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Abstract—The finite-difference time-domain (FDTD) method
of solving the full-wave Maxwell’s equations has been recently
extended to provide accurate and numerically stable opera-
tion for time steps exceeding the Courant limit. The elim-
ination of an upper bound on the size of the time step was
achieved using an alternating-implicit direction (ADI) time-
stepping scheme. This greatly increases the computational ef-
ficiency of the FDTD method for classes of problems where the
cell size of the three-dimensional space lattice is constrained to
be much smaller than the shortest wavelength in the source
spectrum. One such class of problems is the analysis of high-
speed VLSI interconnects where full-wave methods are of-
ten needed for the accurate analysis of parasitic electromag-
netic wave phenomena. In this paper, we present an enhanced
FDTD-ADI formulation which permits the modeling of realis-
tic lossy materials such as semiconductor substrates and metal
conductors as well as artificial lossy materials needed for per-
fectly matched layer (PML) absorbing boundary conditions.
Simulations using our generalized FDTD-ADI formulation are
presented to demonstrate the accuracy and extent to which the
computational burden is reduced by the ADI scheme.

I. Introduction

R
ECENT advances in VLSI technology have resulted in higher
clock rates and low-pass signal bandwidths that extend well

into the microwave frequency range. At these high speeds, elec-
tromagnetic wave propagation and radiation effects become sig-
nificant and consequently limit the performance of on-chip and
off-chip VLSI interconnects. For example, at 10 GHz, a 5-mm-
long interconnect may in fact radiate much like an antenna since
its length corresponds to a substantial fraction of a wavelength.
Quasi-static analysis techniques, such as capacitance and induc-
tance extraction using method of moments [1], [2], [3] and model
order reduction using the partial element equivalent circuit method
[4], work extremely well at lower frequencies, but may have lim-
ited applicability in this regime. To accurately analyze parasitic
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electromagnetic wave phenomena at these higher frequencies, vec-
torial Maxwell’s equations modeling tools are needed.

As computing resources have become more powerful, full-
wave methods such as the method of moments, the finite element
method, and the finite-difference time-domain (FDTD) method
have become extremely versatile tools for solving electromagnetic
wave problems. In particular, the accuracy, efficiency, and overall
utility of FDTD has been demonstrated in recent years for a va-
riety of complex high-speed interconnect design problems related
to EMI/EMC, signal integrity, and packaging (for example, see
[5], [6], [7], [8], [9]). Furthermore, numerous extensions and en-
hancements to FDTD have been developed, which further broaden
its appeal, improve its computational efficiency, and augment its
capability [10].

However, there remains a class of VLSI interconnect problems
for which FDTD modeling persists to be very computationally
intensive. These difficulties, which are reviewed in Section II
in the context of a brief summary of the fundamental features
of the FDTD method, may be alleviated by a recently proposed
alternating-direction implicit (ADI) time-stepping scheme [11],
[12]. The original 3-D FDTD-ADI formulation reported in [12]
solves a simplified version of Maxwell’s curl equations where
the electric and magnetic conduction currents are assumed to be
zero. In Sections III and IV, we present an important extension to
the FDTD-ADI formulation that includes the contributions from
the conduction currents. The need for this extension is two-fold.
First, we are interested in modeling VLSI interconnects where the
lossy nature of realistic insulators, semiconductors, and conduc-
tors should be accounted for. Second, the creation of perfectly
matched layer (PML) absorbing boundary conditions (ABCs) [13]
is necessary to simulate open regions using a truncated computa-
tional domain. The PML formulation requires the simulation of
lossy regions near the grid boundaries. Simulation results pre-
sented in Section V demonstrate the accuracy and extent to which
the computational burden is reduced by the ADI scheme.

II. Numerical Accuracy and Stability of the FDTD Method

The FDTD method [14] is a computationally efficient approach
for modeling sinusoidal or impulsive electromagnetic wave inter-
actions with arbitrary three-dimensional structures. It is an explicit



grid-based technique for the direct solution of the fundamental
Maxwell’s curl equations, shown below for the six components
of the electric and magnetic field vectors, ~E (volts/meter) and ~H
(amperes/meter):
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Here, σ and σ? are the electric conductivity (S/m) and equivalent
magnetic loss (ohms/m), respectively.

