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ABSTRACT

Clock-tuning has been classified as important but tough tasks
due to the non-convex nature caused by the skew requirements.
As a result, all existing mathematical programming approaches
are often trapped at local minimum and have no guarantee of
obtaining global optimal solution.

In this paper, we present optimal clock tuning algorithms
which effectively apply capacitance-padding to reduce clock skew,
power, and delay for general clock topologies. Capacitance-
padding can be achieved by wire-spacing, wire-splitting, wire-
padding and transistor-padding. We show that under the El-
more delay model, capacitance-padding can be formulated as a
linear programming problem and solved with great efficiency.
Capacitance-padding can also be used as a post processing step
for any non-zero-skew clock tree or mesh structure to achieve
timing closure. Experiment results on several practical industry
examples show that our algorithms are extremely efficient. Prob-
lems with over ���� variables can be optimally tuned within �

minute on a PC with ���-MHZ Intel Pentium III processor.

I. I NTRODUCTION

Delay, skew, and power are the most important concerns in
current VLSI clock-tree design. With the increasing complex-
ity of synchronous ASICs, clock skew and clock-signal delay
have become important factors in determining circuit perfor-
mance [1, 3, 7, 15]. As shown in [7], the clock-signal delay
has great impact on system-level skew and thus is an impor-
tant consideration in clock-tree design. As reported in [5],
power dissipation occupied 40% of the overall chip’s power
dissipation. Therefore, it is essential to carefully design clock
to simultaneously consider delay, skew, and power.

Clock-tuning has been shown an effectively way to enhance
clock skew, delay and power [2]. Due to the non-convex nature
of this problem caused by the skew requirements which require
signal arrival time within mindelay and maxdelay constraints,
all existing mathematical programming approaches are often
trapped into local minimum and can not guarantee to obtain
global optimal solution.

Moreover, existing algorithms suffer long runtime and large
storage requirements for large scale problems. For example,
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[10, 15] convert the skew minimization problem into the least-
square minimization problem and the runtime and storage are
proportional to cubic and quadratic in the problem size.

In this paper, we present optimal clock tuning algorithms
by capacitance-padding. Capacitance-padding is achieved
by wire-spacing, wire-splitting, wire-padding, and transistor-
padding. Capacitance padding can effectively reduce clock
skew and delay for general clock topologies including trees
as well as mesh structures without changing clock topologies.
We first show that this problem can be formulated as a linear
programming problem and hence the optimal solution is guar-
anteed. We then propose a two-stage approach which mini-
mizes the maximum delay at the first stage and apply capac-
itance padding to further minimize skew at the second stage.
Our algorithm can also be used to explore skew-delay-power
trade-off relationship. Experiment results on several practical
industry examples show that our algorithms are extremely ef-
ficient. Problems with over���� variables can be optimally
tuned within� minute on a PC with���-MHZ Pentium III pro-
cessor.

II. PRELIMINARIES

By the modified nodal analysis, the system equations of gen-
eral linear circuits can be expressed as follows

� �� � ���� ��� (1)

where� represents the state variables,� is the conductance
matrix, � is the susceptance matrix (includes capacitors and
inductors), and the term�� represents excitation from inde-
pendent sources. Applying the Laplace transform to Equation
(1) and assuming zero initial conditions (i.e.���� � �), we get

������ � ��� � ������ (2)

where���� and���� denote the Laplace transform of� and�,
respectively. After rearranging the terms of the above equation,
we get the impulse response of the system as follows
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Let 
 � �����, we can rewrite the above equation as
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Let � � ����, the AWE method expands the above equation
at � � � or � �� as
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By setting
� � 
��, the AWE method uses the following
recurrent relation to iteratively compute higher order moments
from lower order moments.


� � � � ����


� � 

���	

Note that it only needs to perform�� decomposition of�
once. The rests of the computation are on repeatedly solving
the above linear equations. To get more insight of the AWE
method, we have the following observations. By the definition
of 
, we know

�
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�
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Hence, to calculate
�, we substitute each capacitor with a
current source value�
��� and then solve for voltages and
currents of the original circuit while keeping resistors and con-
ductors unchanged. It has been shown that (negated)
 � is the
Elmore delay [16] and
� is the DC solution.

There are several ways to adjust capacitance values such as
spacing, padding, transistor-padding, and splitting. As shown
in Figure 1, wire spacing increases or decreases the spaces be-
tween wires to reduce or increase the coupling capacitance be-
tween them. Wire-padding and transistor-padding attach wires
and transistors to a wire in order to increase the capacitance
load as shown in Figure 2. As shown in Figure 3, wire-
splitting (split the wire into several narrower wires) changes
the total capacitance value while preserving the original re-
sistance. We call those capacitance adjusting techniques ca-
pacitance padding. The values of padding capacitance can be
fine tuned continuously since wire sizes, space, and transis-
tor width can be adjusted continuously. Note that capacitance
padding will not change the clock topology or even wire width
and resistance. We can simply use the empty routing space to
perform spacing and capacitance padding. In this way, there is
no penalty for the routing at all.

Fig. 1. Wire Spacing.

Fig. 2. Wire and Transistor Padding.

Fig. 3. Wire Spliting.

Capacitance padding is different from wire-snaking since
wire-snaking changes both resistance and capacitance but ca-
pacitance padding changes capacitance only. As a result, the
net delay changed by capacitance padding can be formulated
as a linear programming problem while the delay changed by
wire-snaking can not.

In this paper, we assume the upper bound and lower bound
of the capacitances are given. Those values can be obtained by
any capacitance extraction method.

