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Abstract
In this paper, we consider non-uniform wire-sizing under the

Elmore delay model. Given a wire segment of length L, let
f(x) be the width of the wire at position x, 0 � x � L.
It was shown in [2, 5] that the optimal wire-sizing func-

tion which minimizes delay is an exponential tapering func-

tion f(x) = ae�bx, where a > 0 and b > 0 are constants.
Unfortunately, [2, 5] did not consider fringing capacitance

which is at least comparable in size to area capacitance in

deep submircon designs. As a result, exponential tapering
is no longer the optimal strategy. In this paper, we show

that the optimal wire-sizing function, taking fringing capaci-

tance into consideration, is f(x) =
�cf

2c0
( 1

W(
�c

f

ae�bx
)
+1) where

W(x) =
P
1

n=1

(�n)n�1

n!
xn is the Lambert's W function, cf

and c0 are the respective fringing capacitance and area capac-
itance of wire per unit square, a > 0 and b > 0 are constants.

The optimal wire-sizing function degenerates into an expo-

nential tapering function as cf = 0, and degenerates into a
square-root tapering function (f(x) =

p
b� ax; where a > 0

and b > 0) as cf ! 1. Our experimental results show that

the optimal wire-sizing function can signi�cantly reduce the
interconnection delay of exponentially tapered wires. In the

case where lower and upper bounds on the wire widths are

given, the optimal wire-sizing function is a truncated version
of the above function. Finally, our optimal wire-sizing func-

tion can be iteratively applied to optimally size all the wire

segments in a routing tree for objectives such as minimiz-
ing weighted sink delay, minimizing maximum sink delay, or

minimizing area subject to delay bounds at the sinks.

1 Introduction

As VLSI technology continues to scale down, interconnect

delay has become a major concern in deep submicron design.

With 70-80% of the system delay comes from the intercon-

nects, it is bene�cial to size wires. In this paper, we consider

non-uniform wire-sizing under the Elmore delay model [12].
Given a wire segment W of length L, a source with driver re-

sistance Rd, and a sink with load capacitance CL. For each
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x 2 [0;L], let f(x) be the width of the wire at position x.

Figure 1 shows an example. Let r0, c0, and cf be wire resis-
tance per unit square, wire area capacitance per unit square,

and fringing capacitance per unit length, respectively. LetD

be the Elmore delay from the source to the sink of W. It was

CL

driver

Rd 0

f(x)

x

wire load

Figure 1: Wire-sizing function.

shown in [2, 5] that the optimal wire-sizing function which

minimizes the delay D is an exponential tapering function
f(x) = ae�bx, where a > 0 and b > 0 are constants. Unfor-

tunately, [2, 5] did not consider fringing capacitance which is

at least comparable in size to area capacitance in deep sub-
mircon designs. [11] shows that for a single interconnection

line placed on bulk silicon, the capacitance per unit length

can be approximated by C = �ox[1:15(
W

H
) + 2:80( T

H
)0:222 ],

where �ox = 3:9 � 8:855 � 10�14F=cm is the dielectric con-

stant of the insulator such as SiO2 , W and T are the re-

spective width and thickness of the wire, H is the distance
from the wire to the bulk. The �rst term in the above

equation is the area capacitance and the second term is the

fringing capacitance. Note that when T = H = 1�m and
W = 0:5�m, the fringing capacitance dominates the area

capacitance. Clearly, exponential tapering is no longer the

optimal strategy.
In this paper, we show that the optimal wire-sizing

function, taking fringing capacitance into consideration, is

f(x) =
�cf

2c0
( 1

W(
�c

f

ae�bx
)
+1) where W(x) is the Lambert's W

function, a > 0 and b > 0 are constants. The Lambert's W
function [7, 8] was �rst introduced by Euler in 1779 [9] when

he studied Lambert's transcendental equation in [10]. W(x)

function is de�ned as the value of w that satis�es wew = x.

Like exponential function, the W function is di�erentiable

and integrable. For jxj � 1
e
, the W function has the follow-

ing series expansion

W(x) =

1X
n=1

(�n)n�1
n!

x
n
: (1)

The optimal wire-sizing function degenerates into an expo-

nential tapering function as cf = 0, and degenerates into a

square-root tapering function (f(x) =
p
b� ax where a > 0

and b > 0) as cf ! 1. Our experimental results show that

the optimal wire-sizing function can signi�cantly reduce the



interconnection delay of exponentially tapered wires. In the
case where lower and upper bounds on the wire widths are

given, the optimal wire-sizing function is a truncated version
of the above function. Finally, our optimal wire-sizing func-

tion can be iteratively applied to optimally size all the wire

segments in a routing tree for objectives such as minimiz-
ing weighted sink delay, minimizing maximum sink delay, or

minimizing area subject to delay bounds at the sinks.

