the
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frequency response, one current source is activated between
the power line and the ground line. We first extract and
analyze lumped circuit models at different frequencies andfor
each one, we adopt the corresponding frequency response at
the specific frequency it is extracted and then combine them
together to compare with WIFRIM.
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In current frequency range of interest, WIFRIM exhibits less
than1% error by using approximation polynomials with order
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five. Especially for the frequency domain response, WIFRIM
can produce almost indistinguishable results as shown in
Figures 5 and 6.

V. CONCLUSION

In this paper, we present a comprehensive frequency de-
pendent interconnect analysis methodology. First, on-chip
parasitics are extracted at sample frequencies by applying
an improved reluctance extraction algorithm. Those extracted
parasitics are utilized to construct approximation polynomials
by employing discrete curve fitting techniques. The obtained
approximation polynomials are used by the WIFRIM algo-
rithm to calculate moments of arbitrary orders. Extensive
experiments demonstrate that this new interconnect analysis
strategy is an accurate and efficient one to provide the entire
frequency domain information.
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