In the standard formulation, the spatial derivatives are imple-
mented using central finite differences on staggered Cartesian
grids for the electric and magnetic fields. Central finite differences
are also used to approximate the temporal derivatives, resulting
in an explicit leapfrog integration scheme that marches the dis-
cretized electric and magnetic fields forward in time. The explicit
time-stepping expressions and their derivation have been docu-
mented extensively elsewhere [14], so they will not be repeated
here. Figure 1 summarizes the explicit time-stepping nature of the
standard algorithm. The notation V jni; j;k is used throughout this
paper to represent vector field component V sampled at time n∆t
and space coordinates (i∆x; j∆y;k∆z), where ∆t is the time step
and ∆x, ∆y, and ∆z are the space increments. Note that the electric
and magnetic fields are staggered in time by ∆t=2.

To minimize numerical dispersion errors and thereby ensure nu-
merical accuracy, the space and time increments must be no larger
than a small fraction of the smallest wavelength and temporal pe-
riod of interest. Typically, 10 to 20 samples per cycle (spatial
wavelength λmin, and temporal period Tmin) provide sufficient ac-
curacy. The numerical stability of the standard algorithm further
requires a bounding of the time step relative to the space incre-
ment. This Courant stability bound is given in three dimensions
[14] by
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c
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: (7)

where c is the speed of wave propagation in free space. For a
computational domain comprised of cubic grid cells of space in-
crement ∆, this stability limit simplifies to ∆t � ∆=(c

p
3).

Most commonly, the minimum geometrical feature size, b, of
the structure to be modeled is much larger than the needed grid
cell size, ∆, for the given frequency range of interest. In this case,
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Fig. 1. Flowchart of the standard FDTD time-stepping process.

the grid resolution is chosen such that the wave is spatially sam-
pled at a rate of N points per smallest wavelength (∆ = λmin=N),
and the minimum feature size is modeled using b=∆ grid cells.
The upper bound on the time step dictated by the stability limit
(∆tjmax = Tmin=(N

p
3)) is comparable to the desired time step

based on numerical accuracy considerations (∆tjmax = Tmin=N);
that is, if the stability limit didn’t exist, the choice of the time step
would not change much because of the need to adequately sam-
ple the temporal waveform. It is this common scenario for which
the FDTD algorithm is extremely computationally efficient. Typ-
ically, no more than 1,000 time steps are required to complete a
simulation.

There is, however, a class of problems that does not fit this sce-
nario. Consider a high-speed VLSI interconnect with a minimum
geometrical feature size of 1 µm and a signal rise time less than
100 ps. The frequency spectrum of this signal extends to nearly
10 GHz. As a result, the minimum wavelength of interest is on the
order of 3 cm in free space, or 1.5 cm in SiO2 (εr = 4). Numeri-
cal accuracy considerations would then suggest that an appropriate
grid cell size would be on the order of 1.0 mm (between 10 and
20 points per wavelength). However, to model the micron-scale
features of the interconnect, the spatial increment must be on the
order of 1.0 µm or less. As a result, the upper bound on the time
step is approximately 2 fs. Simulating the 100-ps rise time of a
digital signal alone would require 50,000 time steps! This exam-
ple illustrates the scenario where the minimum geometrical feature
size is much smaller than 1/10th or 1/20th of the smallest wave-
length of interest. Consequently, the limit on ∆t is orders of mag-
nitude smaller than needed for numerical accuracy considerations,
and a formidable number of time steps are required to complete
the simulation.

The difficulty with this second scenario would be alleviated if
the upper bound on ∆t was not linked to ∆ via a stability limit.



For example, if we could choose ∆t to be 1 ps (which is still small
enough to adequately sample the temporal period at a frequency of
10 GHz and thus maintain high accuracy) while keeping a spatial
increment of 1 µm, then only 100 time steps would be required to
march through the 100-ps rise time. This flexibility appears to be
now available with the advent of an alternating-direction implicit
(ADI) time-stepping scheme for FDTD [11], [12] which has been
shown to be unconditionally stable.

