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Abstract

In this paper, we propose an efficient, accurate, and inductance-wise interconnect simulation
engine, INDUCTWISE, which integrates novel inductance sparsification methods under time-
domain PEEC model, advanced circuit formulation techniques, and excellent matrix solving
algorithms. We develop a shared group calculation method to accelerate computing sparse
reciprocal inductance matrix that is potentially up to 17X faster than the K-method[1][2] with
almost identical accuracy. The nodal analysis formulation and the Cholesky decomposition
enable INDUCTWISE to directly take K-elements as well as L-elements and help verifying the
stability of reciprocal inductance matrices. Extensive simulations show that the combination
of inductance reduction method (8X) and advanced matrix solving techniques (50X) achieve a
total 400X speed-up over SPICES3.

1 Introduction

Parasitic on-chip inductance is growing as another design concern as the VLSI technologies march
toward ultra-deep sub-micron and frequency approaches in the gigahertz range. Inductive coupling
effect becomes more important because of the higher frequency signal contents, denser geometries,
and reduction of both resistance and capacitance by copper and low-K devices. Inductance effects
present not only in IC packages, but also in on-chip interconnects such as power grids, clock nets and
bus structures. It causes overshoot, undershoot and oscillation of signals, and aggravates crosstalk
and power grid noise. All of these seriously impact signal integrity on-chip. The importance and
difficulty of on-chip inductance extraction and analysis are addressed in [3][4].

One of the main problems with inductance modeling is the long range coupling effects and
the uncertainty of return paths since inductance is a function of a closed loop, which is hard to
predict in advance before simulations. In fact, return paths are also frequency dependent and may
change in a cycle-by-cycle basis due to different logic switch patterns and gate resistance. For
this reason, A. Ruehli developed the famous Partial Element Equivalent Circuit method (PEEC)
[6] models for parasitics modeling. PEEC method defines the partial self and mutual inductance
for each wire segment with the assumption that each wire has return loop at infinity. Basically,
PEEC models can be used to solve the inductance issues in either frequency and time domain. In
the frequency domain, FastHenry [6] utilizes a multi-pole acceleration technique to speed up the
extraction process. In the time domain, [7] proposes to directly simulate the PEEC model in the



time domain to determine the return paths. This method has been shown to be accurate in a wide
range of frequencies.

The PEEC models, however, leads to a large scale dense inductance matrix since the long range
effects of inductive coupling, and the uncertainty of current return paths require the consideration
of millions of mutual inductance terms to capture the inductance effects. The traditional circuit
simulation engines may require hours or even days for such a large scale dense matrix simulation. To
effectively reduce the mutual inductance terms, sparsification is crucial. However, it has been shown
that direct truncation of the inductance matrix could result in instability [8]. Thus, an provable
stable shift and truncate method was proposed by Krauter, et al [9]. This method assumes the
return path is no longer at infinity but in a centered shell with radius ry. Other methods such as
Halo method [10] and block diagonal method [11] also reduce the number of mutual inductances by
limiting the return path to the nearest power and ground returns. Later Beattie, et al [12] develops
an exponential shell return paths for further sparsfication and shows that the sparsity is close to
that of the K-method mentioned below.

Recently, a new K element method has been presented by Hao Ji, et al [1][2]. K is the reciprocal
inductance matrix that is the inverse of the partial inductance matrix L. Since K has higher degree
of locality similar to the capacitance matrix, it is more satisfactory to sparsify K without losing
too much accuracy. Furthermore, [1] also shows that the reciprocal inductance matrix is diagonal-
dominant and hence positive definite. The off diagonal terms are negative and can be safely
deleted with sacrificing stability. Later Beattie, et al [12] also proposes to do double inversion on
the inductance matrix and perform sparsification on both inductance and susceptance matrix.

