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Abstract 
Since Asymptotic Waveform Evaluation (AWE) was 

introduced in [5], many interconnect model order reduc- 

tion methods via Pad& approximation have been pro- 

posed. Although the stability and precision of model 

reduction methods have been greatly improved, the 
following important question has not been answered: 

“What is the error bound in the time domain?“. This 

problem is mainly caused by the “gap” between the fre- 

quency domain and the time domain, i.e. a good ap- 
proximated transfer function in the frequency domain 

may not be a good approximation in the time domain. 

All of the existing methods approximate the transfer 

function directly in the frequency domain and hence 
can not provide error bounds in the time domain. In 
this paper, we present new moment matching methods 
which can provide guaranteed error bounds in the time 
domain. Our methods are based on the classic work by 
Teasdale in [l] which performs Pade approximation in 
a transformed domain by the bilinear conformal trans- 
formation s = E. 

1 Introduction 

In the last few years, the AWE algorithm based on 

Pad6 approximation has emerged as an efficient method 

to analyze large linear circuits. However, AWE suf- 
fers from numerical instability which makes this method 
hard to obtain more than a few accurate poles. For this 

reason, many new algorithms such as CFH [6], Lanczos 
process [3, 13, 141, Arnoldi process [4, 121, Congruence 

Transformation [8, 91, and Balance Truncation [lO] have 
been proposed. 

Although the numerical stability of model order re- 
duction methods has been significantly improved, there 
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are no guaranteed error bounds in the time domain for 

these methods due to the fact that they only approxi- 
mate the transfer function in the frequency domain. 

In [l], Teasdale introduces a different approximation 
method which performs Pade approximation in a trans- 

formed domain by the bilinear conformal transforma- 

tion s = 5. Teasdale then shows that this approach 

not only has an error bound in the time domain but also 
minimizes the least square error of this bound. On the 

other hand, this approach assumes that the analytical 

transfer function is known a priori which unfortunately 

limits its practical applicability. 
In this paper, we provide practical implementations 

of [l] by computing the Taylor expansion of the trans- 

fer function in the bilinear transformed domain. Our 

algorithms, without the knowledge of the analytical ex- 
pression of the transfer function, utilize a moment com- 
putation procedure similar to the AWE method to per- 
form Pade approximation in the transformed domain. 

With minor modification of the approximation proce- 
dure, our methods can also be embedded into the Lanc- 
zos/Arnoldi type algorithms to improve numerical sta- 
bility. 

The organization of the remainder of this paper is as 
follows. In section 2, we briefly review the background 

of linear circuit simulation, Pad& approximation, AWE, 

PVL (Pad6 via Lanczos process), and Arnoldi process. 

In section 3, we introduce the new Pade approximation 

via bilinear conformal transformation and its practical 
implementations. In the last section, we show some ex- 
perimental results. 

2 Preliminaries 
By the modified nodal analysis, the systems equa- 

tions of linear circuits can be expressed as follows 

Ci = -Gx+ bu, (1) 

where x represents the state variables, G and C repre- 
sent the conductance and susceptance matrices, and the 



term bu represents excitation from independent sources. 
Applying Laplace transform to Equation (1) and assum- 

ing zero initial conditions (i.e. 2(O) = 0), we get 

&X(s) = -GX + bU(s), (2) 

where X(S) and U(s) denote the Laplace transform of 

z and U, respectively. After rearranging the terms of 
the above equation, we get the impulse response of the 

system as follows 

X(s) = (sC+G)-‘b. 

Let A = -G-‘C, we can rewrite the above equation as 

X(s) = (I - sA)-lG-‘b. (3) 

Let v = G-lb. The AWE method expands the above 

equation at s = 0 or s = co and get 

00 

X(s) = ~A%& 
i=O 

Let mi = A%. The AWE method uses the following 

recurrent relation to iteratively compute higher order 

moments from lower order moments. 

mo = v =G-‘b 

mi = Ami-1. 

Note that it only needs to perform LU decomposition 
of A once. The rest of the computation is on repeatedly 

solving the above linear equations. To get more insight 
of the AWE method, we have the following observations. 
By the definition of A, we know 

Gmo = b 

Gmt + Cmi-1 = 0, i > 1. 