III. Numerical Formulation of the Generalized FDTD-ADI
Algorithm

Here we present the derivation of the generalized FDTD-ADI
algorithm for the case of physical media only. In Section IV, this
work is further extended to the case of both physical and artificial
(PML) media. In both cases, the discretized vector field compo-
nents are staggered in space, as in the conventional Yee grid, but
collocated rather than staggered in time. Also, in contrast to the
standard FDTD formulation which only requires one iteration to
advance from the nth to (n+1)th time step, the FDTD-ADI for-
mulation requires one sub-iteration to advance from n to n+ 1=2
and a second sub-iteration to advance from n+1=2 to n+1. This
process is illustrated in Figure 2. Due to limited space, we present
the complete derivation of an implicit update expression for only
the Ex field component and explicit update expressions for only
the Hz and Hy field components. Using these sample derivations
as a guide, it is straightforward to derive the implicit update ex-
pressions for Ey and Ez and the explicit update expression for Hx.

A. Sub-Iteration 1: Advance the 6 field components from time step
n to time step n+1=2

Step 1. We start by applying central differences to Eq. 1. In this
first sub-iteration, every term is discretized using finite differences
centered at n+1=4 as follows:
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Note that the spatial derivative terms involving magnetic fields are
discretized at time steps n+ 1=2 and n, giving an overall center
point of n+ 1=4. Upon substituting centered finite-difference ap-
proximations, we obtain the following expression:
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Here, we have used the conventional semi-implicit formulation to
evaluate the conduction current density terms. All fields at time

step n are known; the fields at time step n+ 1
2 are unknown. Note

that in sub-iteration 1, the ∂Hz=∂y term is evaluated implicitly from
as-yet unknown field data at time-step n+ 1=2, while the ∂Hy=∂z
term is evaluated explicitly from known field data at time step n.
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Fig. 2. Flowchart of the FDTD-ADI time-stepping process.

Step 2. Our aim is to find the value of the unknown E x at time
step n+ 1

2 . However, there are also unknown values of Hz on the
right hand side of Eq. (9). To eliminate the unknown terms, we ap-
ply finite-difference approximations centered at n+1=4 to Eq. (6)
to obtain the following expression:
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The two unknowns in this equation are also Ex and Hz at time step
n+ 1

2 .

Step 3. Finally, we use Eq. (10) to eliminate the unknown
Hzjn+ 1

2 terms in Eq. (9) and obtain the following expression for



the unknown Ex fields at the n+1=2th time step:

Ca
i+ 1

2 ; j;k
Exjn+1=2

i+ 1
2 ; j;k

�Cb
i+ 1

2 ; j;k
Exjn+1=2

i+ 1
2 ; j+1;k

�Cc
i+ 1

2 ; j;k
Exjn+1=2

i+ 1
2 ; j�1;k

=Cd
i+ 1

2 ; j;k
Exjni+ 1

2 ; j;k

+Ce
i+ 1

2 ; j;k
Hzjni+ 1

2 ; j+ 1
2 ;k
�Cf

i+ 1
2 ; j;k

Hzjni+ 1
2 ; j� 1

2 ;k

�Cg
i+ 1

2 ; j;k

�
Hyjni+ 1

2 ; j;k+ 1
2
� Hyjni+ 1

2 ; j;k� 1
2

�
�Ch

i+ 1
2 ; j;k

�
Eyjni+1; j+ 1

2 ;k
� Eyjni; j+ 1

2 ;k

�
+Ci

i+ 1
2 ; j;k

�
Eyjni+1; j� 1

2 ;k
� Eyjni; j� 1

2 ;k

�
(11)

where

Ca
i+ 1

2 ; j;k
=

2
6664

1+
α

i+ 1
2 ; j;k

(2∆t)2

(∆y)2(4µ
i+ 1

2 ; j+
1
2 ;k

+σ?

i+ 1
2 ; j+

1
2 ;k

∆t)

+
α

i+ 1
2 ; j;k

(2∆t)2

(∆y)2(4µ
i+ 1

2 ; j�
1
2 ;k

+σ?

i+ 1
2 ; j�

1
2 ;k

∆t)

