
Unit 7 1Chang, Huang, Li, Lin, Liu

Unit 7: Simulation
․Content

⎯ Circuit Simulation
⎯ Switch-Level Simulation
⎯ Gate-Level (Logic) Simulation
⎯ RTL-Level (Cycle-Based) Simulation
⎯ Behavior-Level Simulation
⎯ Instruction Set Simulation
⎯ System-Level Simulation

Hardware-Software Co-simulation
Mixed-Level Simulation
Mixed-Signal Simulation

⎯ Timing-Simulation
․Reading

⎯ Chapter 10

Unit 7 2Chang, Huang, Li, Lin, Liu

Simulation
․Simulation is a design validation process for checking a circuit’s

function, timing, etc., encompassing from the lowest through the
highest design levels.

․Simulation makes a computing model of the circuit, executes the
model for a set of input signals (stimuli, patterns, or vector), and
verifies the output signals.

Unit 7 3Chang, Huang, Li, Lin, Liu

Why Simulation Tools?

․Murphy's Law: “Anything that can go wrong, will!”
․Circuits are too large and complex!
․Hard to fix a chip!
․Long manufacturing turnaround time!
․Although it can not guarantee 100% validation

(except that one can exhaust all the input stimuli), it
is easiest and direct way to validate a circuit’s
function or timing.

Unit 7 4Chang, Huang, Li, Lin, Liu

Types of Simulation
․Device-level simulation

⎯ tests the effect of fabrication parameters
․Circuit-level simulation

⎯ detailed analysis of voltage and current
․Switch-level simulation

⎯ treats transistors as switches.
․Gate-level simulation

⎯ uses gates as the basic elements.
․Register-transfer-level (RTL) simulation

⎯ register + combinational logic.
․Behavior-level simulation

⎯ describes designs in higher level abstraction such as by an
algorithm, a data flow graph, etc. using hardware description
languages or high level languages.

Unit 7 5Chang, Huang, Li, Lin, Liu

Types of Simulation (cont’d)

․Instruction set simulation
⎯ verifies the design of a CPU and evaluate its performance.

․System-level simulation
⎯ verifies the function of a system whose constituent components

could be everything, electrical, mechanical, optical elements,
etc.

․ Timing simulation
⎯ Inspects timing behavior based on a given timing model for

logic components and interconnects.

․Fault simulation
⎯ checks whether a given set of test vectors could attain a certain

level of fault coverage for production test.

Unit 7 6Chang, Huang, Li, Lin, Liu

Device, Circuit, Timing Simulation

․Device-level simulation
⎯ Used to test the effect of fabrication parameters
⎯ Used by technologists, not by circuit or system designers

․Circuit-level simulation (e.g., SPICE)
⎯ Analog
⎯ Nodal/tableau equations: KCL, KVL laws
⎯ Numerical integration

․Timing simulation
⎯ Intrinsically analog, use a circuit simulator such as SPICE

to obtain signal waveforms for compute timing,
⎯ But simplifications using macro models, look-up tables,

piecewise-linear models, etc. for tackling large designs.

Unit 7 7Chang, Huang, Li, Lin, Liu

Switch, Gate, RTL Simulation
․Switch-level simulation

⎯ Transistors are modeled as bidirectional switches
⎯ Mainly digital
⎯ Circuits extracted from mask patterns can directly be simulated

․Gate-level (or logic) simulation
⎯ ‘‘Gate’’ mainly refers to elements found in a component library

(e.g. for standard-cell design)
NAND, NOR, multiplexer, D-flip-flop, latch, etc.

⎯ Unidirectional signal flow
⎯ Closely related to ‘‘fault simulation’’

․Register-transfer-level (RTL) simulation
⎯ Circuit is seen as composed of registers to store the state and

combinational logic to compute the next state (finite state
machine model)

Unit 7 8Chang, Huang, Li, Lin, Liu

Behavior-Level Simulation

․Its goal is to achieve highest simulation speed.
․Designs are described in higher-level abstraction using

HDL languages, e.g. VHDL (VHSIC Hardware
Description Language), Verilog, System C, C, C++, etc.

