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ABSTRACT 

       Inductance has been identified as an emerging troublemaker 
of interconnects for the next generation high-speed digital VLSI 
design. As a result, accurate and fast inductance extraction is of 
crucial importance. Formulae-based partial inductance extraction 
method approaches have been widely adopted for inductance 
extraction due to its simplicity and efficiency. However, there are 
so many inductance formulae in the literature and there seems 
luck of detail comparisons of those formulae to check their 
accuracy and applicability. 
       In this paper, we carefully compare several well-known 
partial self and mutual inductance formulae in details to check 
their range of applicability and validity. Since some formulae are 
originally derived for other applications where the parameter 
dimensions are quite different from the VLSI application, they are 
not numerically stable and accurate for all the concerned range of 
VLSI applications. As a result, carefulness must be deployed 
while applying those formulae. 

1. Introduction 
       As the clock frequency of VLSI technologies grows over 4 
giga hertz, inductance effect emerges to be another signal integrity 
issues and hence becomes an important design factor for high 
performance VLSI design [6][7][8][9]. Excessive inductance will 
cause inaccurate delay estimation, signal ringing, inductive 
coupling noises, and Ldi/dt drop for the power delivery nets. For 
these reasons, accurate inductance extraction is of great 
importance for the next generation high-speed VLSI design.  

     Due to the difficulty of obtaining the current returning paths, 
Partial Element Equivalent Circuit (PEEC) approach has been 
proposed by Ruehli [1] to use partial inductance instead of loop 
inductance as basic circuit analysis elements. Since its 
introduction, PEEC has been widely used in the VLSI field due to 
its simplicity and compatibility with the general circuit simulation 
engines such as SPICE. While the capacitance extraction required 
matrix-solving techniques, partial self  and mutual  inductance can 
be easily obtained using precomputed and simplified integration 
formulae. For this reason, several formulae-based inductance 
extraction algorithms have been proposed. However, near each 
method uses different formulae since there are so many existing 
inductance formulae in the literature. Unfortunately, most of the 
existing inductance formulae are originally derived for other 
applications where the parameter dimensions are quite different 
from the VLSI application. Hence, the validity and accuracy of  

 

 

 

 

 

 

 

 

Fig. 1.   Single Conductor 

 

those formulae need to be carefully verified for the VLSI 
application. Unfortunately, there seems luck of comprehensive 
study of those formulae in the VLSI field.  

       In this paper, we carefully study several most popular classic 
inductance formulae such as Ruehli [1], Grover [2], Hoer [3], and 
FastHenry [4]. Each formula is tested and compared in extensive 
VLSI parameter ranges. Although some formulae have quite 
simple forms, they produce inaccurate or unstable results for 
relatively short and long range of conductors. As a result, 
carefulness must be deployed while applying those formulae.  

    The organization of this paper is as follows: The various self 
inductance and mutual  inductance formulae are introduced in 
section 2 and section 3, respectively. In section 4, extensive 
computational results and comparisons are provided. The 
conclusion of this paper is presented in section 5. 

2. Self  Inductance Extraction 
In this section, we briefly summarize four popular inductance 
formulae for partial self inductance extraction including Ruehli 
[1], Grover [2], Hoer [3], and FastHenry [4].  Along with PEEC, 
Ruehli [1] provides inductance formulae to facilitate PEEC 
development. Grover [2] uses Geometric Mean Distance method 
and provides greatly simplified formulae for inductance 
calculation. Hoer [3] provides exact formulae for calculating self  
inductance. Inside the FastHenry [4] package, an inductance 
formula was used for multipole-accerated inductance extraction 
application.  

2.1 Ruehli’s Formula 
Given a single conductor with width (W), thickness (T), and 
length (l) as shown in Fig. 1. Ruehli gives the following self 
inductance formula [1]. 
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       Since the errors of the above formula become large for very 
large values of u and very small values of ω, the second formula 
is given for infinitely thin conductors which is accurate for the 
case when ω < 0.01. The following formula is given based on the 
assumption that ω = 0 (zero thickness) 
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2.2 Grover’s Formula 
       Grover greatly simplified the self inductance formulae by 
Geometric Mean Distance Method as follows: (All lengths in this 
formula are in centimeters). 
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The last term, eelog , is obtained from Table 1 for the given 

value of TWorWT . It is observed that eelog  is relative small 
terms.  
    The above formula gives negative values when the length of 
conductor is very short, in this situation, the following modified 
version of Grover’s formula can be used in this range. 
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Table 1.   Constants for the Geometric Mean Distance  