Due to space limitation, we omit the proofs of many lem-
mas and theorems. See [4] for complete proofs.

2 Elmore Delay Model

We use the Elmore delay model [12]. Suppose W is par-

titioned into n equal-length wire segments, each of length

4x = L

n
. Let xi be i4x, 1 � i � n. The capacitance

and resistance of wire segment i can be approximated by

(c0f(xi) + cf)4x and r04x=f(xi), respectively. Thus the

Elmore delay through W can be approximated by

Dn = Rd(CL +

nX
i=1

(c0f(xi) + cf)4x) +

nX
i=1

r04x
f(xi)

(

nX
j=i

(c0f(xj) + cf)4x+CL):

The �rst term is the delay of the driver, which is given

by the driver resistance Rd multiplied by the total capac-
itance of W and CL. The second term is the sum of the

delay in each wire segment i, which is given by its own resis-
tance r04x=f(xi) multiplied by its downstream capacitancePn

j=i
(c0f(xj) + cf)4x+CL. As n!1, Dn ! D where

D = Rd(CL +

Z
L

0

(c0f(x) + cf)dx) +

Z
L

0

r0

f(x)
(

Z
L

x

(c0f(t) + cf ) dt+ CL) dx

is the Elmore delay through the driver and W .

3 Optimal Wire-Sizing Function

In this section, we determine a wire-sizing function that

minimizes D. We show that the optimal wire-sizing func-
tion satis�es a di�erential equation which can be analytically

solved.

Theorem 1 Let f be the optimal wire-sizing function. We

have

f
2(x) =

r0(CL + c0
R
L

x
f(t)dt+ cf (L � x))

c0(Rd + r0
R x
0

1
f(t)

dt)
(2)

Note that let C(x) = CL + c0
R
L

x
f(t)dt + cf(L � x) be

the downstream capacitance at point x and let R(x) =

Rd + r0
R x
0

1
f(t)

dt be upstream resistance at point x. We

can rewrite Equation (2) as follows:

f(x) =

r
r0C(x)
c0R(x) : (3)

Since C is strictly decreasing and R is strictly increasing,
therefore f is strictly decreasing.

By rearranging the terms in (2) and di�erentiating it with
respect to x twice, we get the following theorem.

Theorem 2 Let f(x) be the optimal wire-sizing function.

We have

f
00(x)f(x) = f

0(x)2(
2c0f(x)� cf

2c0f(x) + cf
): (4)

The following theorem gives the optimal wire-sizing func-

tion for the special cases where cf = 0 or cf !1.

Theorem 3 If cf = 0, the optimal wire-sizing function is
given by an exponential tapering function f(x) = ae�bx,

where a > 0 and b > 0. If cf ! 1, the optimal wire-

sizing function is given by a square root tapering function
f(x) =

p
b� ax, where a > 0 and b > 0.

For the general case, we can analytically solve the di�er-

ential equation in (4) and obtain a closed-form solution as
shown below.

Theorem 4 Let f be the optimal wire-sizing function. We

have f(x) =
�cf

2c0
( 1

W(
�c

f

ae�bx
)
+ 1), where a > 0, b > 0,and

W(x) =
P
1

n=1

(�n)n�1

n!
xn is the Lambert's W function.

Proof: Let y = f(x) and P = y0. We have y00 = P dP

dy
.

We can rewrite Equation (4) as follows:

yP
dP

dy
= P

2 2c0y � cf

2c0y + cf
:

After separating the variables and integrating, we get

P = k1
(2c0y + cf )

2

y
; where k1 is a constant.

