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ABSTRACT
This paper proposes a general hierarchical analysis method-
ology, HiPRIME, to efficiently analyze RLKC power delivery
systems. After partitioning the circuits into blocks, we de-
velop and apply the IEKS (Improved Extended Krylov Sub-
space) method to build the Multi-port Norton Equivalent
circuits which transform all the internal sources to Norton
current sources at ports. Since there is no active elements
inside the Norton circuits, passive or realizable model or-
der reduction techniques such as PRIMA can be applied.
To further reduce the top-level hierarchy runtime, we de-
velop a second-level model reduction algorithm and prove
its passivity. Experimental results show 400-700X runtime
improvement with less than 0.2% error.

1. CATEGORIES & SUBJECT DESCRIPTORS
B. Hardware
B.8 Performance and Reliability
B.8.2 Performance Analysis and Design Aids

2. GENERAL TERMS
Algorithms, Design, Measurement, Performance, Theory, Re-
liability, Verification

3. INTRODUCTION
With the UDSM (Ultra Deep Sub-Micron) technology, sev-
eral features about today’s chips ( faster operating frequen-
cies, larger amount of transistors, smaller feature size and
lower power voltage) have pushed the power delivery noise
analysis onto the list of the designer’s high-priority concerns.
Basically, power delivery noise consists of IR-drop, Ldi/dt
drop and resonance fluctuations. IR-drop has been widely
discussed and extensively studied in the literature [7], [8] and
[9]. Due to the roaring clock frequency, increasing current
consumption, and even the clock gating feature, Ldi/dt noise
is quickly emerging into another power fluctuation concern
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[8]. Power delivery noise, which causes the power voltage
greater or lower than the ideal value, can degrade the per-
formance severely and even make the gate function wrong.
Therefore, extensive analysis of RLKC power delivery sys-
tems are required to ensure they meet the targeted perfor-
mance and reliability goals.

Generally speaking, one of the major difficulties for power
delivery analysis is size explosion. Tens of millions of devices
and parasitics are required to be modeled and simulated for
over a long time period. The traditional circuit simulation
engine such as SPICE [11] can not fulfill the demanding task
in a timely manner. For this reason, hierarchical simulation
algorithms have been proposed by David, Sachin, et al [8].

Model order reduction techniques have also been exten-
sively studied in the literature [6]. Starting from AWE
(Asymptotic Waveform Evaluation) [5] to PRIMA (Passive
Reduction Interconnect Macromodeling Algorithm), model
order reduction techniques have been successfully extended
to consider inductance effects in a reasonable accuracy. Later,
[7] develops an EKS (Extended Krylov Subspace) method
to simulate large scale power delivery circuits with many
current sources. To resolve the source waveform modeling
issues, EKS has to perform moment shifting procedures to
recover the proper moments.

In this paper, we propose a novel hierarchical power deliv-
ery analysis methodology. The contributions of our method
are as follows: First, we establish a novel hierarchical power
delivery macromodeling methodology, which integrates mul-
tiple-port Norton equivalent theorem with model order re-
duction algorithm to generate compact and accurate model
and achieve significant runtime improvement. Secondly, we
enhance the EKS method such that it no longer needs to per-
form moment shifting for source waveform modeling. There-
fore, highly accurate simulation results are observed. Fi-
nally, to further reduce runtime, we develop a multiple level
passive model reduction algorithm and prove its passivity.

The outline of this paper is as follows. In section 2, we in-
troduce the basic power delivery network modeling, circuit
formulations and model order reduction. In section 3, we
present our hierarchical and passive order-reduced macro-
modeling methodology. In the last section, we present the
experimental results.

4. PRELIMINARY
RLKC elements are applied to model power delivery sys-
tem as shown in Figure 1. To reduce the simulation run-
time, we decouple the linear simulation from the nonlinear



simulation. Once the nonlinear simulation has been done,
we use current sources and capacitors to model gate current
consumption and the diffusion and gate capacitance, respec-
tively. Therefore, the power grid analysis problem is reduced
to simulate a linear RLKC network with linear time-varying
current sources and measure the voltage drop at each grid.
A linear RLKC circuit can be represented as a set of Modi-

Figure 1: Modeling of the power grid network

fied Nodal Analysis (MNA) circuit equations as following:

Gx + C
d

dt
x = Bu, (1)

where x is MNA variable vector, u denotes a vector of the
port voltage sources and internal current sources.