3
7775

Cb
i+ 1

2 ; j;k
=

2
4 αi+ 1

2 ; j;k(2∆t)2

(∆y)2(4µi+ 1
2 ; j+ 1

2 ;k
+σ?

i+ 1
2 ; j+ 1

2 ;k
∆t)

3
5

Cc
i+ 1

2 ; j;k
=

2
4 αi+ 1

2 ; j;k(2∆t)2

(∆y)2(4µi+ 1
2 ; j� 1

2 ;k
+σ?

i+ 1
2 ; j� 1

2 ;k
∆t)

3
5

Cd
i+ 1

2 ; j;k
= αi+ 1

2 ; j;k

�
4εi+ 1

2 ; j;k�σi+ 1
2 ; j;k∆t

�

Ce
i+ 1

2 ; j;k
=

2
42αi+ 1

2 ; j;k∆t(4µi+ 1
2 ; j+ 1

2 ;k
�σ?

i+ 1
2 ; j+ 1

2 ;k
∆t)

∆y(4µi+ 1
2 ; j+ 1

2 ;k
+σ?

i+ 1
2 ; j+ 1

2 ;k
∆t)

3
5

Cf
i+ 1

2 ; j;k
=

2
42αi+ 1

2 ; j;k∆t(4µi+ 1
2 ; j� 1

2 ;k
�σ?

i+ 1
2 ; j� 1

2 ;k
∆t)

∆y(4µi+ 1
2 ; j� 1

2 ;k
+σ?

i+ 1
2 ; j� 1

2 ;k
∆t)

3
5

Cg
i+ 1

2 ; j;k
=

"
2αi+ 1

2 ; j;k∆t

∆z(4εi+ 1
2 ; j;k +σi+ 1

2 ; j;k∆t)

#

Ch
i+ 1

2 ; j;k
=

2
4 αi+ 1

2 ; j;k(2∆t)2

∆x∆y(4µi+ 1
2 ; j+ 1

2 ;k
+σ?

i+ 1
2 ; j+ 1

2 ;k
∆t)

3
5

Ci
i+ 1

2 ; j;k
=

2
4 αi+ 1

2 ; j;k(2∆t)2

∆x∆y(4µi+ 1
2 ; j� 1

2 ;k
+σ?

i+ 1
2 ; j� 1

2 ;k
∆t)

3
5

and

αi+ 1
2 ; j;k =

1
4εi+ 1

2 ; j;k +σy
i+ 1

2 ; j;k
∆t

We see that Eq. (11) yields a set of simultaneous equations for
Exjn+1=2 when written for each j coordinate along a y-directed line
through the space lattice. The matrix associated with this system

is tridiagonal, and hence, easily solved. This process is repeated
for each y-cut through the grid where E x components are located.

Similarly, applying steps 1-3 to Eq. (2) and Eq. (4) yields a tridi-
agonal matrix system for each z-cut through the lattice to obtain
Eyjn+1=2. Applying these steps to Eq. (3) and Eq. (5) yields a tridi-
agonal matrix system for each x-cut through the lattice to obtain
Ezjn+1=2. Referring back to Fig. 2, we see that these three implicit
updating expressions are used during the first half of sub-iteration
1.

Upon evaluating the electric field components everywhere in the
grid, we can proceed to the second half of sub-iteration 1, which
involves evaluating the magnetic fields. The magnetic field updat-

ing equations become fully explicit, as illustrated for H n+1=2
z by

rearranging Eq. (10) as follows:
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All of the required electric-field component data at time step n+
1=2 are available upon solving the tridiagonal matrix systems in
the manner described above.

B. Sub-Iteration 2: Advance the 6 field components from time step
n+ 1

2 to n+1

Step 1. Again, we start by applying central difference to Eq. 1,
only now every term is discretized using finite differences centered
at n+3=4 as follows:
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Here, the magnetic-field terms are discretized at time steps n+
1=2 and n+ 1, giving an overall center point of n+ 3=4. Upon
substituting centered finite-difference approximations, we obtain
the following expression:
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Here, all the fields at time step n+ 1
2 are known; the fields at time

step n+ 1 are unknown. Note that for sub-iteration 2, it is now
the ∂Hz=∂y term that is evaluated explicitly from known field data
at time step n+ 1=2, while the ∂Hy=∂z term is evaluated with as-
yet unknown field data at time-step n+ 1. Hence, the direction
in which the implicit evaluation is used alternates between each
sub-iteration.

