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Abstract
In this paper, we consider non-uniform wire-sizing. Given a
wire segment of length L, let f(x) be the width of the wire

at position x, 0 � x � L. We show that the optimal wire-

sizing function that minimizes the Elmore delay through the
wire is f(x) = ae�bx, where a > 0 and b > 0 are constants

that can be computed in O(1) time. In the case where lower

bound (L > 0) and upper bound (U > 0) on the wire widths
are given, we show that the optimal wire-sizing function f(x)

is a truncated version of ae�bx that can also be determined in
O(1) time. Our wire-sizing formula can be iteratively applied

to optimally size the wire segments in a routing tree.

1 Introduction
As VLSI technology continues to scale down, intercon-

nect delay has become the dominant factor in deep submi-
cron designs. As a result, wire-sizing plays an important role

in achieving desirable circuit performance. Recently, many
wire-sizing algorithms have been reported in the literature

[1, 2, 4, 5, 7]. All these algorithms size each wire segment uni-

formly, i.e., identical width at every position on the wire. In
order to achieve non-uniform wire-sizing, existing algorithms

have to chop wire segments into large number of small seg-

ments. Consequently, the number of variables in the opti-
mization problem is increased substantially and thus results

in long runtime and large storage.

In this paper, we consider non-uniform wire-sizing. Given

a wire segment W of length L, a source with driver resistance

Rd, and a sink with load capacitance CL. For each x 2 [0; L],
let f(x) be the wire width of W at position x. Figure 1 shows

an example. Let r0 and c0 be the respective wire resistance
and wire capacitance per unit square. Let D be the Elmore

delay from the source to the sink of W . We show that the

optimal wire-sizing function f(x) that minimizes D satis�es
an ordinary di�erential equation which can be analytically

solved. We have f(x) = ae�bx, where a > 0 and b > 0

are constants that can be computed in O(1) time. These
constants depend on Rd; CL;L; r0, and c0. In the case where

lower bound (L > 0) and upper bound (U > 0) on the wire

widths are given, i.e. L � f(x) � U , 0 � x � L, we show that
the optimal wire-sizing function f(x) is a truncated version of

ae�bx that can also be determined in O(1) time. Our wire-

sizing formula can be iteratively applied to optimally size the
wire segments in a routing tree.

2 Optimal Wire-Sizing Function
We use the Elmore delay model [3]. Suppose W is parti-

tioned into n equal-length wire segments, each of length 4x
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Figure 1: Non-uniform wire-sizing.

= L

n
. Let xi be i4x, 1 � i � n. The capacitance and resis-

tance of wire segment i can be approximated by c04xf(xi)
and r04x=f(xi), respectively. Thus the Elmore delay through
W can be approximated by

Dn = Rd(CL +

nX
i=1

c0f(xi)4x) +

nX
i=1

r04x

f(xi)
(

nX
j=i

c0f(xj )4x+ CL):

The �rst term is the delay in the driver, which is given by the

driver resistance Rd multiplied by the total capacitance of W

and CL. The second term is the sum of the delay in each wire

segment i, which is given by its own resistance r04x=f(xi)

multiplied by its downstream capacitance
Pn

j=i
c0f(xj)4x+

CL. As n!1, Dn ! D where

D = Rd(CL +

Z
L

0

c0f(x)dx) +

Z
L

0

r0

f(x)
(

Z
L

x

c0f(t) dt+ CL) dx

is the Elmore delay through W .

In this section, we derive closed-form formula for the opti-
mal wire-sizing function f(x). We consider two cases: un-

constrained and constrained wire-sizing. In unconstrained

wire-sizing, there is no bound on the value of f(x); i.e. we
determine f : [0;L] ! (0;1) that minimizes D. In con-

strained wire-sizing, we are given L > 0 and U < 1, and

require that L � f(x) � U; 0 � x � L; i.e., we determine
f : [0;L]! [L;U ] that minimizes D.