TWorWT  eelog  TWorWT  eelog  

0 
0.025 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

0 
0.00089 
0.00146 
0.00210 
0.00239 
0.00249 
0.00249 
0.00244 
0.00236 
0.00228 
0.00219 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

0.00211 
0.00203 
0.00197 
0.00192 
0.00187 
0.00184 
0.00181 
0.00179 
0.00178 
0.00177 
0.00177 

 

2.3 FastHenry’s Formula 
    In the widely used FastHenry package [4], the following self 
inductance formula is used. 
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2.4 Hoer’s Formula 
     In  [3], Hoer obtained a self inductance formula with the 
assumption that conductor consists of the multiple filaments and 
self inductance can be obtained from mutual  inductance by 
volume self-integrals. Therefore this formula is similar to the 
formula of Hoer’s mutual inductance in section 3.3. This formula 
is exact when the current flows through the full conductor are 
uniform.  

 



 

 

 

 

 

 

 

Fig. 2.   Geometry of Conductors 

 

( )

)()()(tan
6

tan
6

tan
6

333
60
1

ln
24244

ln
24244

ln
24244

008.0

000

222

1
3

222

1
3

222

1
3

222222222444

22

2224422

22

2224422

22

2224422

22

zyx
zyxx

yzyzx

zyxy
xzzxy

zyxz
xyxyz

zyxxzzyyxzyx

yx
zyxz

zyxyx

xz
zyxy

yzxxz

zy
zyxx

xzyzy
TW

L

lTW

ii






































++
−















++
−















++
−

++−−−+++















+

+++
⋅⋅








−−+















+

+++
⋅⋅








−−+




































+

+++
⋅⋅








−−=

−

−−

 

, where 

[ ][ ][ ] ∑ ∑ ∑
= = =

+++ ⋅−≡
2

1

2

1

2

1

1 ),,()1()()()(),,(
1

2

1

2

1

2
i j k

kji
kji

s

s

r

r

q
q srqfzyxzyxf  

  Note that the above function definition needs to add 8 terms 
since it invokes three levels of the summation. The runtime and 
complexity can be much larger than other formulae. 

3. Mutual Inductance Extraction 
In this section, we briefly summarize the above-mentioned 
popular inductance formulae for mutual inductance extraction.  
Since FastHenry also uses Grover’s mutual inductance formulae, 
we only present Grover’s formula. 

3.1 Ruehli’s Formula 
Ruehli considered the case when two parallel conductors are 
positioned in parallel, the directional distances of the conductor, 
Dx, Dy and Dz, are shown in Fig. 2. The lengths of these two 
conductors are li and lj, respectively. It was assumed that the 
directions of current in two conductors are the same (along its 
length). Ruehli obtains the following formula: 
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Fig. 3. (a) General position of tw
 

 

 

 

 

Fig. 3. (b) Two equal-length parallel

 

gvpgpg

r
l
Dzp

l
l

v
ii

j

−+=+=

≡≡≡

21 11

3.2 Grover’s Formula 
 As shown in Fig. 3 (a), given two c
(m), distance (d), and  spacing (δ ), 
following simplified mutual inducta
in this formula are in centimeters). 
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Fig. 4. (a) self inductance for normalized length 0.1-10 

 

    An interesting point to mention is that although this formula 
seems different from the Ruehli’s, they are mathematically 
equivalent.  

3.3 Hoer’s Formula 
The difference between Grover/Ruehli’s and Hoer’s formula is the 
number of filaments are used. While Grover/Ruehli’s formula 
assumes only one filament for each conductor while Hoer formula 
assumes multiple filaments for each conductor. As a result, Hoer’s 
formula is more accurate and much more complicated than 
Grover/Ruehli’s. 

       The Hoer’s mutual inductance formula between two parallel 
conductors with width (W1 and W2), thickness (T1 and T2), and 
length (l1 and l2), respectively is as follows [3]. 
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Note that the above definition needs to add 64 terms since it 
invokes three levels of the summation. The runtime and 
complexity can be much larger than other formulae. 

 
Fig. 4. (b) self inductance for normalized length 10-1000 

  
Fig. 4. (c) self inductance for normalized length 1000-100000 

 

4. Computational Results 
    In this section, we present the evaluation results for the all the 
above-mentioned inductance formulae in the wide range of VLSI 
applications. 