Step 2. Our aim is to find the value of the unknown E x at time
step n+1. However, there are unknown values of Hy on the right
hand side of the equation. To eliminate the unknown terms, we ap-
ply finite-difference approximations centered at n+3=4 to Eq. (5)
to obtain the following expression:
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The two unknowns in this equation are also Ex and Hy at time step
n+1.

Step 3. Finally, we use Eq. (15) to eliminate the unknown
Hyjn+1 terms in Eq. (14) and obtain the following expression for
the unknown Ex fields at the n+1th time step:
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Here, we obtain a tridiagonal matrix system for each z-cut through
the grid.

Similarly, applying steps 1-3 to Eq. (2) and Eq. (6) yields a tridi-
agonal matrix system for each x-cut through the lattice to obtain
Eyjn+1. Applying these steps to Eq. (3) and Eq. (4) yields a tridi-
agonal matrix system for each y-cut through the lattice to obtain
Ezjn+1. Referring back to Fig. 2, we see that these three implicit
updating expressions are used during the first half of sub-iteration
2.

Upon evaluating the electric field components everywhere in the
grid, we can proceed to the second half of sub-iteration 2, which
involves evaluating the magnetic fields. Just as in sub-iteration
1, the magnetic field updating equations become fully explicit, as
illustrated for Hyjn+1 by rearranging Eq. (15) as follows:
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All of the required electric-field component data at time step n+1
are available upon solving the tridiagonal matrix systems in the
manner described above. This completes the algorithm.



IV. Numerical Formulation for the FDTD-ADI Algorithm
with PML ABCs

Upon applying the formulation presented in Section III to the
split-field version of Maxwell’s equations:
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we obtain an FDTD-ADI formulation for PML ABCs1. The
derivation is very similar to that described in the previous section,
and therefore the steps are not repeated here. Instead, we present
only the resulting finite-difference expressions for the E x, Hy, and
Hz field components for comparison with the corresponding ex-
pressions presented in Section III.

A. Sub-Iteration 1: Advance the 12 split-field components from
time step n to time step n+1=2

Steps 1-3 applied to the split-field equations for Ex and Hz

(Eq. (18) and Eq. (23)), yield an explicit finite-difference expres-

sion for the unknown Exz fields at the n+ 1
2

th
time step:
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1We note that a recent publication by Liu and Gedney also reports an FDTD-
ADI formulation for PML ABCs[15]. Our work was developed independently
from theirs, and submitted for publication simultaneously.

and an implicit finite-difference expression for the unknown E xy

fields at the n+ 1
2

th
time step:
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Note that the implicit update of Exy is similar to the implicit update
of Ex in the non-PML formulation of Section III wherein a tridi-
agonal matrix system is solved for y-cuts through the grid. The
first half of sub-iteration 1 continues in a similar manner with an
explicit update of Eyx , an implicit update of Eyz for z-cuts through
the grid, an explicit update of Ezy , and an implicit update of Ezx for
x-cuts through the grid.

The second half of sub-iteration 1 involves evaluating the mag-
netic fields using fully explicit finite-difference expressions, as il-
lustrated by the following expressions for Hzx and Hzy :
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B. Sub-Iteration 2: Advance the 12 split-field components from
time step n+ 1

2 to time step n+1

Similarly, for the first half of sub-iteration 2, the finite-
difference expressions to be implemented during sub-iteration 2
involve an explicit update of Exy , an implicit update of Exz along
z-cuts through the grid, an explicit update of E yz , an implicit update
of Eyx for x-cuts through the grid, an explicit update of E zx , and an
implicit update of Ezy for y-cuts through the grid. The second half
of sub-iteration 2 is completed by evaluating the magnetic fields
using fully explicit finite-difference expressions. This concludes
the algorithm.