2.1 Unconstrained Wire-Sizing
We now derive the optimal unconstrained wire-sizing func-

tion.

Theorem 1 Let f(x) be an optimal wire-sizing function. We

have

f
2(x) =

r0(CL + c0
R
L

x
f(t)dt)

c0(Rd + r0
R x
0

1
f(t)

dt)
: (1)

Note that CL + c0
R
L

x
f(t)dt is equal to the downstream ca-

pacitance at point x (denoted by �x) and Rd+ r0
R x
0

1
f(t)

dt is



equal to the upstream resistance at point x (denoted by �x).
Hence we can rewrite Equation (1) as follows:

f(x) =

r
r0�x

c0�x

: (2)

By rearranging the terms in (1) and di�erentiating it with
respect to x twice, we get the following theorem.

Theorem 2 Let f(x) be an optimal wire-sizing function. We
have

f
00(x)f(x) = f

0(x)2: (3)

The following theorem shows that the di�erential equation

in (3) has a closed-form solution.

Theorem 3 Let f(x) = ae�bx, where a = r0
bRd

and

b

r
RdCL

r0c0
� e

�bL

2 = 0: (4)

We have, f(x) is an optimal wire-sizing function.

Note that the function g(z) = z

q
RdCL
r0c0

�e
�zL

2 is a strictly

increasing function in z, g(0) < 0, and limz!1 g(z) > 0. Thus
g(z) has a unique root b > 0. We can use Newton-Raphson

method to determine b and, in practice, �ve to seven iterations

are su�cient. Since a = r0
Rdb

and b > 0, a > 0. Figure 2 shows
the exponentially decreasing nature of the optimal wire-sizing

function.
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Figure 2: Optimal unconstrained wire-sizing.

2.2 Constrained Wire-Sizing
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Figure 3: Direct truncation according to U and L is not
optimal.

We now consider constrained wire-sizing. It is clear that if

the wire-sizing function f(x) obtained for the unconstrained

case lies within bounds L and U , then f(x) is also optimal for

constrained wire sizing. On the other hand, if for some x, f(x)

is not in [L;U ], a simple approach is to round f(x) to either L

or U ; i.e. the new function is obtained by a direct truncation

of f(x) by y = L and y = U . (See Figure 3.) Unfortunately,
the resulting function is not optimal. The reason is that, when

we consider the point v1, which is the intersection of the curves
f(x) = ae�bx and y = U , from Equation (2) v1 must satisfy

f(v1) =

r
r0�v1
c0�v1

; (5)

for v1 to be on the optimal curve. However, from Figure

3, it is clear that v1 does not satisfy Equation (5), because
both of its upstream resistance and downstream capacitance

should be recalculated according to the new function, in which

the two values associated with v1 are reduced because of the
truncation. Thus this simple approach is not optimal.

Note that the optimal unconstrained wire-sizing function

is a decreasing function. We can show that the optimal con-
strained wire-sizing function must also be decreasing.

Theorem 4 Let f(x) be an optimal constrained wire-sizing

function. We have, f(x) is decreasing on [0; L].

According to Theorem 4, the optimal wire-sizing function
f(x), similar to the one shown in Figure 3, consists of (at

most) three parts. The �rst part is f(x) = U , the middle part

is a decreasing function, and the last part is f(x) = L. The
three parts of f(x) partition W into three wire segments, A,

B, and C, where A has width U , C has width L, and B is

de�ned by the middle part of f(x). It is easy to see that the
middle part of f(x) must be of the form f(x) = ae�bx for

some a > 0 and b > 0. To see this, we can consider the wire

segment A to be a part of the driver and its resistance to be a
part of Rd. Similarly, the wire segment C can be considered

as a part of the load and its capacitance as a part of CL.

According to Equation (4), we can recalculate a and b using
the new values of Rd and CL, as long as we know the length

of the wire segments A and B.

