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  Abstract

Recently Lillis,et al.presented an elegant dynamic pro-
gramming approach to RC interconnect delay optimiza-
tion through driver sizing, repeater insertion, and, wire
sizing which employs the Elmore delay model for RC delay
estimation and a crude repeater delay model. This
approach, however, ignores an equally important aspect of
interconnect optimization: transition time constraints at
the sinks. More importantly, Elmore delay techniques
because of their inherent inaccuracy are not suited to
spec-baseddesign which is directed towards synthesizing
nets with user-specified delay/transition time require-
ments at the sinks. In this paper we present techniques for
delay and transition time optimization for RC nets in the
context of accurate moment-matching techniques for com-
puting the RC delays and transition times, and an accurate
driver/repeater delay model. The asymptotic increase in
runtime over the Elmore delay model is O(q2) where q is
the order of the moment-matching approximation. Experi-
ments on industrial nets indicate that this increase in runt-
ime is acceptable. Our algorithm yields delay and
transition time estimates within 5% of circuit simulation
results.

1  Introduction

Interconnect is fast becoming a major limiter to CMOS
IC performance due to aggressive scaling of processes.
Consequently, physical design in addition to its traditional
density-oriented goal of area minimization needs to be
directed towards eletrical objectives like power and delay
reduction which have been usually associated with the cir-
cuits domain. Concurrent driver and wire-sizing [4, 5, 8,
16] has been shown to be a powerful technique for inter-
connect delay reduction. However, repeater insertion is
widely recognized as the most effective technique for
delay and transition time improvement in RC nets.

The effect of repeater insetion on the delay of a net is
well documented. Essentially, the delay of an RC line
scales quadratically with its length. With repeater insertion
this relationship becomes a linear one which greatly allevi-
ates the interconnect problem with current technologies.

Another equally advantageous but frequently ignored
effect of repeater insertion in large RC nets is the signal
restoration that CMOS repeaters provide due to their high-
gain amplifier nature. Since the lowpass nature of RC nets
severely degrades the transition times of the signals at the
sinks, inserting a repeater in such nets has the effect of
improving the transition times. Nets with large transition
times are not desirable for several reasons: primarily for
reliability reasons as well as as their poor noise immunity.
In several cases during design even when the delay of a net
is acceptable the transition time of the degraded signals at
the sinks may necessitate repeater insertion.Consequently,
it is imperative that any interconnect optimization solution
must take transition times into account.

Recently, in [6] Lillis, et al. presented an elegant
dynamic-programming approach to concurrent repeater
insertion, driver, and wire sizing for RC nets which is
based on an earlier algorithm for repeater insertion pro-
posed by Ginneken [7]. Essentially, Lillis exploited the
hierarchical nature of the Elmore delay model to construct
a set of feasible solutions in a bottom-up manner. Effective
pruning techinques were used to poynomially-bound the
size of the solution set while traversing the tree from the
sinks to the root. A major drawback of Lillis’ technique is
the inability to account for the resistive shielding of the
RC net [13]: the driver delay for an RC net is significantly
smaller than that predicted using the total capacitance of
the net due to the resistance in the load.

While the Elmore delay is a reasonable estimator of the
RC delay its accuracy is limited. Another major drawback
of the Elmore delay model and, therefore, Lillis’ tech-
nique, is its inability to accurately estimate transition
times. Hence, while the Elmore delay model is applicable
in certain scenarios (a generic minize-maximum-delay for-
mulation) its usage in high-frequency designs leads to sub-
optimal solutions. For example, during spec-based design
when the requirements are usually specified in terms of a
delay and transition-time constraint a net optimized using
the Elmore delay (which is known to be conservative) may
be “overdesigned” -- that is, the post-optimization net
could exceed its design goals when simulated -- which
implies a needless power and/or area cost. In this paper we
present efficient techniques for removing this conserva-



tism both in delay and transition-time estimation during
interconnect optimization through the usage of more accu-
rate moment-matching techniques like Asymptotic Wave-
form Evaluation (AWE) [17] and Pade-via-Lanczos (PVL)
[10] for a reasonable increase in computation time. Our
basic algorithm follows the Ginneken/Lillis dynamic pro-
gramming framework. The main contributions of this
paper are:
• In addition to delay, transition time constraints which

are imperative for interconnect optimization are han-
dled.

• The effect of the input transition time on the repeater
delay and transition time is taken into account

• Moment-matching techniques are used for accurate
RC delay estimation: Efficient bottom-up computa-
tion of the RC delay is based on a novel application of
the REX hierarchical moment computation technique
proposed in [11].