G =

[
N E

−ET 0

]
, C =

[
Q 0
0 H

]
, X =

[
v
i

]
where v

and i corresponds to the voltages at nodes and branch cur-
rents flowing through inductors and voltage sources. G and
C matrices represent the conductance and susceptance ma-
trices respectively. N, Q and H contain the stamping of the
resistors, conductors and inductors. Note that H contains
both self and mutual inductors (K elements). E corresponds
to MNA current variables’ contribution to the KCL equa-
tions.

Model order-reduction generates an analytic model which
is a compact description of original circuits by matching
their moments or poles. Circuit equations as shown in Equa-
tion 1 can be transformed to Laplace domain.

GX + CXs = BU (2)

To illustrate the idea of moment matching, we expand both
sides of the Equation (2) in a Taylor series around zero fre-
quency

(G + sC)(m0 + m1s + m2s
2 + · · · )

= B(u0 + u1s + u2s
2 + · · · )

where mi and ui, the coefficients of the ith term in the Taylor
series, are known as the ith moment of x and u respectively.
The basic idea of moment matching is to represent the finite
unknown moments of the left hand side of the above equa-
tion in terms of the known moments of the right hand side.
In PRIMA, the sources are assumed to be impulse sources
in the moment matching process in order to preserve the
input-output transfer characteristics. The impulse sources
are constant in the frequency domain. So the Taylor expan-
sion can be modified as

(G + sC)(m0 + m1s + m2s
2 + · · · ) = Bu0

This produces an iterative relationship between the mo-
ments of the x(s) and u(s): Gm0 = Bu0, Gmi + Cmi−1 =
0. This explicit moment matching method is seldom used
for the reason that it has numerical stability problem, es-
pecially in the higher order iterations. To avoid the nu-
merical errors, a set of orthogonal bases is built to span
the same subspace as spanned by the finite moments of
x(s). The orthogonal bases V, or Krylov subspace, of ma-
trix A = −G−1C and matrix R = G−1B is defined as
Kq(A,R) = colsp(R,AR, A2R...Aq−1R). The dimension of
the full description circuit(G,C,B) is reduced because the
rank of V is much smaller than the original matrix A. This
order-reduced model can be obtained by projecting the orig-
inal model (G,C,B) onto this Krylov subspace using congru-
ent transformation. The reduced MNA matrices are de-
noted as G̃ = V T GV , C̃ = V T CV and B̃ = V T B. Thus the
compact model in the time domain are represented in MNA
equations as:

G̃x̃ + C̃
d

dt
x̃ = B̃u

5. HIERARCHICAL AND PASSIVE ORDER-
REDUCED MACROMODELING

Our hierarchical and passive model order reduction analysis
consists of three steps. First we partition power grid net-
works into multiple blocks. Each block may contain RLC
interconnect network and multiple internal switching cur-
rents. The second step is to generate Norton equivalent
order-reduced model for each block. This step is divided
into three phases: The first phrase is to find the passive
order-reduced model for the RLC interconnect network of
this block. The second phase is to find the Norton equiv-
alent current of the internal current sources. In the last
phase of the second step, we attach the Norton equivalent
currents at the ports of the order-reduced RLC model. At
the third step, we apply integration algorithm to the macro-
models generated by the first two steps and apply top level
simulation.

The outline and flowchart of our algorithm are shown in
Figure 2 and Figure 3, respectively. In the following subsec-
tions, we will discuss step A2.1, step A2.2 and step A3 in
Figure 2.

Algorithm: HiPRIME (Hierarchical and Passivity Reserved
Interconnect Macromodeling Engine)

A1. Partition the given circuit into multiple blocks
A2. For each block, we generate multiport Norton

equivalent order reduced circuits by the following procedure:
A2.1 Zero all the active sources and perform passive

model order reduction for the linear circuit
using any passivity guaranteed model reduction
algorithm such as PRIMA.

A2.2 Activate all sources and short all the ports nodes
to ground and find out the Norton equivalent
sources at each port by IEKS or SPICE simulation.

A2.3 Form the Norton Equivalent circuit by attaching the
the Norton equivalent sources at each port to the
reduced circuit generated by the model reduction
algorithms in Step A2.1.