Hence, to calculate m,, we can first substitute each ca- 

pacitor and inductor with a current and voltage source, 

respectively, with the value of Cm,-1 and then solve for 
voltages and currents of the original circuit while keep- 
ing resistors and conductors unchanged. The transfor- 

mations are summarized in Figure 1. However, this type 

of methods to compute moments are equivalent to the 
classic inversion power iteration method in [7] to calcu- 
late eigenvalues and eigenvectors. It is well known that 

this type of methods has difficulty to get more than 

a few dominant eigenvalues. Let vi = A%. As i in- 

nreases, vi is getting more linear dependent with the 
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Figure 1: The transformations of the AWE method. 

Krylov space which is defined as span{v, Alv, A’v, . ..}. 

Although several remedies such as frequency shifting 

and moment shifting have been proposed, the nature 

of this difficulty remains. 
Recently, [3,4] propose several Lanczos/Arnoldi type 

algorithms [7] to calculate the Pad6 approximations 

which have better numerical stability. Instead of using 
information only from the last iteration, these meth- 

ods utilize the information from multiple previous iter- 

ations. All of these iterative methods are based on the 

following equation: 

A& = VqHq + ~,+l,,v,+le~, (4) 

where ep is the qth unit vector in Rq, V, is the set of 

the Lanczos vectors {vi,vz,. . . ,vq}, and H, = (hi,j)qxq 
is an q-th order approximation matrix of A. H, is 

a Heisenberg matrix for the Arnoldi algorithm and is 
a tridiagonal matrix for the Lanczos algorithm. The 
Lanczos vector V, satisfies 

vqvqT = I. (5) 

Equation (4) suggests the following approximation of A 

A = V,H,V:. 

By substituting (6) back into (3), we get 

X(s) = (I - sV~H,V~~)-~V 

= V,(I - sH,)-‘VqTv. (7) 

Let vi = $,,. By (5), we know VqTv = ((v((el. By 

Equation (7), we know 

X(-s) = IlvllVq(I - sH,)-‘el. 



Again, we expand X(s) at s = 0 and get 

i=o 

By the above equation, we can compute the new mo- 

ments as follows 

(8) 

It can be shown that under a mild assumption, the 

eigenvalues of H, reasonably approximate dominant 

eigenvalues of A [7]. [3] further gave error bounds for 

the approximated poles. 
There are several other variations of Lanczos/Arnoldi 

type model reduction algorithms. [g, 91 uses the proper- 

ties of congruence transformation to guarantee the pas- 
sivity of the reduced system. [lo] takes advantage of 
the properties of singular values to bound the errors 
of the transfer function in the frequency domain. [ll] 

extends model order reduction methods to deal with 
several transmission line issues. 

3 PVBCT Algorithm and Practical Im- 
plement at ions 

Although Lanczos/Arnoldi process gives error 
bounds of the poles of the transfer function, the error 
bounds in the time domain are not known. [l] intro- 
duces a method which performs Pade approximation in 

a bilinear transformed domain and then shows an er- 
ror bound in the time domain. It then proves that this 
method actually minimizes the least square error of this 

error bound. We call this algorithm PVBCT (Padi: ap- 
proximation Via Bilinear Conformal Transformation). 

The major disadvantage of PVBCT is that it assumes 

the transfer functions are known a priori, thus a prac- 
tical implementation may not be possible. In this sec- 
tion, we first introduce the PVBCT method and then 

give two practical implementations of the algorithm. 

3.1 PVBCT Algorithm 

Given a transfer function X(s), [l] first applies the 
bilinear conformal transformation s = &$ to X(s) and 

gets X’(z) = X(E). It removes the zeros of X’(z) 
at .z = -1 by multiplying (1 + z)-~ to X’(Z), where 
N is the number of zeros of X’(Z) when z = -1. It 

then performs the Pade approximation to X’(z) in the 
z domain. This function is transformed back to the 
s domain under the reverse transformation z = e. 

Finally, it shifts the DC value to match the final DC 
value. 

[l] gives the following theorem about the error bound 
of PVBCT in the time domain. 