• An accurate repeater/driver model [12] that takes
resistance-shielding of the RC net is into account in
addition to providing accurate waveform estimates at
the sinks.

To the best of our knowledge this is the first work in inter-
connect optimization that handles these real-world con-
straints through the use of advanced delay models for both
the RC as well as the driver/repeater components.

2  Algorithmic framework

We use the following notation in this paper:
• T: A routing tree withn branches and a set ofs sinks

{ R1, R2,...,Rs} (receivers).
• ei: i-th branch of the tree, .
• li: Length ofei.
• Children(ei): Set of the immediate children ofei.
• Wi: The set of feasible wire sizes forei.
• rcdelay(ei, wi, c): The RC delay of branchei sized to

width  when loaded by a capacitive loadc.
• cap(ei, wi), res(ei, wi): Capacitance and resistance of

branchei when sized to width .
• B: Library of repeaters.
• cb: Input capacitance of a repeater .
• delay(b, c): Delay of repeaterb when loaded by a

capacitive loadc.
• Ti: User-specified maximum delay constraint at sink

Ri.
• Ci: Capacitance load at sinkRi.
An example routing tree is given in Figure 1.

The framework of the Lillis/Ginneken algorithm is out-
lined in Figure 2. As illustrated in Figure 1b we insert
repeaters only at the end of the branch away from the root
of the tree. Starting at the receivers and moving towards
the root, at the end point of each routing segmentei a
repeater is inserted in turn from the set of allowable
repeatersBi for segmentei, and a set of solutions con-
structed in terms of the set of solutions of the branches

immediately downstream of this point. The solution set at
each insertion point consists of a set of (load, required
time) — (c, t) — pairs each of which corresponds to a par-
tial solution for the repeater insertion problem up to this
point. The quantityc corresponds to the input capacitance
for this solution seen from the insertion point. The quan-
tity t represents the required time at this insertion point.
The information encapsulated in each pair is used for
recursively constructing the set of solutions at the insertion
point immediately upstream of this insertion point. A very
effective pruning technique is then used to remove obvi-
ously non-optimal pairs from this set. At the driver the
final set of solutions is constructed by backtracking from
the set of pairs generated at the driver

2.1 Algorithm description

This technique is more formally described by the fol-
lowing recursion:
Base case: At each sinkRi with load capacitance,Ci, and
required time,Ti, the solution set,Si, consists of a single
pair: (Ci, Ti) (lines A1 and A2 in Figure 2). The load for
this pair is the input capacitance of the sink while the
required time of this pair is the user-specified required
time for sinkRi.
Induction case: Assume that we have the solution set,Sj,
of pairs at a particular insertion pointj (Figure 3a). We
need to construct the solution set for the edgeei immedi-
ately upstream ofj.
Repeaterinsertion: (Lines A7 through A9)The first step is
to incorporate the effects of repeater insertion atj into the
set of solutions,Sj. For every repeater with input
capacitance,cb, we add a new pairP to Sj. This pair is con-
structed by searching all pairs ofSj in order to find the pair
which will yield the latest required time when repeaterb is
inserted at pointj. The load for this new pairP will be the
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Figure 1: (a) A routing tree with potential repeater location at
the non-root-oriented end of each branch (b) A branch of
the routing tree with different possible width configurations
and a set of repeater choices.
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input capacitance of the repeater. The required time for the
new pair will be the required time for the latest required
time pair decreased by the delay,delay(b, c) of the repeater
for the loadc (Figure 3a).
Wire sizing: (Lines A11 through A13) Finally the solution
setSi is constructed by sizing branchei and incorporating
the RC delay of the sized segmentei for each pair ofSj.
For each possible wire widthwi of ei, each pair (c, t) is
transformed into a new pair (c +cap(ei, wi), t - rcdelay(ei,
wi, c)) which accounts for the additional loadcap(ei, wi)
added to the load of the pair and the decrease in the
required time due to the RC delay,rcdelay(ei, wi, c), of
segmentei (Figure 3b).
Merging of branches: (Line A5 and A6) When a merging
point is reached during the backward traversal along the
forking branches of the net, the solution sets for each

branch are merged at the forking node using a simple set
of rules described in the Merge() routine of Figure 2.

When the backward traversal reaches the driver, each
pair belonging to the solution set at the driver node with a
positive required time describes a feasible solution to the
repeater insertion and wire sizing problem.