As mentioned before, not all three parts of f(x) needed
to be present. In fact, an optimal constrained wire-sizing

function f(x) can be of any one of the six types of functions

(type-A, type-B, type-C, type-AB, type-BC, and type-ABC)
as shown in Figure 4. Note that the six function types clearly

are named after the wire-segment types which are presented

in W. For example, in a type-AB function, W consists only of
wire segments A and B. As shown in Figure 4, l1, l2, and l3
are the length of wire segments A, B, and C, respectively.

We now de�ne six wire-sizing functions fA, fB, fC, fAB,

fBC , fABC as follows: All six functions are of the form

f(x) =

(
U , 0 � x � l1;

ae�bx , l1 � x � l1 + l2;

L , l1 + l2 � x � l1 + l2 + l3 = L;

where the parameters a, b, l1, l2, and l3 for the six functions
are given in Table 1. Typically, the names of the functions

correspond to their types, i.e., fA is of type-A, fB is of type-

B, and so on, but it is not always true. For example, it is
possible that after we compute the parameters for fAB we get

l1 � L and hence it is of type-A; it is also possible that fAB
degenerates into a type-B function. In this case, we say that
fAB is of the wrong type. We also note that sometimes the

functions may be illegal in the sense that they violate the



l1 l2 l3 a b

fA L 0 0 U 0

fB 0 L 0 	1(a) = 0 r0
aRd

fC 0 0 L L 0

fAB 	2(l1) = 0 L � l1 0 U r0
RdU+r0l1

fBC 0 L � l3 	3(l3) = 0 r0(CL+c0Ll3)

Rdc0L

c0L

CL+c0Ll3

fABC

CL
c0L

+L�(1+lnU
L
)
URd
r0

2+lnU
L

lnU
L
(
CL
c0L

+L+
URd
r0

)

2+lnU
L

L � l2 � l1 U r0
RdU+r0l1

	1(a) = a2 �
R0CL
c0Rd

e
r0L

aRd ; 	2(l1) =
r0L+RdU

RdU+r0l1
� ln

c0U(RdU+r0l1)

r0CL
� 1 ; 	3(l3) =

CL+c0LL

CL+c0Ll3
� ln

r0(CL+c0Ll3)

c0RdL
2 � 1:

Table 1: De�nitions of the wire-sizing functions fA, fB , fC , fAB, fBC , and fABC .
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Figure 4: Six types of optimal wire-sizing functions.

wire-width constraints. Nevertheless, we can show that these
six functions are candidates for an optimal constrained wire-

sizing function f(x). In fact, if we eliminate the functions that

are either illegal or of the wrong type, an optimal wire-sizing
function can be chosen as the best one (in terms of delay)

among the remaining ones. We have the following theorem.

Theorem 5 Let G � F = ffA; fB; fC ; fAB; fBC; fABCg be
the set of functions that are either illegal or of the wrong type.

Let f 2 F � G be a function which has minimum delay. We

have, f is an optimal constrained wire-sizing function.

The above method always requires the computation of all

six functions in F . With the help of additional analysis, we

can speed up the procedure. Table 2 shows a set of six fea-

sibility conditions f'A; 'B; 'C ; 'AB; 'BC ; 'ABCg on L. Let

� = fA;B;C;AB;CB;ABCg.

Lemma 1 The six feasibility conditions

f'A; 'B ; 'C ; 'AB; 'BC ; 'ABCg cover all possible L > 0.

Moreover, if L satis�es 'z, where z 2 �, then fz is legal
and is of type-z.

Theorem 6 Let H = ffzjz 2 � and L satisfies 'zg. Let
f 2 H be a function which has minimum delay. We have, f

is an optimal constrained wire-sizing function.

According to Theorem 6, we only need to check the six

feasibility conditions. Only the functions in H needed to be

computed. In general, jHj < 6; in fact, we have never encoun-
tered any case where jHj > 1.