There are two major components of power dissipation in the
CMOS circuits, namely, static dissipation (due to leakage cur-
rent) and dynamic dissipation (due to charging and discharg-
ing of load capacitances [capacitive dissipation], and switch-
ing transient current [short-circuit dissipation]). Given a clock
tree, its power dissipation can be computed as follows [14]:
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where���� is the total capacitance of the tree,� is the clock
frequency,�� is the cycle time, and�� is the short-circuit cur-
rent. We consider only the capacitive dissipation in this paper,
since the capacitive dissipation usually dominates the power
dissipation in practical applications [4]. Hence we have

� � ������
�
��	

Clock skew is defined as the maximum difference in the delays
from the clock source to clock sinks; that is, the skew of a clock
tree,� � 
����	 ��� ��	 �.

In this paper, we are targeting to solve the optimal spacing
and capacitance padding for clock tree to reduce skew, power,
and delay. This problem can be formulated as follows:



� CSCP: Clock Spacing and Capacitance Padding Problem
Given: A clock tree� with the source�� and sinks���,
��, . . . ,���, wire segments���, ��, . . . , �
�, buffers
���, �
��, �
��, . . . , �
���, upper bounds���, ��,
. . . ,�
���, and lower bounds���, ��, . . . ,�
��� for
the capacitance��, ��, . . .�
��.
Objective: Find� that minimizes
������� ��, �, � ,
and
.

III. A LGORITHMS

In this section, we first present our algorithms for solving
optimal spacing and capacitance padding for skew minimiza-
tion problem and then demonstrate how to obtain skew, delay,
and power trade-off relationships.

A. Optimal Spacing and Capacitance Padding

We formulate the optimal spacing and capacitance padding
for clock tree to minimize skew problem as follows:
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Note that���
 and���
 are variables we introduced to min-
imize clock skew. Problem� contains two sets of constraints.
The first set of constraints ensure that every sink satisfies its
skew (maxdelay and mindelay) constraints and the second set
of constraints makes sure that the capacitance value of every
device is within feasible region.

Since Elmore delay is the first (negated) moment of a node,
the Elmore delay of any point can be obtained from Equation
(4). From Equation (4), we know that by keeping resistance
matrix � fixed, 
� is only a linear function in terms of sus-
ceptance matrix�. If only � can be adjusted, this problem
is a linear programming problem which uses� to adjust
�.
Unfortunately, we can not include Equation (5) into our prob-
lem formulation since�
�, the right hand side of Equation
(5), are no longer linear terms.

We rewrite Problem	 under the Elmore delay model as
follows:
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Noted that problem� � is a linear programming problem
since� and
� are all constants, and the objective function is
a linear function in terms of�.

We can also explore the skew, delay, and power trade-off
relationships by assigning weight to each factor and iteratively

solving the following problem to search the desired solutions.
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[2] shows that simultaneous wire-sizing and buffer-sizing
can significantly reduce delay and skew. To further reduce the
clock skew, we can apply spacing and capacitance padding as
a post-processing step for the delay-optimized solution. The
experimental results show that this two-stage approach can sig-
nificantly reduce clock skew.

B. More Accurate Delay Model

x: The Elmore Delay 

d: The Real Delay 

(x1, d1)

(x2, d2)

The Quadratic Fit of Real Delay 

x0 x1 x2

(x0, d0)

The Accurate Delay 

Fig. 4. The quadratic model of real delay in terms of Elmore delay.

To improve of the accuracy of Elmore delay model, it is
possible to use higher order moments to get the more accu-
rate delay and sensitivity. On the other hand, the computation
effort for the exact sensitivity for each parameter is computa-
tional expensive [9]. Hence, we propose to use a fudge-factor
approach to map Elmore delay to the exact delay while still us-
ing Elmore delay as a sensitivity information. In this way, we
can iteratively update the Elmore delay targets for each sink
to compensate the errors. In particular, we sequentially use a
quadratic function$���������� as our approximation func-
tion, where$�� ��, and�� are the respective new coefficients
for next iteration and new� is the Elmore delay target. These
coefficients will be updated iteratively to fit the accurate delays
in a quadratic form. Let��, ��, and�� be the accurate delays
respective to three Elmore delays��, ��, and�� as shown in
Figure 4, where$, �, and� are coefficients which satisfy the
following equations.
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We solve the above equations and get:
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Given the target delay� and fitted coefficients$, �, and�, we
can find the target Elmore delay� for the next iteration from
the following equation

$�� � ��� � � �	

After solving the above equation, we obtain� �
���

�
����������

�� . After setting up the new target delay in
terms of Elmore delay, we call the linear programming subrou-
tine to find the optimal solution. The above process is repeated
until the program converges.

IV. EXPERIMENTAL RESULTS

We implement and test our algorithm on the five circuits%�–
%� used in [13] on a PC with 500MHZ Pentium III micropro-
cessor. The per micron resistance and capacitance used are
�
� and�	�	�& , respectively. The lower and upper bounds
for wire widths are�'
 and��'
, respectively. We use both
spacing and capacitance padding techniques to minimize skew.
Table I lists the names of the circuits, numbers of wire seg-
ments in the circuits, delays, and skews requirements. The
skews are verified by SPICE simulations. We first run our al-
gorithms on the original clock tree to minimize skew or only
reduce 50% skew. The experimental results show that our algo-
rithm reduces 99.46% skew with only 16.49% delay penalty in
average. On the other hand, if we only want to minimize 50%
skew then the delay actually can be reduced about 17.904%
in average. All the runtimes are under� minute. We also
test two-stage approach which first runs optimal wire-sizing
to minimize the maximum delay followed by spacing and ca-
pacitance padding to further reduce skew. In this way, both
skews and delays are significantly reduced. Figure 5 shows the
trade-off relationship between delay and skew.
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