There are, however, several issues for the existing inductance handling flow. First, after induc-
tance extraction, it is required to perform circuit simulation to verify signal integrity issues. There
is, unfortunately, a lack of effort to fundamentally speed up circuit simulation engine for inductance.
Note that, one of the major reason for inductance sparsification is that the traditional circuit sim-
ulation engines cannot handle large-scale dense inductance matrix efficiently. Every sparsification
algorithm is more-or-less trade-off runtime with accuracy. A capable circuit simulator can greatly
enhance both the analysis of turn-around time and accuracy by including more mutual inductance
terms. Second, the traditional circuit simulation engines cannot or do not handle the K-elements
directly or efficiently. Although the double inversion algorithm has been proposed, the runtime
is compromised by the double inversion time. Third, when the window size requirement is huge,
the K-method can be very slow due to the inversion of the large-scale dense inductance matrix.
Finally, we discovered that the diagonal-dominance property of the reciprocal inductance matrix
does not sustain for general wire configurations and hence the stability of the K-method is actually
questionable.

All the above issues lead to the urge for an inductance-oriented circuit simulation engines and
that is exactly what we intend to provide in this paper. In this paper, we propose an efficient, ac-
curate, and inductance-wise interconnect simulation engine, INDUCTWISE, which integrate novel
inductance sparsification methods, advanced circuit formulation techniques, and excellent matrix
solving algorithms. The runtime of the K-method will be significantly reduced when the accuracy
requirement takes many conductors into consideration, since it needs to invert partial inductance
matrix with some window size. For this reason, we develop a novel inductance sparsification method
called SGC (Shared Group Calculation) method, which effectively reduces the number of matrix
inversions while maintaining good accuracy. The SGC potentially accelerates the K-method up
to 17X with almost identical accuracy. In addition, the utilization of nodal analysis formulation
and the Cholesky decomposition provides two benefits. First it enables INDUCTWISE to directly
take K-element for simulation. Second, the Cholesky decomposition is the best-known efficient
method to check the positive definiteness of a matrix. Third, the Cholesky decomposition is 2



times more efficient and can achieve good accuracy regardless of the matrix ordering. Finally, the
use of Time-domain PEEC model can simultaneously consider the frequency dependent effects as
well as capacitance return paths. The user does not need to specify the return path, because the
circuit simulator will find the return path itself. Extensive simulations show that the combination
of inductance reduction method (8X) and advanced matrix solving techniques (50X) achieves a
total 400X speed-up over SPICES.

The rest of this paper is organized as follow. In section 2, we discuss the physical meaning
of reciprocal inductors, the accuracy issues, and the stability issues more deeply, and proposed a
group calculation algorithm. In section 3, we explain how we solve the reciprocal inductance matrix
by the nodal analysis (NA) method, what the advantage of using NA is over the modified nodal
analysis, and some other issues that affect the symmetricity of the system matrix. Section 4 shows
the runtime and memory usage comparisons.

2 Inductance Extraction

In this section, we will first argue that time-domain rather than frequency domain PEEC method is
an excellent tool to analysis on-chip inductance issues and provide additional reasons why we believe
that efficient time-domain solver can be built with extreme efficiency. Later, we will introduce the
basis of inductance analysis, K-method, and its issues.

2.1 Why Build Fast Time-Domain RLKC Solvers?

There are several ways to pursue inductance and return path issues. In the frequency domain,
under the quasi-static assumption and accelerated by the Multipole expansion, FastHenry [6] is
indeed an effective tool to produce accurate effective inductance on specific frequencies while only
considering resistance and inductance. Users have to specify the most significant frequency for
accurate results. When capacitance present, FastHenry needs to be used in a careful manner to
ensure the correctness. A common mistake is the assumption of current return paths or the trial
of finding the loop current without capacitance present since capacitance acts perfect return paths
especially in the high frequency.

On the other hand, time-domain PEEC analysis does not have those issues. First, time-domain
PEEC analysis can directly take resistance, inductance, and capacitance into consideration. Second,
time-domain PEEC models are valid for wide range of frequency. Third, unlike the frequency
domain method, the time-domain simulation does not involve complex number manipulation and
hence can be solved in a more efficient manner. Furthermore, since PEEC models only consist of
traditional lumped elements such as resistance, inductance and capacitance, the model circuits can
be directly analyzed by any SPICE-compatible circuit simulators.