Since P = dy

dx
, we have

dy

dx
= k1

(2c0y+ cf)
2

y
:

By separating the variables and integrating, we get

(2c0y + cf )e

c
f

2c0y+cf = ae
�bx

; where a > 0 and b > 0

Let Y = 2c0y + cf and substitute into the above equation,

we obtain Y e
c
f

Y = ae�bx. Equivalently, we have

�cf
Y

e
�c

f

Y =
�cf
ae�bx

(5)

Let w =
�cf

Y
and t =

�cf

ae�bx
. We simplify Equation (5) to

we
w = t: (6)

By the de�nition of the Lambert's W function, we can

rewrite Equation (6) as W(t) = w. Thus,

W(
�cf
ae�bx

) =
�cf
Y

=
�cf

2c0y+ cf
:



After rearranging the terms, we get

y =
�cf
2c0

(
1

W(
�cf

ae�bx
)
+ 1)

Finally, We can prove that j �cf
ae�bx

j � 1
e
and hence

�cf

ae�bx
is

within the radius of convergence of the series expansion of

the W function. See [4] for the proof.

We now show how to determine the values of a and b.

Lemma 1 Let f(t) =
�cf

2c0
( 1

W(
�c

f

ae�bt
)
+ 1), � = W(

�cf

a
),

� =W(
�cf

ae�bL
). We have

Z
L

0

f(t)dt =
�cfL
2c0

(

1
�
� 1

�
+ ln �

�

ln �

�
+ � � �

+ 1) (7)

Z
L

0

1

f(t)
dt =

�2c0L
cf

� � �

ln �

�
+ � � �

(8)

Clearly, f(0) and f(L) can be directly written in terms

of � and �. Using Equation (2) and Lemma 1, we get al-
ternative expressions for f(0) and f(L) in terms of � and �.

By equating the equivalent expressions for f(0) and f(L),
we get the following theorem which shows how to determine
the constants a and b in the optimal wire-sizing function.

Theorem 5 Let f(x) =
�cf

2c0
( 1

W(
�c

f

ae�bx
)
+ 1), where a > 0

and b > 0, be the optimal wire-sizing function. The constants

a and b are the roots of the following equations:

c2fRd

4c0r0
(1 +

1

�
)2 = CL +

�cfL
2

1
�
� 1

�
+ �� �

ln �

�
+ � � �

(9)

c2f

4c0r0
(1 +

1

�
)2 =

CL

Rd +
�2c0r0L

cf

���

ln
�

�
+���

; (10)

where � =W(
�cf

a
) and � =W(

�cf

ae�bL
).

Remark 1. We apply Newton-Raphson method to Equa-

tions (9) and (10) to solve for a and b. A good initial guess

can be obtained as follows: First, chop the line into a few
segments and apply the GWSA-C wire-sizing algorithm [3]

to optimally size the segments (each with unform width),

then extract the initial guess of a and b from the solution.
Since Equations (9) and (10) indirectly depend on a and

b, the partial derivatives with respect to a and b cannot

be obtained by directly di�erentiating. In order to apply
chain rule, we need to compute @�

@a
, @�

@b
, @�

@a
, and @�

@b
. By

� =W(
�cf

a
) and � =W(

�cf

ae�bL
), we know

�e
� =

�cf
a

; �e
� =

�cf
ae�bL

: (11)

By di�erentiating both sides of each of the equations in (11)
with respect to a and b, we get

@�

@a
=

cf

(1 + �)a2e�
;

@�

@b
= 0;

@�

@a
=

cf

(1 + �)a2e��bL
;

@�

@b
=

bcf

(1 + �)ae��bL
:

Remark 2. Figure 2 shows a typical shape of the wire-
sizing function. In general, the optimal wire-sizing function

can be roughly divided into three regions. In region I, since
the wire has larger width, area capacitance dominates fring-

ing capacitance. Hence the shape of the function is simi-

lar to that of exponential tapering. In region II, since the
wire is of medium width, area capacitance and fringing ca-

pacitance play competitive roles. Hence the shape of the

function is similar to a combination of the exponential ta-
pering and square root tapering which looks like a straight

line. In region III, since the width of the wire is smaller,

fringing capacitance dominates area capacitance, hence the
shape of the wire-sizing function is similar to that of square

root tapering.

Remark 3. Recently, [6] independently determined the op-
timal wire-sizing function using calculus of variation. The

optimal wire-sizing function was expressed as a power se-

ries whose coe�cients had to be computed one at a time by
symbolically or numerically integrating. In contrast, we are

giving a closed-form solution to the wire-sizing problem.

wire width

wire position

x

square root tapering

exponential tapering

Region I Region II Region III

optimal tapering function 

Figure 2: Optimal wire-sizing function.