․The behavior model focuses more on verifying the
function of a design rather than the timing performance
of the design, i.e., we don’t even have to know how
long the design will take to perform its function.

Unit 7 9Chang, Huang, Li, Lin, Liu

Instruction Set Simulator

․Its goal is to verify the design of a particular CPU and
evaluate its performance under certain workload.

․The simulator is normally written in high-level
languages such as C, C++, etc. to achieve highest
execution speed.

․The program input to an instruction set simulator is an
executable code segment. Programs written in
assembly language or higher level languages should be
compiled into machine code.

․It plays an important role in hardware/software co-
simulation.

Unit 7 10Chang, Huang, Li, Lin, Liu

System-Level of Simulation
․System-Level Simulation:

⎯ Validates the whole system described in different design levels
with different types of components.

․It might have to use a variety of aforementioned
simulators integrated as a whole to validate a system.
For example,
⎯ Mixed-level simulation: For the designs described in different

levels of abstractions within the same simulation environment
⎯ mixed-mode simulation: For the designs with different kinds of

signal abstractions such as digital versus analog signals, etc.
⎯ hardware-software co-simulation: For the designs with software

running on a target hardware. It becomes more and more
important

Unit 7 11Chang, Huang, Li, Lin, Liu

Circuit Simulation

Unit 7 12Chang, Huang, Li, Lin, Liu

Circuit Simulation
․Circuit simulators like SPICE numerically solve device

models and Kirchoff's Voltage and Current Laws (KVL,
KCL) to determine time(frequency)-domain circuit
behavior.
⎯ KVL (Mesh Analysis): The algebraic sum of the voltage

drops around a closed path is zero.
⎯ KCL(Nodal Analysis): The algebraic sum of all the currents

incident on a node is zero.
․Unlike resistors and capacitors, transistors are non-

linear devices ⇒ shall apply numerical approaches for
circuit simulation.

․Numerical solution allows more sophisticated models,
non-functional (table-driven) models, etc.

․SPICE Home Page
⎯ http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

Unit 7 13Chang, Huang, Li, Lin, Liu

Numerical Solutions
․For Nodal Analysis, the (non)linear system describing a circuit

network can be formulated as follows:

⎯ I is the vector consisting of independent current sources.
⎯ Y is the system matrix consisting of admittance terms from all

components except from independent sources.
⎯ U is the vector of node voltages to be solved.

․The above equation can describe a huge system with hundreds or
thousands of elements. However, the system matrix Y is usually
sparse such that both memory usage and calculation time can be
reduced with sparse matrix solution techniques.

․ Its simulation time step is decided by the accuracy requirement of
numerical algorithms for solving the system equations. The
simulator can not predict the next simulation time point based on
the current time.

I=YU

Unit 7 14Chang, Huang, Li, Lin, Liu

Types of Circuit Analysis

․DC Analysis
⎯ It finds the operating point of a circuit.

․AC (Small-Signal) Analysis
⎯ It finds the frequency response of a circuit.

․Transient Analysis
⎯ It finds the time domain response for a circuit when it

is excited with a sinusoidal signal.
․Harmonic Balance Analysis

⎯ find the harmonic steady state response for a circuits
when it is excited with a sinusoidal signal.

Unit 7 15Chang, Huang, Li, Lin, Liu

DC Analysis

․All dynamic components such as capacitances and
inductances are ignored in this analysis.
⎯ Capacitances are removed from the circuit and inductances are

short circuited. If the circuit is nonlinear, the analysis is
performed using an iterative method. An amplifier circuit

Building the netlist (a SPICE-like format)