The showstopper of time-domain PEEC is that there is a lack of capable solvers that can
simulate such a large-scale RLKC circuit efficiently. The traditional circuit simulators were not
built for this purpose since parasitic inductance matrix is much denser than manually designed
circuits. Not to mention that FastHenry has the multipole expansion algorithm to speed up.

However, we are very confident to build an efficient time-domain RLKC simulator that is at
least two orders of magnitude faster than SPICE3. First, although inductance has longer-range
effects than capacitance, the return currents usually bounded by the power/ground wires. For this
short range of interaction, the multipole expansion may not provide enough runtime and memory
benefit. Furthermore, with the advancement of inductance sparsification algorithms, the complexity
and stability have been significantly improved. Second, SPICE was developed in 60 to 70’s. The
matrix solving techniques have been significantly improved in the last two decades. Furthermore,



SPICE was mainly developed for human designed semiconductor circuits. It was not optimized for
large-scale parasitic simulation and did not take advantage of the linear nature of parasitics.

In this paper, we not only developed an inductance-optimized efficient linear circuit simulator,
but also developed and integrated a novel inductance sparsification algorithm which is up to 17X
faster than the K-method. The integration of both methods shows over 400X speed over SPICES.
The runtime and experimental result will be shown in later sessions.

2.2 Inductance and Reciprocal Inductance Matrix

Given an inductance matrix £, the reciprocal inductance matrix S is defined in the famous circuit
book [13] by Kuh et al as S = £71. In [12], S was called susceptance. However, according to [14]
susceptance is a general term for the imaginary part of the admittance matrix that can be caused
by capacitance or inductance. We think the name of reciprocal inductance matrix is more specific
to the inverse of the inductance matrix.

Each element in the partial inductance matrix is given by

dl; - di;
Araia; [Ja; Joj J1i Ji; T

where a; and a; are cross-sections of segment 7 and j, respectively, and r;; is the geometric distance
between two points in segment 7 and j. The magnetic vector potential along segment ¢ caused by

current I; in segment j is defined as follows
L
—dl;da; 2
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Therefore, for an n x n partial inductance matrix, the corresponding linear system equation can be
written as follows

Ho
Aij =
Y 47raj
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Representing the system equation with S, we get

S Sz - i ([ Ay - dly) i1

So1 Sop c-- : =1 : (4)

To effectively reduce the insignificant terms in the matrix, we can perform matrix sparsfications
in either the inductance or the reciprocal inductance matrix, or even both. Since it was shown
that reciprocal inductance elements have better locality than inductances [2], to sparsify S is more
efficient than to sparsify L.

2.3 Diagonal Dominance Issues of the Reciprocal Inductance Matrix

In [2], Hao Ji, et. al developed an advanced inductance sparsification method on S called K-method.
They proved the stability of their algorithm based on the diagonal dominance property, which is
derived from the assumption that all off-diagonal terms of the S matrix are negative. We now show
that the property does not hold for general interconnect configurations.

From Equation (4), the physical meaning of each entry of S (S;;) is defined by the induced
current in the j—th conductor caused by an active current in the 1 —¢h conductor when the magnetic



vector potential drop along conductor j is equal to one and those along all other conductors are
set to zero. For example, as shown in Figure 1, to get the 3rd row of S, we apply voltage 1 to
conductor 3 and ground the other end as well as the two ends of other conductors. The induced
currents on other conductors will be the off diagonal terms. It is positive if the current direction is
the same, or negative otherwise. [2] argues that all the induced current are negative and use this
property to proof the stability of their algorithm. We find out that the off-diagonal terms are not
necessary to be negative for general wire cases. We now use Figure 1 to explain this.