A3. Form the integrated circuit by combining all the reduced
modules. Perform higher level of model order reduction
such as IEKS or PRIMA when necessary.

Figure 2: HiPRIME Algorithm
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Figure 3: Flowchart for the hierarchical and passivity reserved interconnect macromodeling engine

5.1 Passive Reduced-Order Macromodeling of
RLC Networks

After a power grid network is partitioned into multiple blocks,
each block may contain passive RLC interconnect and inter-
nal switching current sources. In order to obtain a passive
order-reduced model, we simply disconnect all the internal
current sources to make this block a passive RLC network.
The effect of these current sources on grid voltages will
be considered later. We may apply a conventional passive
model order reduction algorithm, PRIMA, to each simpli-
fied block. The MNA equations for the RLC interconnect
network of the ith block is as:

GiXi + Ci

d

dt
Xi = Biui (3)

where ui is the port voltage vector of the ith block. The
result of PRIMA is that, by the transfer matrix Vi, Gi, Ci

and Bi are transformed into G̃i, C̃i and B̃i, whose dimension
are reduced. The compact MNA equation to describe this
block is as:

G̃iX̃i + C̃i

d

dt
X̃i = B̃iui

The benefits of model order reduction after partition in-
clude: 1) Model order reduction algorithms handle much
smaller input circuit size, which means the limit of memory
might be eased; 2) It also makes parallel order reduction for
different blocks possible, by which the speed is improved.

5.2 Efficient Way of Finding the Norton Equiv-
alent Current

In this section, we consider the effects of the internal current
sources on grid voltages which are ignored in the previous
procedure. Norton equivalent theory is used to find out the
equivalent current sources at the ports and replace all the
internal current sources so that the port responses of each
block are preserved. To distinguish the port voltage sources
from the internal current sources, we modify Equation (3)
as

GiXi + Ci

d

dt
Xi = [BiB

′

i]

[
vi

igi

]
(4)

where vi and igi denote the independent voltage sources
and the internal switching current sources in the ith block
respectively. Bi and B′

i denote the position of the voltage

sources and the current sources relative to the whole net-
work. The procedure of calculating the equivalent at the
ports is illustrated in Figure 4. As shown, the port currents

Figure 4: Finding the equivalent current of internal
sources
with the port voltages set to zeros are the Norton equiva-
lent current sources. Also as we know, port currents can be
obtained by iNi = Bi

T Xi. To solve Equation (4) with the
voltage sources ui set to zeros, different algorithms can be
applied. In our algorithm, we applied IEKS, an improved
version of EKS such that no moment shifting is necessary
which will be described in next session.

5.2.1 Improved Extended Krylov Subspace
Developed by Janet, et al. at [7], EKS directly calculates
the orthogonalized moments of the response when multiple
sources are turned on at the same time. Therefore, unlike
PRIMA whose runtime is heavily dependent on the port
number, the runtime of EKS is independent of that. EKS
models a Piece-Wise-Linear(PWL) independent source as a
sum of delayed ramps in the Laplace domain:

u(s) =
1

s2

K∑

i=1

riexp(−βis)

This expression contains 1/s and 1/s2 terms. Unfortunately
the traditional Krylov subspace methods start the moment
matching from the 0th moment. EKS extends the Krylov
subspace by shifting the moments toward right in the fre-
quency spectrum.

This moment shifting in EKS is tedious and error-prone.
Fortunately, we develop an improved moment calculation
method which ensure the −1st and −2nd order moments
are all zero for arbitrary finite time PWL waveform and
hence the moment shifting process can be removed. Since
for simulation purpose we are only interested for a specific
time period, the finite-time assumption is quite general. We



believe this procedure is numerically more sound than the
original method.

ui(t)

τi,0 τi,Ki τi,Ki+1

ai,0

ai,1

ai,Ki
ai,Ki+1

τi,1
t

Figure 5: Waveform of the source

Lemma 1. Given a finite-time PWL source, IEKS calcu-

lates a moment representation with −1st and −2nd order

moments to be zero.