2.2 Ginneken’s pruning lemma

It is easy to see that this is a potentially exhaustive tech-
nique since the size of the solution set geometrically
increases by the number of repeaters in the library for
every insertion point from the receiver to the driver. At
each insertion point after a solution set has been created
we prune inferior pairs using the following rule suggested
by Ginneken [7] which reduces the size of the solution set
drastically:

For any two pairs, (c, t) and (c , t ), in a solution
setS, if c < c , andt > t , then the pair (c , t )
can be removed from setS.

As for the runtime, Ginneken points out that the solu-
tion set size is bounded by the number of possible distinct
load values. Thus, while there is an exponential number of
buffer and wire size assignments, there is a polynomial
number of distinct resulting loads and relevant solutions.
The upper bound on the total runtime is

wherecmax is the larg-
est discretized capacitance possible for the tree [6].

3  Delay modeling

3.1 Accurate driver/repeater modeling

With scaling of processes to the deep submicron
domain the transistor characteristics have been improving
at a much better rate than the interconnect resulting in a
reduced on-resistance of the transitor but an increase in the
relative value of the interconnect resistance. As a result the
resistance of the interconnect has become significant com-

InsertRepeaters(ei)
A1 if ei is a sink element
A2 Si = { (Ci, Ti) }
A3 return

/* merge children */
A4 Si = { }
A5 foreach
A6 Si = Merge (Si, Sj)

/* insert repeaters */
A7 foreach
A8 find

A9
A10 Prune(Si)

/* wire sizing onei */
A11 foreach
A12 foreach
A13

A14 Prune(Si)

Merge(Si, Sj)

/* Si, Sj are ordered in terms ofc */
A15 S= {}
A16 (ci, ti) = pop(Si), (ci, ti) = pop(S2)
A17 while and
A18
A19
A20 if then (ci, ti) = pop(Si)
A21 if then (cj, tj) = pop(Sj)
A22 return S

Figure 2: Lillis/Ginneken algorithmic framework for repeater
insertion and wire sizing.
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pared to the driver output resistance. For average nets it
has been empirically determined that the load presented by
an RC net to its driver is much better represented by aπ-
model synthesis of its admittance than the total capaci-
tance load approximation used hitherto. This is because
the resistance of the net shields a part of the load capaci-
tance from the driver which results in a smaller driver
delay than that predicted by lumping the total capacitance
of the net into a single capacitive load. Hence, conven-
tional delay models which do not account for resistance
shielding significantly overestimate the driver delay.

This phenomenon is illustrated in Figure 5a where the
waveforms obtained for the two different load approxima-
tions for a particular driver-net combination are shown.
The π-load waveform overlaps the actual waveform (not
shown) almost exactly. The parameters of theπ−load
which is a second-order approximation of the driving point
admittanceY(s) (a single capacitor is a first-order approxi-
mation) can be trivially computed in linear time for an RC
tree by the algorithm described in [15]

We use the delay model of [12] which can provide
accurate driver delays in the presence ofπ-loads. The
inputs to this driver model are a driver precharacterized in
terms of the input transition time,tin, and output load,CL
and, theπ-load of the RC net. The delay model of [12]
replaces the driver by a resistor and a voltage source. The
parameters of the voltage source are determined by itera-
tive procedure which equalizes the average current drawn
by the driver for aπ-load and a purely capacitive load
which mimics the “effective capicitance” of theπ-load.

In our algorithm, the load of the RC net which is
expressed by theπ-model is hierarchically computed dur-
ing the bottom-up phase and stored with the pair data
structure. That is, each pair (c, t) is tagged with an admit-
tance fieldY(s). The computation of the admittance and
the transfer function (which is required for accurate RC
delay computation) for each pair is described in the next

section.

3.2 Hierarchical moment computation for accu-
rate RC delay computation

An assumption made during the explanation of the
required time computation for pairP in Section 2.1 is that
the delay fromi to a receiver (see Figure 6) can be split
into three additive components:tij , the RC delay,tjk, from j
to some repeaterk downstream ofj, and the delay from
this repeater to a downstream receiver. This hierarchical
delay computation is possible under the Elmore delay
model which does not take signal waveshapes into
account. However for a more accurate model the RC
delays are not additive, that is,tij + tjk tik since these
quantities depend largely on the waveshapes of the signals
at nodesi andj. So instead of hiearchically computing the
delay a more accurate way is to compute the transfer func-
tion hierarchically and then compute the delay by convolu-
tion of the input signal waveshape with the composite
transfer function.