Figure 1: Example parallel conductors with unequal lengths

We calculate the partial inductance matrix using FastHenry [6] for Figure 1, and get

1.17 040 0.43 0.30 0.63
0.40 0.52 0.09 0.07 0.32
L= 043 0.09 117 040 0.77 | x 10 °H . (5)
0.30 0.07 040 0.52 0.47
0.63 0.32 0.77 047 1.88

Inverting £, and the § matrix can be obtained as following

144 —096 —023 —042 —0.12
—0.96 282 024 031 —0.34

S=| -023 024 138 —065 —0.37 | x 10"°H". (6)
042 031 —065 302 —041
—0.12 -034 —0.37 —041  0.88

It is clear to see that some of the off-diagonal terms are positive in (6). For instance, when
calculating the 3rd row in (6), a unit magnetic vector potential is assigned on conductor 3, which
demands a positive current along conductor 3 to accomplish. This current induces a positive
magnetic vector potential drop on all other conductors (let’s consider only conductors 1 and 2 in
this explanation). To compensate this effect and make the gross magnetic vector potential drops
along conductors 1 and 2 equal to zero, they have to carry negative currents. However, the current
along conductor 1 also induces a current along conductor 2. Since the coupling effect between 1 and
2 is much stronger than the effect between 3 and 2, the overall effect causes conductor 2 carrying
a positive current direction.

Thus, the physical definition of S should be calibrated as follows: The magnetic vector potential
drop along all conductors except the j* are set to zero, and the magnetic vector potential drop along
the §" conductor is set to one. To satisfy the condition, there exists some current running along
each conductor. The elements S;j is the current flowing through the ith conductor whose overall
effect satisfies the vector potential drop assumption.

Since the result is due to the overall effect (not a signal active line), negative off-diagonal
elements are not guaranteed any more. This invalids the proof of the diagonal dominance property
and hence the stability for the K-method becomes unsure.



2.4 Shared Group Calculation Algorithm

In this session, we present the runtime issue of the K-method and propose a new algorithm to
resolve this issue.

The K-method was developed by Hao Ji, et. al [2] to perform sparsification during the construc-
tion of the reciprocal inductance matrix. It first selects a window size and successfully inverts the
inductance matrix within this window. After inversion, it only takes a single column for the target
conductor as the new column of the § matrix. It then iteratively performs this operation to all
conductors. Using Figure 2 as an example, when the window size is 1, the K-method first inverts
the £ in the small window that contain only three conductors. Then it copies only the column of
the inverse matrix to the S matrix as shown in Figure 3(a). Let n and m be the total number of
conductors and the window size respectively. The total runtime of K-method is of O(n(2m + 1)3).
The runtime of K-method can be very huge when the window size requirement is huge. Most of
the operations are wasted for the matrix inversion.

L
Size (m
Window gize (m)

Current _
Processing Window
Conductor m=1

Figure 2: Window size limitation

For this reason, we develop SGC (Shared Group Calculation) method to improve the runtime.
The key idea of the SGC method is to generate several columns of the S matrix at one inversion.
Instead of taking only one conductor, we take p conductors, together with the m conductors from
the windows on both sides, we only have to invert a (2m + p) X (2m + p) matrix once to get p
columns. This matrix illustration can be found in Figure 3(b). We now present the algorithm of
SGC as follows:
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Figure 3: Tllustration of the group calculation algorithm (a) Equivalent to K method when p = 1
(b) m =1, p=2 (c) Equivalent to block diagonal method when m =0 .

Shared Group Calculation Algorithm

1. At ith iteration, choose disjoint p conductors [;,...l;, as active conductors and 2m neighbor
conductors, and build the partial inductance matrix £,



2. Solve the following equations with the small matrix £(%),

£igl) — i)

The solution x(ti1) is the corresponding column /;, in sparsified reciprocal inductance matrix,
and x(i2) ... xis) are analogous.

3. Choose another p conductors as active conductors, and repeat steps 1 and 2 until all the
conductors have been calculated.