Proof. Given an finite-time PWL source ui(t) as de-
scribed in Figure 5, we have

ui(t) =

Ki∑

j=0

{
[ai,j + γi,j(t− τi,j)] E(t−τi,j)

− [ai,j+1 + γi,j(t− τi,j+1)] E(t−τi,j+1)

}
(5)

where γi,j = (ai,j+1 − ai,j)/(τi,j+1 − τi,j), and E(t−τi,j ) is
the unit-step function with τi,j delay. By taking the Laplace
transform of Equation (5) and Taylor expansion, we now
have

L(ui(t))

=
1

s2

Ki∑

j=0

{
ai,js

∞∑

l=0

(−1)l
τ l
i,j

l!
sl + γi,j

∞∑

l=0

(−1)l
τ l
i,j

l!
sl

−ai,j+1s

∞∑

l=0

(−1)l
τ l
i,j+1

l!
sl
− γi

∞∑

l=0

(−1)l
τ l
i,j+1

l!
sl

}

Let ũi,j denote the coefficient of the sj term. The moment
representation of L(ui(t)) can be simplified to

L(ui(t)) =
{
ũi,−2s

−2 + ũi,−1s
−1 + ũi,0 + ũi,1s

+ũi,2s
2 + · · · + ũi,msm + · · ·

}
(6)

When calculating the first two coefficients, we conclude

ũi,−2 =

Ki∑

j=0

(γi,j − γi,j) = 0

ũi,−1 =

Ki∑

j=0

(ai,j − γi,jτi,j − ai,j+1 + γi,jτi,j+1)

=

Ki∑

j=0

(ai,j − ai,j+1 − γi,j(τi,j − τi,j+1)) = 0

The first two terms are eliminated and Equation (6) can be
rewritten as a moment representation starting from the 0th

moment:

L(ui(t)) =
{
ũi,0 + ũi,1s + ũi,2s

2 + · · ·+ ũi,msm + · · ·
}

Table 1 summarizes the process of IEKS to calculate the
first M moments.

Algorithm: IEKS Moments Calculating Algorithm
Input: N PWL sources,{ai,0...(Ki+1), τi,0...(Ki+1)}

N
i=1

M, the number of moments to calculate
Output: ui,m = {[ ui,1 ui,2 · · · ui,M ]}N

i=1,
the first M moments of the N PWL sources

Begin
for i = 1 : N
for j = 0 : Ki

γi,j =
(ai,j+1 − ai,j)

(τi,j+1 − τi,j)
end
for m = 1 : M
for j = 0 : Ki + 1

β
(m)
i,j =

(−τi,j)
m

m!
end

ui,m−1 = (ai,0 − γi,0
τi,0

m
)β

(m−1)
i,0 −

Ki−1∑

j=0

(γi,j − γi,j+1)β
(m)
i,j+1

−(ai,Ki+1 − γi,Ki

τi,Ki+1

m
)β

(m−1)
i,Ki+1

end
end

End

Table 1: IEKS Moments Calculating Algorithm

5.2.2 System solution by IEKS
IEKS generates a system transform matrix Vi, by which the
original system is transformed into a compact description.

G̃iX̃i + C̃i

d

dt
X̃i = [B̃iB̃′

i]

[
0
igi

]
(7)

The compact form can be solved quickly in the time domain
by standard integration algorithms. The solution of the orig-
inal system can be recovered by Xi = V X̃i. But we are only
interested about the port currents in the solution. The port

currents are directly obtained by iNi = BT Xi = B̃T
i X̃i.

5.3 Macromodel Integration and Top Level
Reduced-Model Simulation

After the A2 step of HiPRIME (Figure 2), we transform
a block consisting of RLC segments and internal PWL cur-
rents into a passive order reduced block with current sources
attached only at the ports. The new macromodel of each
block is illustrated in Figure 6. The port response of the
original block is preserved. We generate such macromodel

Figure 6: Equivalent circuit for each block
for each block and the entire network is integrated by com-
bining these macromodels together. Considering each block
as a node of the integrated network, we stamp them into the
MNA equation of the entire network. The combination of
ith block and jth are given in Equation (8).