Theorem 1 Given a &nsfer function X(s), the er- 
ror e(t) = Ix(t) - Z(t)1 between the original transient 
response x(t), and the approximated transfer function 

j?(s) in the time domain of PVBCT, satisfies the fol- 
lowing inequality 

where N is the number of zeros of X’(z) when z = -1. 

The following theorem from [l] also shows that this 

method minimizes the least square error in the time 

domain. 

Theorem 2 Given a transfer function X(s), the ap- 
proximated transfer function z(s) minimizes the least 

square error in the time domain. 
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Figure 2: The conformal transformation fi. 

PVBCT can potentially get more useful poles than 

the AWE method. According to CFH [6], the most in- 

fluential poles for the transient response are located near 
the jw axis. Hence CFH computes the Lorents series at 
multiple points in the iw axis. As shown in Figure 2, 

this bilinear conformal transformation s = e maps 
the right halfplane of s domain onto the interior of the 
unit circle centered in the origin of the z domain, the 
jw axis onto the unit circle. Hence the poles near the 
jw axis in the s domain will be relocated near the unit 

circle around the original points in the z domain. 
The major difficulty of this algorithm is that it as- 

-umes the analytical form of the transfer function is 

known a priori. In the next two subsections, we present 
two practical implementations of PBVCT via Lanc- 

zos/Arnoldi and Inversion Power Iteration method, re- 
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-pectively. These algorithms can obtain the approx- 
imated transfer function in the transformed domain 

without the knowledge of the analytical form of X(s). 
3.2 PVBCT via Lanczos/Arnoldi process 

In this subsection, we present the practical imple- 

mentation of PVBCT via Lanczos/Arnoldi process. 
From Equation (2), we know 

1-Z 
=CX(z) = -GX(z) + bU(z). 

-Multiplying both sides with (1 + z), we get 

(1 - z)CX(z) = -(l + z)GX(z) + (1 + z)bU(z). 

The above equation can be rewritten as 

X(z) = ((C + G) + z(G - C))-‘(1 + z)bU(z) 

Let A = (C + G)-‘(C - G) and 21 = (C + G)-‘W(z). 
We have 

X(z) = (I - zA)-‘~(1 + z). 

The Taylor expansion of X(z) at z = 0 is 

X(z) = 2 A”vz’(l + z). 
i=o 

(9) 

The moments of the impulse response (U(z) = 1) are 

given by 

77x0 = 2, 

mi = (Ai + Ai-l)v, i 2 1. 

After performing q steps of Lanczos/Arnoldi approxi- 
mation, we get 

4 

A = VqHqVqT. (10) 

By substituting (10) back to (9), we get 

X(z) = (I - zV,H&?-)-‘~(1 + z) 

= &(I - zHJ’VTv(1 + z). (11) 

Let 211 = fi. Hence, by (5), we know VqTv = Ijvllel. 

Hence, by Equation (ll), we know 

X(z) = IlvllVq(I - zH,)-‘(l+ z)er. 

The Taylor expansion of X(z) is 

X(z) = ~~w~~ 2 VqHielzi(l + z). 
i=O 

The moments in the z domain can be computed by 

mo = 2, 

mi = IlwllVn(Hk + Hi-‘)v, i 2 1. 

According to the above discussions, we derived a 
practical implementation of PVBCT based on the Lanc- 

zos/Arnoldi method. The new algorithm is summarized 

in Figure 3. 

Algorithm: PVBCT-LA (Pad6 approximation via bilinear 
conformal transformation by Lanczos/Arnoldi process) 

Input: A circuit with G, C, b matrices. 

Output: An approximated transfer function X^(S) 
Al Let A = (C + G)-‘(C - G) and v = (C + G)-‘b. 
A2 Apply (I steps of Lanczos/Amoldi algorithm to A and 

get 5, H,. 
A3. Let X(r) = IlujjVq(I - .zg,)-‘(1 + .z)el. 

A4. Remove all the zeros of X(.z) at z = -1 by forming 

z(z) = cl:‘:,‘N, where N is the number of zeros of x^(-1). 

A5. Perform Pad6 approximation on-z(a) and get z(z). 

A6. Get the new approximation by X(s) = K%(e), 

where K is a constant which makes X(0) = z(O). 

Figure 3: Pad6 approximation via bilinear conformal 
transformation by Lanczos/Arnoldi process. 