Since we only have to perform matrix inversion once for every p conductors, the complexity of the
SGC becomes O(%(2m + p)?). Compare the runtime of the SGC algorithm and the K-method:
SGC Algorithm _ 5(2m +p)° 1 (2m +p)?
K—Method — n(2m+1)3  p(2m+1)3
If m is large (e.g. 50) and p is small (e.g. 4), the above equation is approach to

SGC Algorithm 1
K—Method ~ p’

which shows p times speed-up can be achieved! Figure 4 shows the runtime speed-up of our method

over the K-method. From this figure, we can see that up to 17X speed-up could be achieved. Further

runtime improvement can be obtained by performing the LU or the Cholesky decomposition on

L% only once and solving only the columns that are required to form the S matrix. In this way,

we can avoid wasting computation effort on the unused columuns.

Speedup for various size of window and p

Speedup

Figure 4: Speed-up of the Shared Group Calculation Algorithm over the K-method

The SGC method is actually a generalization of both the K-method and the block diagonal
algorithm proposed in [11]. When p = 1, The SGC method degenerates to the K method in [2].
When m = 0, it becomes the block diagonal method in [11]. Figure 3 illustrates these different
variations. Figure 3(a) shows the K-method, in which m = 1 and p = 1. Figure 3(b) shows an
example of our group operation method, in which m = 1 and p = 2. Since the inverse of a block
diagonal matrix is also a block diagonal matrix, Figure 3(c) is equivalent to the block diagonal
method when m = 0 and p = 3.



2.5 Accuracy Comparisons

Figure 5 shows the simulation results of one example circuit. This circuit contains 128 parallel
conductors whose lengths are randomly generated. The near end of each conductor connects to a
10€2 drive resistor, and then to the ground except the active line. The active line has an unit step
input voltage. The far end of each conductor connects to a 20fF load capacitor, and then to the
last conductor, which is assumed to be the power/ground line.

Exact Solution
S Matrix(m=5) 0

Voltage (V)

Voltage (V)

\
\ Shift-Truncate (m =10)
Shift-Truncate (m=5) -0.00:

Time (ps)
Shift-Truncate (m=5)
Shift-Truncate (m =10)
—— SMatrix(m=5)
" S Matrix (m=10)
D ¥ Exact Solution

20
Time (ps)

() (b)

Figure 5: Comparison of the results of different sparsification methods (a) far end of the active
conductor (b) far end of the 7th neighbor away from the active conductor

Four different sparsification algorithms are implemented, the K-method and the shift-truncate
method both with window size 5 and 10. Figure 5(a) shows the far end of the active line, and Figure
5(b) shows the far end of the 7th neighbor away from the active conductor. From this figure, all
implementations approach the exact solution for the active conductor pretty well. However, the
7th neighbor is covered by window size 10, but not window size 5. The shift-truncate method with
window size 5 almost cannot reflect the far-away inductance effect.

In order to get detailed accuracy information, we extensively simulate 1000 randomly generated
test cases according to the 0.13um technologies. We calculate the respective errors of time and
voltage on the 1st overshoot peak (e.g. A and C as shown in Figure 5) and 1st under-shoot peak
(e.g. B and D) for both the active conductor and the 7th neighbor. The result is shown in Table
1. All of the setting in these five methods are the same as we mentioned previously.

active line 7th neighbor
1st overshoot 1st undershoot 1st overshoot 1st undershoot
Methods time voltage time voltage time voltage time voltage

Shift-truncate (m = 5) 9.56% 3.25% | 17.52% 5.07% 36.80% | 59.04% | 40.79% | 58.76%
Shift-truncate (m = 10) 6.62% 2.90% | 11.34% 3.85% 18.27% | 35.53% | 20.08% | 39.21%

K-method (m = 5) 1.90% 0.78% 6.29% 2.03% 16.46% | 24.81% | 24.50% | 29.11%
K-method (m = 10) 0.74% 0.33% 3.41% 1.04% 4.25% | 10.53% | 12.32% | 14.87%
SGC (m =10, p = 2) 0.74% 0.33% 3.41% 1.08% 4.32% | 11.07% | 11.99% | 15.11%

Table 1: Average errors of 1000 randomly generated cases for different sparsification methods

Table 1 shows that both the K-method and the SGC method are much more accurate than the
shift-truncate method for the same window size. For the active line, the K-method with window
size 10 (85% sparsity of S matrix) gives almost no error (< 1%) for the first overshoot, which is



concerned most in the signal integrity analysis, while the shift-truncate method can only reach
6.62% and 2.9% errors for the time and voltage respectively. As shown in the last row of Table 1,
we can observe that the accuracy of our SGC algorithm is almost identical with the K-method.