G̃i 0 −B̃ij

0 G̃j −B̃ji

B̃T
ij B̃T

ji 0







X̃i

X̃j

uij


 +




C̃i 0 0

0 C̃j 0
0 0 0


 d

dt




X̃i

X̃j

uij


 =




B̃ii 0 0 0

0 B̃jj 0 0

0 0 Ei
T Ej

T







ui

uj

iNi

iNj


 (8)



In this formulation, uij denotes the voltages at the common
ports belonging to both the ith and jth blocks. ui and uj

stand for the voltages at the ports of the ith and jth blocks,
which are not connected with each other. Bii and Bjj de-
note the connection of the internal nodes to the ports which
are exclusive of each other. Bij denotes the connection of
internal nodes of ith block to jth block and Bji denotes the
connection of internal nodes of jth block to ith block. iNi

and iNj stand for the equivalent port currents, which are ex-
tracted from the inside of the ith and jth block respectively.
Ei and Ej record the connection of the internal nodes to the
equivalent port currents for ith block and jth block.

Given this glued macromodels in Equation (8), we can
further apply model order reduction and simulation tech-
niques such as PRIMA or IEKS to the top level to save
runtime. There may be more than 2 hierarchical levels and
the higher level model order reduction is introduced as the
following. Let us define some block system matrices for

ith and jth blocks. Define G′ =




G̃i 0 −B̃ij

0 G̃j −B̃ji

B̃T
ij B̃T

ji 0


 , C′ =




Ci 0 0
0 Cj 0
0 0 0


 and B′ =




B̃ii 0

0 B̃jj

0 0


, with the internal

current sources disconnected, the system is described as

G
′




X̃i

X̃j

uij


 + C

′
d

dt




X̃i

X̃i

uij


 = B

′

[
ui

uj

]
(9)

Use
[

V1V2V3

]T
represent the orthogonal basis of the sub-

space spanned by the moments of
[

X̃iX̃juij

]T
and de-

note G̃′ =




V1

V2

V3




T

G′




V1

V2

V3


, C̃′ =




V1

V2

V3




T

C′




V1

V2

V3




and B̃′ =




V1

V2

V3




T

B′ , the MNA equation generated by the

higher level order-reduction is noted as

G̃′Z̃ + C̃′
d

dt
Z̃ = B̃′

[
ui

uj

]

5.4 Preservation of Passivity
In order to apply PRIMA or EKS to the already reduced
model as described in previous session, we need to be sure
that the higher level order-reduced models are also passive.
The following theorem gives us the warrant.

Theorem 1. During the hierarchical order reduction, the

passivity of the higher level order-reduced macromodel is also

preserved. That is to say, the transfer function of the higher

level order-reduced system Y (s) satisfies

1. Y (s?) = Y ?(s) for all complex s.

2. Y (s) is a positive matrix, that means, Z?T (Y (s) +
Y T (s?))Z � 0 for any complex s satisfying Re(s) � 0
and for any complex vector z.

Proof. With the impulse voltages active at ports and
applying Laplace transform to Equation (10),the transfer
function can be obtained as

Y (s) = B̃′
T
(G̃′ + s · C̃′)−1B̃′

For the system matrices are all real, the first condition is
met naturally. To prove the second condition is also met,
we start from
Z?T (Y (s) + Y T (s?))Z

= Z?T (B̃′
T
(G̃′ + s · C̃′)−1B̃′ + B̃′

T
(G̃′ + s? · C̃′)−T B̃′)Z

Setting w = (G̃′ + s? · C̃′)−T B̃′z and s = j$ + σ yields
Z?T (Y (s) + Y T (s?))Z

= w?T
[
(G̃′ + (j$ + σ) · C̃′) + (G̃′ + (j$ − σ) · C̃′)T

]
w

= w?T
(
G̃′ + G̃′

T
)

w + w?T · σ ·
(
C̃′ + C̃′

T
)

w

Since Ci and Cj are symmetric, CT
i + Ci = 2Ci and CT

j +
Cj = 2Cj . Along with the fact that Ci and Cj are nonneg-
ative definite, it yields

w?T · σ ·
(
C̃′ + C̃′

T
)

w

= σ · w?T V T
1 V T

i 2CiViV1w + σ · w?T V T
2 V T

j 2CjVjV2w � 0
for any complex vector z and positive σ. Since Ni and Nj

are symmetric nonnegative definite matrices, we have

w?T
(
G̃′ + G̃′

T
)

w

= w?T V T
1 V T

i (GT
i +Gi)ViV1w+w?T V T

2 V T
j

(
GT

j + Gj

)
VjV2w

= w?T V T
1 V T

i

[
2Ni 0
0 0

]
ViV1w

+w?T V T
2 V T

j

[
2Nj 0
0 0

]
VjV2w � 0

for any complex vector z. From the above, we can conclude
that the second passivity condition is satisfied.

