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Abstract|In this paper, we present a RC-in RC-out model

order reduction method which takes RC circuits and accu-

rate reduced models which can be realized using passive RC

elements. The reduced models are accurate up to 2nd order

moment and hence are more accurate than the �rst order

moment matching based algorithm [3], [4], [5]. The runtime

and reduction ratios of our method are not dependent on

the number of ports, which can be very large for tightly

coupled interconnects. Extensive SPICE simulations show

the average accuracy of our algorithm is 5X better than

�rst order moment based algorithms. It also signi�cantly

improves the reduction ratio by 50% comparing the �rst

order moment based algorithm for the same accuracy.

I. Pattern Matching Rule-Based Reduction

Procedure

In this section, we present our rule-based realizable
model order reduction method. We �rst develop many cir-
cuit primitives which can match predetermined second or-
der moments and then recursively search the circuits to re-
place such circuit patterns which can be replaced by these
primitives without losing much accuracy. L2-Reduction
and C2-Reduction are the rules we newly proposed.
1) L2-Reduction:

The basic primitive of L2-reduction is a 2-� model as
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Fig. 1. L-2 Reduction (a) Before reduction (b)After reduction.

shown in Figure 1.b. L2-reduction replaces two-port circuit
such as shown in Figure 1.a with Figure 1.b. The replace-
ment is repeated till no further reduction is possible. Note
that we can also perform the reduction once for serially
connected RC wire segments rather than one reduction at
a time. L2-Reduction is more accurate than the single
order moment matching technique (L1 reduction) since it
matches two moments rather than one. It matches second
order moments from both directions, total resistance, and
total capacitance as the original circuit. Given total resis-
tance (R0), total capacitance (C 0), Elmore delay form left
to right (M1R) and from right to left (M1R), second order
moments from left to right (M2L) and from right to left
(M2L) for a given two-port circuit such as shown in Fig-
ure 1.a. L2-Reduction constructs a 2-� circuit as shown
in Figure 1.b where all the above parameters are matched.
Let C1, C2, C3, R1, R2 be the capacitances and resistances
values in Figure 1.b. We have the following equations:

R1 + R2 = R
0

(1)

C1 + C2 + C3 = C
0

(2)

R1(C2 + C3) +R2C3 = M1R (3)

R1C1 + R2(C1 + C2) = M1L (4)

R1(C2R1(C2 + C3) + C3M1R) + R2C3M1R = M2R (5)

R2(C2R2(C1 + C2) + C1M1L) +R1C1M1L = M2L (6)
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After rearranging the terms, and substituting for P and
K we get
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After obtaining C1 from the analytical solutions of the

above equation, we use the following theorem to obtain

the value of R1; R2; C2; C3 .
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set (1-6).

Note that a fourth order equation can be analytically
solved. Hence the runtime to compute the roots for Equa-
tion set (1-6) is quite small. In our implementation, we
compute all the four roots of equation (7) and use the most
accurate real positive root that makes all corresponding pa-
rameters real and positive.
2) C2-Reduction:

The basic primitive of C2-reduction is a 2-sided-2-�
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Fig. 2. C-2 Recution (a) Before reduction (b)After reduction.

model as shown in Figure 2.b. Our algorithm replaces
a multi-port circuit such as the one shown in Figure 2.a
with Figure 2.b.The reduced model matches all the follow-
ing parameters: total resistance (R0), ground capacitance
(C 0

g), total cross-coupled capacitance (C 0

x), and the El-

more delay and second moment from left to right and from
right to left for the full model (M1R;M2R;M1L; and;M2L)
, and the Elmore delay and second moment from left
to right and from right to left for the upper � model
(X1R; X2R; X1L; and;X2L). Although there are over 10 si-
multaneous nonlinear equations to solve, we partitioned
the equations into two sets and resolve them sequentially.
The �rst set of equations will be used to obtain the re-
duced L2 circuit for the original circuit with the coupled
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and grounded capacitance lumped together. The second
set of equations will be used to determine the distribution
of the coupled and grounded capacitance for each node for
the L2 circuit obtained from the �rst step. We now sum-
marize this procedure as follows: At the �rst step, we lump
each ground capacitance with the coupled capacitance at
the same node. After this process, the new problem be-
comes the same as L2-reduction problem. These equations
can be written as follows:

R1 +R2 = R
0

C1 + C2 + C3 + Cx1 + Cx2 + Cx3 = C
0

g + C
0

x

R1(C2 + C3 + Cx2 + Cx3) +R2(C3 + Cx3) = M1R

R1(C1 + Cx1) +R2(C1 + C2 + Cx1 + Cx2) = M1L

R1((C2 + Cx2)R1(C2 + Cx2 + C3 + Cx3)+

(C3 + Cx3)M1R) +R2(C3 + Cx3)M1R = M2R

R2((C2 + Cx2)R2(C1 + C2 + Cx1 + Cx2) +

(C1 + Cx1)M1L) + R1(C1 + Cx1)M1L = M2L

We �rst utilize Theorem 1 to solve the above simultaneous
equations to obtain R1, R2, and the lumped total capaci-
tance in each node C1+Cx1, C2+Cx2, and C3+Cx3. At the
second step, we �nd the exact values of the cross-3coupled
capacitances. The cross-coupled capacitance values Cx1,
Cx2, and Cx3 are obtained by solving the following simul-
taneous equations:

Cx1 + Cx2 + Cx3 = C
0

x (8)

R1(Cx2 + Cx3) +R2Cx3 = X1R (9)

R1Cx1 + R2(Cx1 + Cx2) = X1L (10)

R1(Cx2R1(Cx2 + Cx3) + Cx3X1R) +R2Cx3X1R = X2R (11)

R2(Cx2R2(Cx1 + Cx2) + Cx1X1L) + R1Cx1X1L = X2L (12)

Equation (8) preserves the total coupled capacitance.
Equations (9)-(10) preserve the bidirectional Elmore de-
lays caused by the coupled capacitance. and the bidirec-
tional second order moments. The solutions of the above
equations are as follows:
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II. Experimental Results

We extensively tested the accuracy and reduction ratio

for all reduction methods. Table I shows the accuracy com-

parison between various reduction methods on hundreds of

carefully randomly generated circuits. All numerical data

are based on SPICE simulation. It shows that the average

accuracy of L2-Reduction is 0.36% while single moment

matching technique (L1 reduction) is 3.0%. Table II shows

the accuracy and reduction ratio comparisons between L2-

Reduction and L1 reduction for a �xed accuracy or for a

�xed reduction percentage. It shows that second-moment

accurate reduction methods give over 5X improvement in

accuracy for �xed reduction ratio and obtain over 50% im-

provement in reduction ratio for �xed accuracy require-

ments. Figure 3 shows the SPICE simulation results of

2000-node clock tree example before and after the circuit

was reduced using L2-Reduction obtained from [1]. The

di�erence between the two curves is negligible. Figure 4

gives the plot of the error distributions for L2-Reduction.

It shows that the error is always within 1%. Figure 5 plots

the runtime versus the number of elements.

Reduction Error Comparison

L1 2.816%

L2 0.369%

C2 1.1085%

TABLE I

Comparison of Accuracy of various reduction methods

Reduction Comparison with

Type Reduction at 60% Error at 0.04%
Error Reduction

First moment 0.8% 5%

Second moment 0.04% 57%

TABLE II

Comparison of second order(L2) and first order(L1) moment

matching
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Fig. 3. The Spice simulation of the original �le and the reduced �le
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Fig. 4. A plot of the error percentages for L2 reduction
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Fig. 5. The plot of runtime versus the number of elements
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