#define kRLoad 1

Model ALPHA=0.995EMoll ALPHAR=0.5 RB=25

FLAG+ =DIODE_BC CJO=22p RS=5

+ FLAG=DIODE_BE RS=1

Vcc DC=10 R=1Volt n1 0

Res RB1 n3 0 21k

Res 170kRB2 n1 n3

Res RL n1 n2 RLoad

Trans Q1 MODELn2 n3 0 =EMoll

DC analysis results

Operating point

Vce = 5.72

Vbe = 697.65m

Ic = 4.27m

http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#define
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Scaling
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Model
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#ALPHA
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#plus
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#plus
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Flag
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Volt
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#Vcc
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#DC
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#R
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Res
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#RB
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#RB
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Fixed
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#RL
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Trans
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#Q1
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#ParameterMODEL

Unit 7 16Chang, Huang, Li, Lin, Liu

AC Analysis

․AC analysis is used mainly in connection with
amplifiers and filters, where the frequency response is
of interest.
⎯ The AC simulation is usually based on a sweep over a range of

frequencies. The excitation consists of a single frequency at a
time and the signal levels are assumed to be so low as not to
affect the operating point.

Result of AC analysis

Unit 7 17Chang, Huang, Li, Lin, Liu

Transient Analysis

․Transient, or time-domain, analysis most closely
simulates the phenomena seen in the real circuit by
means of an oscilloscope.
⎯ A simulation consists usually of a time sweep starting at t=0.

When required, a DC analysis precedes the transient analysis
and defines the initial conditions for dynamic components
unless set by the user.

Transient Response at n2

Unit 7 18Chang, Huang, Li, Lin, Liu

Harmonic Balance Analysis

․When a nonlinear circuit is excited with one or several
independent periodic signals, mixing products will be
generated.

․Harmonic balance analysis calculates, in the steady
state, the spectrum of the signals in the circuit and thus
mimics a spectrum analyzer.

Spectrum Waveform

Unit 7 19Chang, Huang, Li, Lin, Liu

Spice Transistor Simulation Models
․MOS transistor models

⎯ Level 1: basic transistor equations; not very accurate.
⎯ Level 2: more accurate determination of effective channel

length, transition between the linear and saturation regions.
⎯ Level 3: empirical model
⎯ Level 4 (BSIM): more efficient empirical model.
⎯ Level 28 (BSIM2).
⎯ Level 47 (BSIM3): recent model for deep submicron transistors.

․Some Spice model parameters
⎯ L, W: transistor length, width (L, W)
⎯ VT0: zero-bias threshold voltage (Vt 0)
⎯ KP: transconductance (k')
⎯ GAMMA: body bias factor (γ)
⎯ TOX: oxide thickness (tox)
⎯ NSUB: substrate doping (Na, Nd)

․Commercially available circuit simulation tools: HSPICE, ST-
SPICE, etc.

Unit 7 20Chang, Huang, Li, Lin, Liu

Basic Transistor Equations

Unit 7 21Chang, Huang, Li, Lin, Liu

Circuit Simulation of a CMOS Inverter (0.6 µm)

Unit 7 22Chang, Huang, Li, Lin, Liu

Circuit Simulation for Delay Calculation
․Used only for small circuits or a small portion of a circuit

which is timing critical.
․Definition of delays

⎯ rise (fall) time
As a convention, it is the time period for a signal to rise (fall)
from 10% (90%) Vdd to 90% (10%) Vdd.

⎯ Rise (fall) delay
As a convention, rise delay is measured from the 50% Vdd
of the input transition to the 50% Vdd of output rise (fall).

⎯ Note
Some uses 20% and 80% thresholds for calculating delays.

․Propagation delay
⎯ The time period between the moment when an input signal

transition reaches 50%Vdd and the moment when the output
signal transition reaches 50%Vdd.

Unit 7 23Chang, Huang, Li, Lin, Liu

Rise Time and Fall Time
voltage

Vdd

0.9Vdd

0.1Vdd

0

voltage
Vdd

0.9Vdd

0.1Vdd

0

Unit 7 24Chang, Huang, Li, Lin, Liu

Propagation Delay

voltage

voltage

0.5 Vdd

0.5 Vdd

Unit 7 25Chang, Huang, Li, Lin, Liu

Path Definition and Delay
․Path definition

⎯ A path is defined as from a source to a sink.
A source can be the output of a flip-flop (latch) or a primary input (i.e., the
input pin of an IC).
A sink can be the input of a flip-flip (latch) or a primary output (i.e., the
output pin of an IC).