V. Numerical Examples

To demonstrate the computational efficiency of the generalized
FDTD-ADI for relevant VLSI interconnect geometries, we have
designed a rigorous test case 2 involving a 5-mm-long microstrip
transmission line, as illustrated in Figure 3. The width of the mi-
crostrip is 10 µm. Located between the microstrip and the ground
plane is a 1-µm-thick low-loss dieletric substrate (ε r = 4:0;σ =
0:5� 10�3 S/m). The region above the microstrip is filled with
free space (εr = 1:0;σ = 0:0). A current source is modeled at one
end of the microstrip; the other end is terminated with an open-
circuit. The excitation waveform is a baseband Gaussian pulse:

Jzsource = J0e�(t�t0)
2=τ2

(31)

where t0 = 3τ and τ = 5 ps. With this ultrashort pulse, we are able
to use the standard FDTD algorithm as a benchmark simulation
and the generalized FDTD-ADI algorithm as the test simulation
for the same structure. Based on the spectral content of the pulse,
we conclude that the minimum wavelength of interest is approx-
imately 2 mm in the dielectric substrate. Therefore, our grid cell
size should be no larger than 200 µm. In order to model the thin
substrate, we must choose ∆z = 1 µm; for the other spatial incre-
ments, we use ∆x = 20 µm and ∆y = 5 µm. Note that since the
smallest geometrical feature (the height of the substrate) is much
smaller than smallest wavelength of interest, we are in the regime
discussed in Section II where the limit on ∆t is much smaller than
needed for numerical accuracy. For the standard FDTD algorithm,
the Courant limit requires that ∆t � 3:26 fs. Accordingly, the time
step in our standard FDTD simulation is chosen to be ∆tFDTD = 3:0
fs. For the FDTD-ADI algorithm, there is no stability bound on
the time step, so we have chosen ∆tFDTD�ADI = 60 fs; in this case,
∆tFDTD�ADI=∆tFDTD = 20.

50 micron

800 micron

5400 micron

Observation Points
1 2 3 4 5

5000 micron
10 micron

SiO2

Source

Fig. 3. Microstrip transmission model.

First, we place an observation point 0.5 mm from the source end
of the transmission line. For both the standard FDTD and FDTD-
ADI models, we record the time history of Ez between the ground
plane and the microstrip at this observation point. These temporal
waveforms are displayed in Figure 4. The standard FDTD simu-
lation is run for a total of 20,000 time steps (a duration of 60 ps).

2We will discuss several additional examples in our presentation; these will also
be posted on our web site.



Within this time window, we observe the incident pulse pass our
observation point. For the FDTD-ADI case, the same 60-ps simu-
lation requires only 1000 time steps. Therefore, we run the FDTD-
ADI simulation for 2000 time steps to show not only the incident
pulse, but also the reflected and retro-reflected pulses which over-
lap in time at our observation point in space. We have normalized
both waveforms to the peak of the incident Ez field. There is ex-
cellent agreement between the FDTD-computed waveform (solid
line) and the FDTD-ADI-computed waveform (dotted line) over
the time window in which both data sets are computed.
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Fig. 4. Normalized Ez field observed 0.5 mm from the source end of the microstrip.

Second, we place five observation points at distances d = 2:0,
1.5, 1.0, 0.5, and 0.0 mm from the load end of the transmission
line. Here we run only the FDTD-ADI case since a longer length
of time is required to observe the pulse reach the load end of the
line, 5 mm from the source. Figure 5 shows the FDTD-ADI-
computed waveforms observed at these five observation points.
The incident and reflected pulses overlap in time to varying de-
grees depending on the location of the observation point. The re-
sults agree with theoretical predictions for time-domain reflections
from a line terminated with an open-circuited load.

0 20 40 60 80 100
time (ps)
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1
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E z (
V/

m
)

d=2 mm
d=1.5 mm
d=1 mm
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d=0 mm

Fig. 5. FDTD-ADI-computed Ez field at five different observation points near the
load end of the microstrip.

VI. Conclusions

The FDTD-ADI algorithm has significant promise for stable
and accurate FDTD modeling of electromagnetic wave phenom-
ena in VLSI interconnects. As demonstrated in this paper, the
number of time steps needed to complete the full-wave time-
domain simulation can be reduced by an order of magnitude or
more.
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