Both the K- and shift-truncate methods cause a larger error on the far-away conductors. The
window size actually affects the accuracy of the far-away neighbor rather than the active line. From
this result, it turns out that a larger window size is necessary if we want to obtain better accuracy.
Therefore, we conclude that all the above mentioned inductance sparsification algorithms are not
panacea. For the conductors do not cover by the windows size for any method and impacted by the
active conductors, the accuracy will not be very good. For example, in Figure 5, the waveform of
conductor 7 will not matched when the windows size is less than 7 in any method. This reason
urges the need for large window size and leads the need for the development of efficient large linear
solvers in the next session.

3 Inductance-Wise Interconnect Simulation Engine

In this session, we present our efficient time domain RLKC simulator, INDUCTWISE. We will
first focus on two circuit matrix formulations MNA (Modified Nodal Analysis) and NA (Nodal
Analysis). Later, the way to deal with independent source in the NA formulation and the pros and
cons of these two formulations will be discussed.

3.1 MNA Approach

First, we briefly review the MNA equations. Given a linear circuit, the adjacency matrix, A, can
be determined from the directed graph by the following rule.

—1 if node j is the sink of branch ¢

+1 if node j is the source of branch 4
Aij =
0 otherwise

This matrix represents the connectivity of a circuit, and the Kirchhoff’s law in terms of it is as
follows,

KCL: ATiy,=0 and KVL: Av, =wv, (7)
where i, and vy, are the vectors of branch currents and voltages respectively, and v,, is the vector

of the node voltages. For a circuit with RLKC elements and current sources, the adjacency matrix,
the branch voltages and the branch currents can be partitioned into these forms.

A; Vi 1;

A v . i

A= Ag , Vb= J , b= g
c Ve 1c

A, Az i

The subscripts i, g, ¢, and [ stand for branches which contain independent current sources, resistors,
capacitors, and inductors, respectively. The relationships between branch currents and voltages are
as follows

i, = —L(t), ig=0vy ic=Clv, v,=rlj (8)

In Equation(8), Is(¢) is the vector of current sources. The conductance matrix G and capacitance
matrix C are diagonal matrices. Implementing the partial inductance extraction, the inductance
matrix £ is no more a sparse matrix, but whose diagonal elements are the values of self inductances



and the off-diagonal terms are mutual inductances. It is known that £ is symmetric and positive
definite.

MNA combines Equation (7) and (8), and eliminates unnecessary branch currents. In RLKC
circuits, only the branch currents running through inductors have to be kept in the equations. Then
we obtain the following:

Gx+Cx=b, (9)
= | G A} | va
in which G_{_Al 0 } - il}’ 10
in whic & C o B AZTii (10)
“lo |’ - 0

In (10), G = ATGA, and C = ATCA., which are symmetric and positive definite.
For transient analysis, the trapezoidal integration approximation of Equation (9) over the time
interval [kh, (k + 1)h] is given by

o [xk+l 4 xk _ /xktl _ k bh+l 4 bk
G|l—— C =
(=) (=)=

It can be rewritten as follows,
(é+%é) xht1 = (—é+%é) x* 4+ brt1 4 bk (11)

The MNA approach works for ordinary inductance sparse approximations, but not for the suscep-
tance matrix. In this paper, we use this method to solve the exact solution and the shift-truncate
sparsification method.