․Path delay comprises
⎯ The delay of a flip-flop (latch) which serves as a source.
⎯ The delay of any device along the underlying path.
⎯ The delay of any interconnect along the underlying path.

Unit 7 26Chang, Huang, Li, Lin, Liu

Set-up and Hold Time Requirement

․Set-up time and hold time of a certain memory element
forms a time window around the clock arrival edge.

․Within the time window, signal should not change its
logic value, otherwise the memory element may goes
into meta-stable state or be loaded with a wrong logic
value.

․That is to say, a signal being propagated from the
source of a path can be safely loaded into a memory
element if the signal can be stable before the set-up
time and remain stable during the time window.

Unit 7 27Chang, Huang, Li, Lin, Liu

Purposes of Path Delay Calculation

․Check whether a signal change traversing through a
path violates the set-up time and hold-time constraints
at a certain memory element (flip-flop or latch).

․To achieve this goal, we should be able to calculate the
path delays.

․Delay calculation is usually done on per path basis for
checking
⎯ Whether any long path in the circuit would violate setup time

constraint of flip-flops or latches.
⎯ Whether any short path would violate hold time constraint of

flip-flops or latches.

Unit 7 28Chang, Huang, Li, Lin, Liu

Event Driven Simulation

Unit 7 29Chang, Huang, Li, Lin, Liu

Event-Driven Simulation

․Event-driven simulation is a widely-used mechanism
in gate- and switch-level simulators.

․An event is a change of a signal value that may trigger
new changes.

․There is a queue of events ordered by the time when
the event is going to happen.

․Basic steps:
⎯ The output of a gate G changes at time ti.
⎯ The fanout of the gate is inspected; it consists of the inputs of

the gates Gk that are connected to the output of gate G.
⎯ If the outputs of the gates Gk change, they are scheduled to

change at time ti + ∆k, where ∆k is the delay associated with the
transition.

Unit 7 30Chang, Huang, Li, Lin, Liu

Timing Wheel

․Instead of using an event queue, a timing wheel is most
often used to manage events.

․It is a circularly linked list which contains the scheduled
events based on their temporal information about when
the events ought to occur.

•

tj
tj+∆

tj+2∆

……

…

…
tj+L∆

tj is current time

∆ is the minimum time
resolution used in the
simulation

L+1 is the number of entries
in the timing wheel

Unit 7 31Chang, Huang, Li, Lin, Liu

Operation of a Timing Wheel
• Remove an event from the linked list pointed by the current time.

• Evaluate the event.

• Schedule all events triggered by the evaluation of the above event
to the linked-list based on their occurring times.

• When the linked list pointed by the current time is empty,
advance the current time by ∆.

• More directly, the time is advanced to the time slot pointing to a non-
empty list. Then, the simulation time step is simply the time period
between two non-empty time slots.

• This process is repeated until the wheel is empty.

Unit 7 32Chang, Huang, Li, Lin, Liu

Hierarchical Timing Wheel
• If the event occurring time exceeds the maximum

allowable time permitted by a timing wheel, a hierarchy
of timing wheel can be used.

Time resolution is ∆

tj+L∆
tj

tj+∆

Time resolution is L∆

Time resolution is L2∆

Unit 7 33Chang, Huang, Li, Lin, Liu

Switch-Level Simulation

Unit 7 34Chang, Huang, Li, Lin, Liu

Basics of Switch-Level Simulation

․Treating transistor as bidirectional switches.
․Signals are with discrete values.
․Transistor and interconnect parasitic resistance and

capacitance can be included in the circuit network to
have a better approximation of real circuit behavior.

․Purposes of switch-level simulation
⎯ Validate the function of a circuit
⎯ Simulate timing behavior of a circuit
⎯ Estimate power consumption of a circuit

Unit 7 35Chang, Huang, Li, Lin, Liu

Validation of Functional Behavior
․Transistors are modeled as bidirectional switches.
․Transistor on-resistance (related to transistor size) is

modeled as a strength (from a set of discrete values)
driving the load.