6. EXPERIMENTAL RESULTS AND FUTURE
WORK

In this section, the speed and accuracy of HiPRIME and
IEKS are demonstrated and compared with other methods.
We use mesh networks to model the power delivery network,
which consist of lumped RC/RLC segments with many cur-
rent sources attached inside. The typical values for each
lumped RC/RLC segment are R = 0.2Ω, L = 1.0pH and
C = 0.024fF .
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Figure 7: Accuracy analysis of RC circuit case: (a)
waveform result of HiPRIME, IEKS and Back Euler
(b) error spectrum of HiPRIME and IEKS

0 0.5 1 1.5

x 10
−9

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

Time (s)

V
o

lt
a

g
e

 (
V

)

HiPRIME
IEKS
Back Euler

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

Error (%)

E
rr

o
r 

d
is

tr
ib

u
ti
o

n
 (

%
)

HiPRIME
IEKS

x 0.001 

Figure 8: Accuracy analysis of RLC circuit case: (a)
waveform result of HiPRIME, IEKS and Back Euler
(b) error spectrum of HiPRIME and IEKS



The voltage waveforms of HiPRIME are compared with those
of IEKS and Back Euler. The cases of RC circuit and RLC
circuit are tested and the results are shown in Figure 7
and Figure 8 respectively. In the RC case, the waveforms
are indistinguishable and the errors for 80% time intervals
are within 0.001%. In the RLC case, the waveforms by
HiPRIME and IEKS approximate the one by Back Euler
method very well and the errors for 50% time intervals are
within 0.001%.

We implement IEKS in C code and test it on a PIII
933MHZ machine. The result is compared with our time
domain solver InductWise [10] and Spice. Table 2 summa-
rizes the runtime results and the runtime comparisons are
shown in Figure 9. Significant speed improvement, 700X
faster than Spice, is observed and the same tendency that
the speed up increases with larger circuit size is shown.

Circuit IEKS InductWise Speedup Spice Speedup
Size (s) (s) (X) (s) (X)

7861 1.46 14.76 10.1 697.13 477.48
14081 3.88 29.77 7.67 2728.18 703.14
43541 13.49 107.05 7.93 – –
89201 35.33 244.95 6.93 – –

Table 2: Runtime of IEKS, InductWise and Spice
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Figure 9: Runtime Analysis of (a) IEKS, Induct-
Wise and Spice (b) IEKS and InductWise

We also implement HiPRIME, flat IEKS and Back Euler in
Matlab and test them on Sun Ultrasparc V. Table 3 and 4
summarize the runtime results and the runtime comparisons
are shown in Figures 10 and 11 for RC and RLC circuits re-
spectively. From the figures, we can see the tendency that
the speed up is more impressive when the circuit size in-
creases.

Circuit HiPRIME IEKS Speedup Back Euler Speedup
Size (s) (s) (X) (s) (X)

203 2.52 0.89 0.36 17.1 6.79
803 2.98 1.97 0.66 78.3 26.3
2403 4.39 6.17 1.40 288.9 65.8
5003 7.93 13.18 1.66 760.1 95.8

Table 3: Runtime of RC circuit case

Circuit HiPRIME IEKS Speedup Back Euler Speedup
Size (s) (s) (X) (s) (X)

443 2.76 1.29 0.47 29.5 10.7
1883 3.87 5.08 1.31 129.8 33.5
3843 6.72 12.94 1.92 276.9 41.2
5803 11.81 27.15 2.29 427.2 36.6

Table 4: Runtime of RLC circuit case
Since the runtime of PRIMA is proportional to number
of ports, we plan to investigate realizable model order re-
duction algorithm whose runtime is ports size independent.
Also we would like to point out that the focus of this pa-
per is not on the partition algorithms. However, a good
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Figure 10: Runtime analysis of RC circuit case: (a)
runtime of HiPRIME, IEKS and Back Euler (b) run-
time of HiPRIME and IEKS
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Figure 11: Runtime analysis of RLC circuit case:
(a) runtime of HiPRIME, IEKS and Back Euler (b)
runtime of HiPRIME and IEKS

partition algorithm is important for the performance of the
hierarchical and passive model order reduction algorithm.
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