3.2 NA Approach

Although MNA provides a good solution for general circuits, the introduction of extra current
variables makes the system matrix (é + %C) in Equation (11) asymmetric, which crucially affects

the runtime of decomposition procedure. In this subsection, we will show that Nodal Analysis is

feasible for sparse reciprocal inductance matrix, and even has more advantages than MNA methods.
Substituting Equation (10) into (11) and performing block matrix operations, we can obtain
two equations as follows,

2 . 2 .
(G + EC> vEHL L AT = (—G + EC) vE+ AT — AT (TFF + 1F) (12)
2 2
—ApvhT 4 E,Ci{”“ = Ak 4 Eﬁif (13)

Rearranging Equations (12) and (13), we get the following equations,

2 . h 2 . h ) ) )
(G +2C+ §S> vl = (—G +5C - §S> vy, —2A0 - AT (I + 1)) (14)

2ATiT = hS (vET +vE) 4+ 2A74f (15)

where S = AlTSAl, and S is the reciprocal inductance matrix that equals to £7!. Let Y =
(G + %C + %S), since G, C and S are all admittance. Y has shown to be symmetric and positive

definite [15]. Thus, the Cholesky Decomposition or Preconditioned Conjugate Gradient iterative
method can be applied to solve the matrix. Please refer to [15] for the proof and detail derivation.

10



Initialization:
Solve DC solutions (or use initial conditions)
for v and i.
Iterations:
Phase 1:
Solve Equation (14) and get vE+!.
Phase 2:
Perform matrix multiplications and vector
summations in Equation (15) and obtain
ZAZ[if'H for the next iteration.
End:

Table 2: Nodal Analysis for RLKC circuits

Using the sparsification method shown in previous section, matrix S is a sparse matrix, which keeps
Y still a sparse matrix.

Table 2 shows our NA transient simulation procedure for RLKC circuits. Compared equations
(11) of MNA and (14) of NA. We will perform a comparison studies between MNA and NA methods
in the next session.

3.3 Implementation Considerations: A Comparison Study

We now compare the pros and cons between MNA and NA algorithms. Later we will introduce more
advanced matrix solving techniques with an emphasis on the famous matrix reordering algorithis.

Since the MNA matrix (é + %é) in (11) is a positive definite but asymmetric matrix, LU

factorization is unavoidable for MNA analysis even when we switch the sign of —A; and £ in (10) to
be an symmetric but indefinite matrix. On the other hand, since Y of NA is symmetric and positive
definite, the Cholesky decomposition can be applied. There are several well-known benefits of the
Cholesky decomposition over the LU decomposition. First, the runtime and memory requirements
of the Cholesky decomposition in half as those of the LU decomposition since the former can
take the advantage of symmetry. Second, LU decomposition requires advanced reordering and
pivoting algorithm to enhance numerical conditions and avoid breaking down. However, it has
been shown that the accuracy of the Cholesky decomposition is always the best regardless of the
matrix ordering. Matrix reordering for the Cholesky is usually performed only for fill-in reduction.
However, the sparsity of the NA formulation is often slightly worse than MNA since S = AlTS A,
introduces more matrix entries than £. However, we believe that the additional entries are offset
by the saving of symmetry. Finally, the Cholesky decomposition is the best known most efficient
way to check the positive definiteness of a matrix. Actually, it can serve a check for the stability
of the inductance and reciprocal inductance matrix. When the Cholesky decomposition fails for
the NA formulations, it sounds alarms for the instability of the & matrix. Therefore, it served as
a guard for the K-method as well as our SGC method. It is also suggested to directly perform the
Cholesky decomposition to S to check its stability.

It is well known that the computation time of the decomposition is dominated by the number
of fill-ins and the matrix ordering plays a crucial role to the fill-ins. The reduction of fill-ins not
only saves the runtime of the decomposition but also has tremendous benefit for later transient
simulation since we have a smaller amount of matrix entries of the triangle matrices. It is also
known that it is easier and more efficient to perform matrix reordering to symmetric matrices.