A significant innovation introduced in this paper is the
use of hierarchical moment computation based on Asymp-
totic Waveform Evaluation (AWE) [17] for accurate RC
delay computation. Moment-matching techniques work on
the principle of matching the first 2q moments of the trans-
fer function from the root to any node in an RC tree:

(1)

to that of a reduced-order pole-and-residue representation:

. (2)

A 3rd-order (q = 3) approximation is sufficient to capture a
reasonably accurate response for RC nets with thousands
of capacitors! Furthermore, the first 2q moments for alln
nodes of an RC tree can be computed inO(2qn) time. (The
Elmore delay is the first moment of the transfer function.)

For the purposes of repeater insertion, moment match-
ing can be applied to the problem of calculating the RC
delay of the partial subtrees during the bottom-up phase.
Under the Lillis/Ginneken framework, this would require

tin

C2

Rp

tin
C1

Ctotal

tin

(b) (c)

Figure 4: a) A driver loaded by an RC net, b) first-order total
capacitance representation c) second orderπ-model
representation.
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that for each pair we trace back to the first repeaters and
construct the RC subtree, and then analyze this subtree
using moment matching techniques. A back-of-the-enve-
lope calculation for this shows that in spite of the speedup
afforded due to AWE-like techniques, the runtime cost
would be prohibitive because of the large number of par-
tial subtrees that need to be analyzed during the bottom-up
dynamic programming algorithm! Ideally, we would like
to use a technique that preserves the hierarchical nature of
the Elmore delay. That is, in order to computetik we would
like to be able to use the information generated during the
computation oftjk.

In our approach, in order to calculatetik, we compute
the moments of the transfer function,Hik(s), from the elec-
trical parameters of the branchei and from the moments of
Hjk(s) and admittanceYj(s) which are part of the data
structure of the pair under consideration at nodej. The
electrical model for the computation ofHjk(s) and Yi(s)
are shown in Figure 6b for which the formulae are:

(3)

where R =res(ei, wi) and C =cap(ei, wi)/2. The RC delay
tik is then computed by convolution of the waveform ati
andHik(s) (Figure 6). The moments ofHik(s) andYi(s) are

then added to the data structure of the pair at nodei. The
π-model parameters required in order to determine the
repeater delays using the model of Section 3.1 at nodei
can be computed from the first three moments of the
admittanceYi(s) using the formulae of [15].

The hierarchical moment generation for the transfer
function and input admittanec always starts from either a
receiver or a repeater. For this base case the moment repre-
sentation of the transfer function is given by:

. (4)

The induction case is illustrated in Figure 6 where a cer-
tain transfer function and admittance representation are
“stitched” together with a segmentei. The formulas for
this stitching are given in (3). The transfer functions and
admittance are always represented in their moment form
of (1) in the pair data structure. When the delay and transi-
tion time computation is required the transfer function is
converted into the poles-and-residues representation of (2)
using Asymptotic Waveform Evaluation [17].

4  The effect of input transition times

The delay and output transition time of a repeater, and
consequently the delay of the RC net that it drives, is a
strong function of the transition time of the input signal.
We describe how we deal with this important effects:

In a previous section we described the repeater delay
model that takes resistance shielding effects into account.
One of the inputs to this model is the input transition time
of the repeater. Hence, in Figure 3a, while inserting a
repeater at pointj, we need to take the transition time of
the input signal into account. This transition time, how-
ever, is unknown because of the bottom up nature of this
algorithm. Hence, in practice for each repeater we do not
generate a pair (cb, t - tb) with a single required time but
instead we generate a pair that includes a table of (input-
transition-time, required time) pairs (cb, {( tr1, t1), ( tr2,
t2), ..., ( trn, tn)}) for n possible input transition times —
tr1, tr2, ..., trn. When this pair is propagated backwards
through a repeater upstream of the current repeater we
index into this table to determine the required time for the
repeater upstream based upon the transition time of the
previous stage. This process is illustrated in Figure 7.