․Transistor network is modeled as a graph model where
⎯ Transistor is modeled as an edge between two circuit nodes.
⎯ Circuit node is modeled as either the input node or storage

node.
Input node can be Vdd, Gnd or a strong logic 1 or 0.
Storage (charged) node is a node with a capacitance.
A node is also associated with a strength.
An input node has the largest strength.
A storage node has a strength proportional to its
capacitance.

Unit 7 36Chang, Huang, Li, Lin, Liu

Strength Value and Signal Representation

․Strength
⎯ k < s <w: s is the strength of a transistor;
⎯ 1 ≤ s ≤ k: s is the strength of a storage node;
⎯ w: is the strength of an input node;

․Signal Representation
⎯ Represented by a pair of (s, v), where

s is a strength
v is a level, a voltage denoted with discrete values at least
including 1, 0, and X, where X represents the unknown
signal value.

Unit 7 37Chang, Huang, Li, Lin, Liu

Strength Model Example

Input node with
strength 5

Strength of
a transistor

Strength of a
storage node

© 1987 IEEE

Unit 7 38Chang, Huang, Li, Lin, Liu

Switch-Level Simulation Techniques
․Partitioning the circuit into subcircuits that can be

treated as unidirectional components.
⎯ Static partitioning: Connections to the gate of a

transistor determine subcircuit boundaries
irrespective of the signals carried by the nets.

⎯ Dynamic partitioning: Known signal values in the
network are taken into account such that further
partitioning of subcircuits is possible.

․Each subcircuit is then modeled as a channel-
connected component or a switch graph (multigraph)
G=(V, E), where
⎯ V is a set of vertices representing input or storage

nodes labeled with node (net) names and strengths.
⎯ E is a set of edges representing transistors labeled

with a transistor name and strength.

Unit 7 39Chang, Huang, Li, Lin, Liu

Switch-Level Simulation Techniques (cont’d)

․Apply special methods to compute the steady state of a
subcircuit whose inputs are given with logic values.

․The steady state output value of a subcircuit (called B)
is then served as the input value to the other subcircuits
that have a connection to the output of B.

․Event-driven simulation is normally used to propagate
the signal changes and find the steady state.

․The simulation time step is decided by the two most
adjacent events. It is normally not a fixed time value,
but the simulator can predict the next simulation time
point.

․This process is repeated until the steady values of all
subcircuits are computed.

Unit 7 40Chang, Huang, Li, Lin, Liu

Static Versus Dynamic Partitioning

dddd

ss

ss

dddd

ss

ss

｀ ＇

Static partitioning Dynamic partitioning

Unit 7 41Chang, Huang, Li, Lin, Liu

Example of Switch Graph

․A convenient representation
for switch-level circuits is a
multigraph rather than the
more general cell-port net
model.

․Vertices represent nets and
are labeled with the net
name and strength.

․Edges represent transistors
and are labeled with a
transistor ID and strength.

Unit 7 42Chang, Huang, Li, Lin, Liu

Signals and Signal Propagation

․A signal on a vertex is denoted by .
․The strength of a transistor is given by

when the transistor is off.
․ denotes the strength of the signal flowing from

․The level of the signal flowing remains .
․There are two types of nets:

⎯ driven nets: nets having a conducting path to an input net
⎯ charged nets: nets electrically isolated from input nets

u V∈ ,u uσ λ

(,)u v E∈

 to u V v V∈ ∈ (),min ,u v u u vσ σ ε→ =

uλ

u vσ →

, ,. 0u v u vε ε =

Unit 7 43Chang, Huang, Li, Lin, Liu

Signals and Signal Propagation (cont’d)

․Suppose that a driven net has edges (u1, v), …,
(um, v) V, then

․For a charged net, the net’s own signal should be taken
into account,

․When combining signals from different directions, the
level of the new signal equals the level of the strongest
signals. In case of multiple signals with equal strength
and different levels, the new level becomes ’X’.