11



About matrix reordering algorithms, there are just so many of them such as RCM (Reverse
Cuthill-McKee), MD (Minimum Degree), ND (Nested Dissection) methods and their variants.
To the authors’ knowledge and experimental results, we discover that MD is one of the most
efficient ways to reduce fill-ins. In our work, we implemented a variant of the minimum degree
(MD) algorithms. There are basically three forms of the Cholesky decomposition methods: row-
major, column-major, and sub-matrix methods. Different methods have different runtime, memory
consumption, and memory access patterns. In our experience, we discover column-major is easier,
very efficient, and cache friendly. Finally, we note that when there exist huge amount of medium
size dense blocks in the & or £ matrix, it might be beneficial to use a hybrid sparse-dense matrix
data structure.

3.4 Handling Independent Voltage Sources

In case there are independent voltage sources in the circuit, we have to add extra current variables
in the MNA equations. Thus Equation (9) becomes

G AT x C o X b
MBI R

where A, and v, are the adjacency matrix and vector of values for voltage source elements re-
spectively. In our implementation for NA, we transform the voltage source into Norton equivalent
circuit as shown in Figure 6.

_l’_

A\
Super Node k -|

‘Super Node k -1

(@ (b) ©

Figure 6: Voltage source transformation

If the voltage source connects to R or C elements, this method can be easily implemented.
Norton equivalent circuits for R and C elements are available. However, coupling of inductances
makes this transformation ineligible for L elements.

Consider the circuit shown is Figure 7(a), which shows a voltage source connects to one terminal
of two coupled inductances. Using frequency domain analysis, the current-voltage equations on its
two ports are as follows.

S S
I = %(VI—VS)+%V2
S S

These two equations can be rewritten as

L = —Vi+—Vo— —Vg
s s s
S S S

L, = 22y 22y, _ ﬁvs
s s s

which can be represented as the circuit shown in Figure 7(b). The voltage source is replaced by
current sources. Since all of conductance (G), capacitance (C) and reciprocal inductance (S) are
admittance, they have the same property of equivalent circuits. Thus it can be applied to our NA
analysis.
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Figure 7: Norton equivalent liked transformation for inductances

4 Experimental Results

We implemented the shifted-truncated, K-method, and SGC methods in C/C++ language, and
simulated on an AlphaPC DP264 666Mhz system. Table 3 shows two test cases that contain
256 and 512 parallel conductors respectively. For each test case, we simulate the exact solution
and the shift-truncate method by both SPICE3 and INDUCTWISE, and the K-method using
INDUCTWISE. We select the sparsity of the shift-truncate method, which makes it reach the same
accuracy with the K-method. All of the transient simulations contain 400 time-steps. Table 3
shows that INDUCTWISE is 50X faster than SPICE3 for 512 conductors, and 2X memory saving.

(I [ sparsity(%) | runtime(s) | memory(M) ||

#t of conductors 256

Excat (SPICE3) - 266.91 21
Exact (Ours) - 16.09 12
Shift (SPICE?)) 45 132.94 17
Shift (Ours) 45 7.80 10
S Matrix (Ours) 90 1.88 5.6
# of conductors 512

Excat (SPICE3) - 4016.96 74
Exact (Ours) - 77.61 43
Shift (SPICE3) 45 2334.59 57
Shift (Ours) 5 57.13 28
SGC (Ours) 90 10.99 15

Table 3: SPICE3 vs. INDUCTWISE

Table 4 compares the exact solution, the K-method, and the SGC algorithm with our simulator
on two test cases, one is 1024 parallel conductors, and the other one is a large test case, 10000
conductors. In this table, inversion time means the run time K-method or the SGC algorithm
takes, decomposition time means the period performing the LU or Cholesky decomposition, and
iteration time means the time transient simulation takes for total 400 time steps. The output
waveforms for 1024 conductors are shown in Figure 8. We can see that with window size 55, both
the susceptance method and the SGC method have almost 100% accuracy, and saves about 96%
of the decomposition time. With group number 4, the group calculation save 67% of the inversion
time.
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