4 Constrained Wire-Sizing
In constrained wire-sizing, we are given 0 < L < U <

1, and require that L � f(x) � U , 0 � x � L. It is
clear that if the wire-sizing function f(x) obtained for the

unconstrained case lies within bounds L and U , then f(x)

is also optimal for constrained wire sizing. On the other
hand, if for some x, f(x) is not in [L;U ], a simple approach

is to round f(x) to either L or U ; i.e. the new function is

obtained by a direct truncation of f(x) by y = L and y = U .
Unfortunately, an argument similar to the one used in [2]

shows that the resulting function is not optimal. However,

as in [2], it can be shown that the optimal constrained wire-

sizing function is continuous and decreasing. As a result,

the optimal wire-sizing function f(x) consists of (at most)

three parts. The �rst part is f(x) = U , the middle part is

a decreasing function, and the last part is f(x) = L. The

three parts of f(x) partition W into three wire segments,

A, B, and C, where A has width U , C has width L, and
B is de�ned by the middle part of f(x). It is easy to see

that the middle part of f(x) must be of the form f(x) =
�cf

2c0
( 1

W(
�c

f

ae
�b(x�l1 )

)
+ 1) for some a > 0 and b > 0. To see

this, we can consider the wire segment A to be a part of the

driver and its resistance to be a part of Rd. Similarly, the

wire segment C can be considered as a part of the load and

its capacitance as a part of CL. According to Equation (9),

we can recalculate a and b using the new values of Rd and



CL, as long as we know the length of the wire segments A
and B. Let l1, l2, and l3 be the length of wire segments A,

B, and C, respectively. The optimal wire-sizing function is
given as follows:

f(x) =

8><
>:

U if 0 � x � l1
�cf

2c0
( 1

W(
�c

f

ae
�b(x�l1 )

)
+ 1) if l1 � x � l1 + l2

L if l1 + l2 � x � L

where a, b, l1, l2, and l3 are constants whose values depend
on the input parameters c0, cf , r0 and L. See [4] for the

details in determining these constants.

5 Application to Routing Trees

Recently, [1] applied the wire-sizing formula in [2] to size

routing trees under the Elmore delay model. As in [2], [1] did
not consider fringing capacitance, i.e. cf = 0. Three min-

imization objectives were studied: 1) total weighted sink-

delays; 2) total area subject to sink-delay bounds; and 3)
maximum sink-delay. [1] presented an algorithm NWSA-

wd for minimizing total weighted sink-delays based on itera-

tively applying the wire-sizing function in [2] to size one wire
segment at a time. Whenever the wire-sizing function in [2]

is used to size a wire segment in the tree, Rd is set to be the

total weighted upstream resistance, including the driver re-
sistance, and CL is set to be the total weighted downstream

capacitance, including the load capacitances of the sinks in

the subtree. It was shown in [1] that NWSA-wd always con-
verges to an optimal wire-sizing solution. Based on NWSA-

wd and the Lagrangian relaxation technique, [1] presented

two other algorithms NWSA-db and NWSA-md which can
optimally solve the other two minimization objectives. In or-

der to take fringing capacitance into consideration, we can

simply use the optimal wire-sizing function presented in this
paper instead of the one in [2] in NWSA-wd, NWSA-bd, and

NWSA-md. The three algorithms NWSA-wd, NWSA-bd,

and NWSA-md, with the above modi�cation, would again
give globally optimal wire-sizing solutions for routing trees

(with respect to the above three minimization objectives).

6 Experimental Results

We implemented our algorithm in C on a Sun Sparc 5
workstation. The parameters in our experiment are as fol-

lows: r0 = 0:03
=�m, c0 = 0:2fF=�2m, cf = 0fF=�m�0:5,
Rd = 1
, and CL = 20fF . In Figure 3, we show the optimal
wire-sizing functions for di�erent values of cf . It shows that

when cf = 0, the optimal wire-sizing function degenerates to

exponential tapering. It also shows as cf increases, the op-
timal function gradually changes from exponential tapering

to square root tapering. The delay comparisons with re-

spect to di�erent values of cf and di�erent ways of tapering

(minimum width sizing, exponential tapering and optimal

tapering) are shown in Table 1. It shows that the optimal

wire-sizing function can even reduce half of the delay of the

exponential wire-sizing function when cf = c0. The runtime

of our program is always within 0:01 cpu seconds.
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