1
 max

ii m
v u vσ σ

≤ ≤
= →

V∈v
∈

1
max(,)max

ii m
v v u vσ σ σ

≤ ≤
→=

Unit 7 44Chang, Huang, Li, Lin, Liu

Simulation Algorithm Principles

․The algorithm is based on a repeated application of:

․This should be done carefully

⎯ propagate the strongest signals first, i.e., the algorithm must
wait until all the signal activity subsides at a node before the
signal value is propagated forward.

․Implement with an array of queues, one array position
for each strength value.

max(,)v v u vσ σ σ= →

Unit 7 45Chang, Huang, Li, Lin, Liu

Example

• The table below
shows how input
signal changes are
propagated to the
output.

Propagate from to State of n2 State of n3

“Initial state” (1, X) (1, X)

no n2 (3, 1) (1, X)

n1 n2 (4, 0) (1, X)

n2 n3 (4, 0) (3, 0)

Logic valueStrength

Unit 7 46Chang, Huang, Li, Lin, Liu

Discussion

․The above algorithm operates in linear time with
respect to the number of nets and transistors.

․The algorithm is static, i.e.,
⎯ Changes to input signals require repeating the

complete propagation.
⎯ The algorithm does not propagate any type of delays

related to the physical implementation

Unit 7 47Chang, Huang, Li, Lin, Liu

Switch-Level Timing Simulation

․Simulate the timing behavior of a circuit to find out
timing problem.

․Need delay models to account for
⎯ Transistor on-resistance and capacitance
⎯ Interconnect resistance and capacitance

․Delay Models
⎯ Lumped RC model (overestimating delay)
⎯ Lumped RC model + input slope (slew rate)
⎯ Distributed RC model + input slope

․Need to find input vectors that activate the longest
paths and shortest paths. This is no guarantee of
finding such vectors.

Unit 7 48Chang, Huang, Li, Lin, Liu

Model Library for Switch-Level Simulation
․Just like the SPICE, we need a model for each type of

transistors to perform switch-level simulation
⎯ For functional verification, a transistor is modeled as a

bidirectional switch with various strengths.
⎯ For timing simulation, the strength of a transistor is

replaced with an on-resistance of the transistor.
․Switch-level transistor model is relatively simpler than

the models of components for other types of simulators
⎯ What we need is the on-resistance of a transistor for a

given process technology under certain operating
condition.

⎯ The computation of on-resistance can be implemented as
a part of a simulator using the information provided by a
process technology file.

Unit 7 49Chang, Huang, Li, Lin, Liu

Switch-Level Timing Verification
․Need delay models for transistors and interconnects.
․ Input vector independent (it actually uses all the input vector

combinations at the same time).
․Propagate all the inputs with rise and fall transitions to find out the

worst-case delay path.
․The algorithms to propagate the rise and fall transitions from

sources to sinks are similar to those used for simulation
⎯ A circuit is first decomposed into stages.
⎯ The output change of a stage would turn on or turn off some

transistors in other stages and as such the changes are
propagated from sources to sinks.

⎯ On the propagating the change from stages to another stages,
transistor and interconnect delay models are used compute the
path delay.

Unit 7 50Chang, Huang, Li, Lin, Liu

Gate-Level (Logic) Simulation

Unit 7 51Chang, Huang, Li, Lin, Liu

Signal Modeling for Gate-Level Simulation

․Signal values are discrete.
․The minimum set consists of ‘0’, ‘1’ and ‘X’.

⎯ ‘X’ means ‘‘unknown’’.
․Many models use more signal values.

⎯ IEEE std_logic data type with 9 values: mixture of level
and strength.

‘U’ (uninitialized)
‘X’ (forcing unknown)
‘0’ (forcing 0); ‘1’ (forcing 1)
‘Z’ (high impedance)
‘W’(weak unknown)
‘L’ (weak 0), ‘H’, (weak 1)
‘–’ (don’t care).

Unit 7 52Chang, Huang, Li, Lin, Liu

Gate Modeling

․Gate models should
deal with multiple-
valued logic.