'A L �
CL
c0U

�
RdU

r0

'B L � minf
URd
r0

ln
c0RdU

2

r0CL
; CL
r0L

ln r0CL
c0RdL

2
g

'C L �
RdL

r0
�

CL
c0L

'AB L > maxfURd
r0

ln c0RdU
2

r0CL
; CL
c0U

�
RdU

r0
g and

L � (1 + lnU

L
) CL
c0L

�
RdU

r0

'BC L > maxfRdL
r0

�
CL
c0L

; CL
r0L

ln r0CL
c0RdL

2
g and

L � (1 + lnU

L
)RdU

r0
�

CL
c0L

'ABC L > maxf(1 + lnU

L
)RdU

r0
�

CL
c0L

;

(1 + lnU

L
) CL
c0L

�
RdU

r0
g

Table 2: Feasibility Conditions.
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We also have the following interesting observations. In Fig-
ure 5, we show the relationships among the six types of opti-

mal wire-sizing functions with respect to the three parameters:



wire length L, driver resistance Rd, and load capacitance CL.
The horizontal axis represents the ratio of the driver resis-

tance to the load capacitance. The vertical axis represents
the wire length L. Suppose we keep Rd

CL
�xed and varies L.

When L is small, optimal wire-sizing functions tend to be of

type-A, type-B, or type-C. As we increase the L, wire-sizing
function types will change to type-AB or type-BC when L is

of moderate size and will be of type-ABC when L is large.

Suppose we keep L �xed and varies Rd
CL

. When L is small, as

we increase Rd
CL

, optimal wire-sizing function will change from

type-A to type-B and then to type-C. When L is of moderate
size, optimal wire-sizing function will change from type-AB to

type-BC as we increase Rd
CL

. Roughly speaking, the larger the

ratio Rd
CL

, the smaller the wire sizes. When the wire length L

is very large, optimal wire-sizing function is most likely to be
of type-ABC.

3 Application to Routing Trees
Our wire-sizing formula can be applied to size a general

routing tree. Recently, [2] presents a wire-sizing algorithm

GWSA-C for sizing the wire segments in routing trees. Each
segment in the tree is sized uniformly, i.e. uniform wire width

per segment. Basically, GWSA-C is an iterative algorithm

with guaranteed convergence to a global optimal solution.
In each iteration of GWSA-C, the wire segments are exam-

ined one at a time; each time a wire segment is uniformly

re-sized optimally while keeping the widths of the other seg-
ments �xed. We can incorporate our wire-sizing formula into

GWSA-C to size each wire segment non-uniformly. When we

apply our wire-sizing formula to size a wire segment in a tree,
Rd should be set to be the total upstream resistance including

the driving resistance, and the CL should be set to be the to-

tal downstream capacitance, including the load capacitances
of the sinks in the subtree. It can be shown that this modi�ed

algorithm always converges to a global optimal solution.

4 Experimental Results
We implemented and tested our algorithm in C on a Sun

Sparc 5 workstation with 16 MB memory. The parameters

used are shown in Table 3. The results are given in Table

4. The �rst column labeled \Precision Requirement" speci-

�es the required accuracy of the wire width values. The sec-

ond column shows the number of Newton-Raphson iterations.

Since the wire-sizing formula can be derived in O(1) time, we

are interested in knowing the cost of the numerical method

adopted to obtain some parameter values. It shows that even

under very strict precision requirement the number of itera-
tions is at most 7. Our method is extremely fast.

We also performed experiments to compare the non-

uniform wire-sizing solutions with the uniform ones in which
wires are chopped into di�erent number of segments. The re-

sults are drawn in Figure 6. Wire widths are plotted as the

functions of positions on the wire segments. It shows that the
more segments a wire is chopped into, the closer the solution

is to our formula. When the wire is chopped into 1000 seg-

ments, it can be shown that the corresponding curve and the

non-uniform wire-size curve are almost identical.
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