3.3 PVBCT via Inverse Power Iteration 

In this subsection, we show how to implement 

PVBCT by the Inverse Power Iteration method. 
Let e = C,“=, aizi, (9) can be rewritten as 

co 

C’c a&(z) = -GX(z) + bU(z). 
i=o 

Let X(z) = Czo zizi and W(z) = CEO bizi, we can 

rewrite the above equation as 

co i 00 00 

C x(x ajxi-j)zi = -G C xizi + C bizi. 
i=lJ j=O i=O i=o 

Combining the coefficient of zi, we get 

i=O j=O i=O 

By the above equation, the moments {Q,Q, . . .} of 
X(z) satisfy 

Gxo + aoCxo = b. 
i-l 

Gx~ + Caoxi + C7Cujxi-j = bi, i 2 1. (12) 
j=O 
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The above equations give an iterative method to com- 

pute the moments. It shows that to compute the mo- 
ments of the capacitors we only have to transform the 
capacitor to an independent current source connected in 
parallel to a voltage control current source and solving 

for the voltage of this device as shown in Figure 4. For 

a capacitor with value C, the value of the independent 

current source is C Ciz’, ojzi-j and the value of the 
voltage control current source is as * C * Voltage(C), 
where Voltage(C) is the resultant voltage difference be- 

tween the two end of the device. The new moment of 
this capacitor will be xi = Voltage(C). For inductors, 

we transform each inductor to an independent voltage 
source serially connected to a current control voltage 

source as shown in Figure 4. For an inductor with 

value L, the value of the independent voltage source 
is L cfz’, ajsi-j and the value of the voltage control 

current source is equal to as * L * Current(L), where 

Current(L) is the resultant current flowing through 

the device. The new moment of this inductor will be 

Xi = Current(L). 

P, 

i-l 
C 

a 

cs a. 4-j 

0 

; 
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Figure 4: The transformations of PVBCT. 

According to the above discussion, we have derived 

a practical implementation of PVBCT based on the In- 

verse Power Iteration method. This method is summa- 

rized in Figure 5. 

4 Experimental Results and Concluding 
Remarks 

We have implemented and tested our algorithms on a 
PC with Pentium-133 microprocessor using many clock 
tree examples [2]. In Figure 6, we show the comparison 
between PVBCT-IPI, AWE, and SPICE output when 

the modeling of the clock trees contain RLC elements. 
An enlarged plot of the beginning part of Figure 6 is 
shown in Figure 7. It shows that the results of PVBCT- 

Algorithm: PVBCT-IPI (Pad& approximation via bilinear 
conformal transformation by Inverse Power Iteration.) 

Input: A circuit with G, C, 6 matrices. 

Output: An approximated transfer function j;(8). 
Al Use the simple transformation shown in Figure 4. 
A2 Solve the voltages and currents of the capacitors and 

inductors. 
AS. Compute higher order moments base on Equation (12). 

1 A4. Repeat Al to A3 P steps. 
1 A4. Let z(z) = xb, mir’: 

1 A2. Remove all the zeros of y(z) at .z = -1 by forming 

X(‘(P) = $$, where N is the number of zeros of x^(-1). 

A3. Perform Pad6 approximation on-z(z) and get z(.z). 

A4. Get the new approximation by X(s) = K%(e), 

where K is a constant which makes X(0) = E(O). 

Figure 5: PadC approximation via bilinear conformal 
transformation by Inverse Power Iteration. 

IPI have better fits than AWE. The simulation results 

for pure RC elements are shown in Figure 8. In this 

case, the transient responses from SPICE and PVBCT- 
IPI are identical. 

On the other hand, we also observe that the behavior 

of PVBCT-IPI is not as stable as the AWE method. 

Also, similar to AWE, it is not easy to find a correct 
order to get a good approximation. Nevertheless, we 
believe that it is very important to have an efficient 

interconnect simulation method which can provide error 
bounds in the time domain. 

Volt 
FTBTI- .kW$--. 
.spk?..-. 

Y...sW Y.L”W Y.W u- “.WW “S 

Figure 6: RLC circuit simulation result. 
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Figure 7: Enlarged RLC circuit simulation result. 
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Figure 8: RC circuit simulation result. 
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