․Gate behavior can be
represented by truth
tables or compiled
code.

Unit 7 53Chang, Huang, Li, Lin, Liu

Delay Models for Gate-Level Simulation

․Inertial delay
⎯ a change to an input signal has to last at least a certain time

before it can trigger any reaction.

․Propagation (or transport) delay
⎯ some time passes between the start of a signal change at the

gate input and the start of a signal change at its output.

․Rise/fall delay(time)
⎯ due to capacitances that have to be charged or discharged,

there is a time difference between the moment when an output
starts to change and the moment when the output has reached
its final value.

Unit 7 54Chang, Huang, Li, Lin, Liu

More Accurate Gate Delay Model
․Timing (delay) model for each gate in the library should

contain
⎯ rise and fall delays as a function of gate size, load capacitance

(as well as resistance if wire is long), and Input slope
⎯ propagation delay as a function of gate size, load capacitance,

and input slope.
․Typically, three kinds of delay are of interest

⎯ Worst case delay
Using T(emperature) = 125° C, supply voltage= 90% Vdd,
and worst case SPICE model for delay characterization.

⎯ Best case delay
Using T = 0° C, supply voltage= 110% Vdd, and best case
SPICE model for delay characterization.

⎯ Typical case delay
Using T = 27° C, supply voltage= 100% Vdd, and typical
case SPICE model for delay characterization.

Unit 7 55Chang, Huang, Li, Lin, Liu

Timing Library For Logic Simulation

․Usually organized as a table when given
⎯ a cell, its input slew rate, and its output loading, looking up the

table will return to you the output transition time (rise or fall time)
and the propagation delay.

Delay table for
some cell in
Cadence TLF
format

Unit 7 56Chang, Huang, Li, Lin, Liu

Delay Model Example
With a single delay value 3 units
for output rise and fall

With a fall delay value 3 units
and rise delay value 2 units

Unit 7 57Chang, Huang, Li, Lin, Liu

Compiler-Driven Simulation
․Compiler-driven simulation is often used in gate-level

simulators.
․Based on making an executable-code model of a circuit.
․Efficient simulation mechanism (few machine

instructions per gate).
․Applicable to few delay models in synchronous circuits

(e.g. zero-delay model).

Unit 7 58Chang, Huang, Li, Lin, Liu

Unit-Delay Simulation

․Assumes that all gate
delays equal 1.

․Provides some
information about signal
evolution in time,
especially to detect
glitches.

Unit 7 59Chang, Huang, Li, Lin, Liu

Compiled Code for Unit-Delay Simulation

Unit 7 60Chang, Huang, Li, Lin, Liu

Event-Driven Logic Simulation (EDLS)
․Normally use a timing wheel to keep track of event

occurrences.
․The occurrence of an event is a change of the logic

value on a signal. It is possible that there are multiple
events occurring for the same signal due to the different
arrival times of triggering events.

․More accurate delay model can be used
⎯ to find out hazards or glitches
⎯ to perform more accurate path delay calculation
⎯ to perform more accurate estimation of node switching activity

for power computation
․It is slower than compiled-code simulation.
․Its simulation time step is decided by the two most

adjacent events. It is not a fixed time value, but the
simulator knows which event will be processed next
and thus know the next time point.

Unit 7 61Chang, Huang, Li, Lin, Liu

Algorithm for EDLS
Event_Driven_Simulation()
{

struct event_queue *Q; // Used as a timing wheel
Q new_queue(); // Create timing wheel
insert_stimuli(); // Put the events caused by the given stimuli
initialize_network(); // Set all network nodes representing memory

// elements to ‘U’ and all other nodes to ‘X’

for(t=tstart; t<tend){
current_event first_event(Q, t);
while (current_event != NULL){

process_current_event(current_event);
add_new_events(current_event, Q);
current_event first_event(Q, t);

}
Advance_current_time(t);
}

}

This is only
an outline of
a simple
timing wheel
algorithm.
For more
complex
timing wheel
implementati
on, one has
to add codes
to manage
the timing
wheel.