For example, while inserting a repeater at nodej, we
find the best pair for this repeater as described on lines A7-
A8 of the algorithm in Figure 2. As described in the previ-
ous section this pair carries with it the moments of the
input admittance of the partial subtree,Y(s), as well as the
moments of the transfer function,Hjk(s). Given this infor-
mation, for each value of the input transition timetri we
determine the delay from the input of the repeaterb to the
nodek, tbk, using the repeater delay model of Section 3.1
and moment matching techniques [12]. During this pro-
cess we also compute the transition time at nodek, trbk.
The required time at nodej for the input transition timetri
is then determined fromtbk and linear interpolation into
the (input-transition-time, required-time) table of nodek
(Figure 7b).
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Figure 6: Hierarchical moment computation a) transfer function
and admittance propagation b) equivalent electrical model
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4.1 Handling of transition time constraints

Given the background that we have developed in the
previous section transition time handling is trivially
explained. Each entry of the (input-transition-time,
required-time) table is also tagged with the output transi-
tion time. When creating this table for the first repeater
before a sink if it turns out that the output transition time is
less than the user-specified constraint then this entry is
eliminated from the table. Thereafter during bottom-up
propagation if it turns out that the output transition time
exceeds that of any entry in the table then that input transi-
tion time is not valid. For example, in Figure 7 if for a cer-
tain input transition timetri to the repeater at nodej the
output transition time at nodek is greater than the transi-
tion time associated with any of the entries in the table for
nodek then that entry fortri (and those greater thantri) is
removed from the table for nodej.

The possibility that the critical sink (or repeater) from a
delay point-of-view (that is the sink with the latest
required time) is not the one where the worst transition
time is observed is handled in a straightforward manner.
Furthermore, in order to avoid pruning potential optimal
solution which has a worse delay but a better transition
time, we also add a transition time factor into the dynamic
programming table. Hence, during pruning (Step A8), we
add an extra condition to ensure that we only eliminate

solutions that are inferior from a transition time point of
view as well:

For any two pairs, (c, t) and (c , t ), in a solution
setS, if c < c , andt > t , andtransition_time(b,
c) < transition_time(b, c ) then the pair (c , t )
can be removed from setS.

where transition_time(b, c) is the transition time at the
output of repeaterb for a capacitive loadc.

We assert here that a transition-time-driven repeater
insertion algorithm will suffer from significant accuracy
problems if these effects are not taken into account.

5  Experimental results

We have run our implementation of the algorithm
described above on thousands of nets taken from a previ-
ous-generation microprocessor. These nets had a demand-
ing transition time requirement in addition to the user-
specified delay requirement. We use a library of inverters
of different sizes as repeaters. A comparison of our algo-
rithm for a set of nets that were manually designed by cir-
cuit designers for the same delay and transition time
constraints is shown in Figure 8. We can see that our algo-

rithm was able to optimize the delay of these nets to a
value very close to those achieved by hand design. More
importantly, in all these case the transition time require-
ments was met with a <5% error. Also shown are the
delays predicted by our algorithm compared to the delay
predicted by circuit simulation (SPICE) for the optimized
nets.

In Figure 9 the effect of tightening the transition time
requirements for repeater insertion along a line is shown.
We insert repeaters into a 10500µm net by breaking it into
500µm segments for both a 1 time unit and a 0.4 time unit
transition-time requirement respectively. Not surprisingly,
it can be seen that a more aggressive transition time
requirement results in a larger number of repeaters. The
runtime required for optimizing this net was on the order

Figure 7: Handling of input transition time effects: (a) delay
model for insertion at nodej, (b) computation of required
time.
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of 2 seconds on an IBM RS6000 workstation.
Finally, we present a particularly challenging net with

394 segments. The figure shows a screen capture from an
interface that displays the results of repeater insertion. The
large diamond represents the driver while the small dia-
monds show the repeater insertion location. The circles
represent the sinks. Repeater insertion for this net took 67
cpu-seconds and yielded a 20-repeater solution.

6  Conclusion

We have presented an approach to repeater insertion
and wire sizing that is based on the optimal Lillis/Gin-
neken dynamic programming framework. However, using
state-of-the-art delay modeling techniques and an elegant
hierarchical approach to traditional moment-matching
techniques like Asymptotic Waveform Evaluation we have
reasonably incorporated important transition time con-
straints into the repeater insertion framework. Further-
more, our comparison with SPICE shows that our
algorithm produces solutations that are within 5% of the
specified delay and transition-time constraints.
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Figure 9: Repeater insertion for a 10500µm line for a (a) 1 time
unit, (b) 0.4 time unit transition-time constraint. (All lengths
are in mm.)

0.1pF

0.1pF

1.5 2 2 2 2 3

1.5 1 1 2 1 2 2 2

(a)

(b)

Figure 10: Repeater insertion for a large reset net.