       The computational results of self inductance with width 
equals to 0.25 µ m and thickness equals to 0.1 µ m are shown in 
Fig. 4. Fig. 4 (a), (b), and (c) show the normalized lengths of 
conductors (l/W) in 0.1-10, 10-1000, and 1000-100000, 
respectively.  

       Fig. 4 (a) shows that in the range when the normalized length 
is short (<10), many formulae present either irregular behavior or 
huge errors. For example, the inductance value of Grover 2 
(without table) is increasing as the length goes down and the 
value of Grover’s first formula decreases too much. Furthermore, 
Grover’s first formula can even generate negative inductance 
values when the normalized length is shorter than 0.5. The 
Ruehli’s first formula becomes flat. Fig. 4 (a) also shows that 
Hoer’s and FastHenry’s formulae are the most consistent and 
reliable when the normalized length is short. Although the values 
Ruehli’s second formula(with zero thickness) shows consistency 
for this application range, it is  overestimated by 20% comparing 
to Hoer’s and FastHenry’s  result. It is quite often that the 
normalized length is less than 10. For example, when the 
conductor width is 100  



Table 2.   Comparisons of self inductance formulae 

Formula Short length 
(l/W < 10) 

Medium length 
(10 ~ 1000) 

Large length 
(l/W > 10000) 

Hoer O O X 
FastHenry O O O 

Ruehli X O X 

Ruehli(T=0) 
O 

( WT <0.01) 
(30% larger) 

O 
( WT <0.01) 
(30% larger) 

O 
( WT <0.01) 
(30% larger) 

Grover X O O 
Grover 2 X O O 

 

micron, the conductor length has to be larger than 1000 micron to 
make normalized length larger than 10. 

  Fig. 4 (b) shows that when the normalized lengths are within 10-
1000, all formulae present sound behavior and all the values are 
almost identical.  

  Fig. 4 (c) shows that although Hoer’s formula is accurate for 
short normalized length, it has large oscillations when the 
normalized length is larger than 10000. Similar behavior also 
occurred for the Ruehli’s formula.  

  To understand the irrational behavior for the exact formulae 
provided by Hoer, we carefully exam the numerical result of    
each term of Hoer’s formula. We conclude that the major source 
of error of Hoer’s formula comes from the numerical dispersion 
since the high order term such as z4 terms create huge numbers 
while the values of other terms are small. As a result, carefulness 
must be deployed when we implement Hoer’s formula. For 
example, we should avoid directly summation or subtraction 
operations between large and small numbers. We suggest to 
switch over to Grover’s or FastHenry’s formulae when the 
normalized length is larger than 10000. 

   As a result, we conclude that only FastHenry’s formula is valid 
and numerically stable for all range of VLSI applications and all 
other formulae have their applicable ranges. Table 2 summarizes 
our conclusion. 

   We carefully implemented all the four mutual formulae and 
present the experimental results in Fig. 5 and Fig. 6. Since the 
mutual inductance for two conductors with different lengths and 
positions can be obtained from the special case when two 
conductors are parallel and with equal-length. We only present the 
result for this special case. The thickness of both conductors is 
0.1 µ m and width is 0.25 µ m for our experiments. Since 
Ruehli’s formula is equivalent to Grover’s and FastHenry uses 
Grover’s formula as well, we use Grover/Ruehli to represent the 
values for Grove, Ruehli, and FastHenry. 

    The relationships of the distance to the mutual inductance 
between two conductors are shown in Fig. 5. The relationships of 
the length to the mutual inductance between two conductors are 
shown in Fig. 6. Comparing Fig. 5 and Fig. 6, we know that 
mutual inductance is a weaker function in the distance of two 
conductors rather than the lengths.   

    Unlike self inductance formulae, all the mutual inductance 
formulae are consistent and the values are matched. The 
maximum error is within 0.1%. We conclude that all the mutual 

 
Fig. 5. Mutual Inductance vs. Distance between conductors 

Fig. 6.   Mutual Inductance vs. length of conductor 

 

inductance formulae are reliable in the VLSI application. 

5. Conclusions 
      In this paper, we extensively tested several widely used partial 
self  and mutual  inductance formulae. The experimental results 
show that only FastHenry’s formula is numerically sound for all 
range of VLSI applications for self inductance while all mutual 
inductance formulae are showing excellent matches with each 
other. As a result, we must pay attention while applying these 
formulae. 
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