Unit 7 62Chang, Huang, Li, Lin, Liu

Example (1/10)

․Suppose the two-input ORs have a propagation delay of 2 ns and
two input AND gates have a propagation delay of 3 ns. Suppose
the time resolution for simulation is 1 ns (i.e., ∆ = 1ns).

․Suppose at time zero, the five inputs go through the following logic
value changes:
⎯ A: 1 0, B:0 0, C: 0 1, D: 0 0, E: 0 0

․Perform logic simulation using a timing-wheel with 8 slots (one slot
= 1ns).

Unit 7 63Chang, Huang, Li, Lin, Liu

Example (2/10)

․ Set up the timing-
wheel for the changes
of input A and C.

n1(1 0)

0

1

2

3…

…

…

n3(0 1)

…
Current time t=0

n1=1, n2=0,
n3=0, n4=0,
n5=0, n6=1,
n7=0, n8=0,
n9=0

ni(x y) : A scheduled
event which
will make
x y
transition.

0

1

2

3…

…

…
…Process event n1(1 0) at t= 0

n1=1 0, n2=0, n3=0, n4=0,
n5=0, n6=1, n7=0, n8=0, n9=0

Schedule the triggered
event n6(1 0)

n3(0 1)

n6(1 0)

Unit 7 64Chang, Huang, Li, Lin, Liu

Example (3/10)

Process event n3(0 1) at t=0
n1=0, n2=0, n3=0 1, n4=0,
n5=0, n6=1, n7=0, n8=0, n9=0

0

1

2

3…

…

…
…

Schedule the triggered
event n8 (0 1)n8(0 1)

n6(1 0)

0

1

2

3…

…

…
…Advance current time

by one resolution unit
to t = 1
n1=0, n2=0, n3=1, n4=0,
n5=0, n6=1, n7=0, n8=0,
n9=0

n6(1 0)

n8(0 1)

Unit 7 65Chang, Huang, Li, Lin, Liu

Example (4/10)

0

1

2
3…

…

…
…Advance current

time by one
resolution unit to
t=2

n1=0, n2=0, n3=1,
n4=0, n5=0, n6=1,
n7=0, n8=0, n9=0

n6(1 0)

n8(0 1)

Unit 7 66Chang, Huang, Li, Lin, Liu

Example (5/10)

0

1

2
34

5

…
…

Process event n6(1 0) at t=2

n1=0, n2=0, n3=1, n4=0, n5=0,
n6=1 0, n7=0, n8=0, n9=0

Schedule triggered event n8(1 0) n8(0 1)

n8(1 0)

Unit 7 67Chang, Huang, Li, Lin, Liu

Example (6/10)

0

1

2
34

5

…
…Advance time to t=3

n1=0, n2=0, n3=1, n4=0,
n5=0, n6=0, n7=0, n8=0,
n9=0

n8(0 1)

n8(1 0)

Unit 7 68Chang, Huang, Li, Lin, Liu

Example (7/10)

Process event n8(0 1) at t=3

n1=0, n2=0, n3=1, n4=0, n5=0,
n6=0, n7=0, n8=0 1, n9=0

0

1

2
34

5

6
7

n8(1 0)n9(0 1)

Schedule event n9(0 1)

Unit 7 69Chang, Huang, Li, Lin, Liu

Example (8/10)

Advance time to t=4 and then
to t=5

n1=0, n2=0, n3=1, n4=0, n5=0,
n6=0, n7=0, n8=1, n9=0

0

1

2
34

5

6
7

n8(1 0)n9(0 1)

Unit 7 70Chang, Huang, Li, Lin, Liu

Example (8/10)

0

1

2
34

5

6
7

Process event n8(1 0) at t=5

n1=0, n2=0, n3=1, n4=0, n5=0,
n6=0, n7=0, n8=1 0, n9=0

n9(0 1)

n9(1 0) Schedule event n9(1 0)

Unit 7 71Chang, Huang, Li, Lin, Liu

Example (9/10)

0

1

2
34

5

6
7

n9(1 0)
Process event n9(0 1) at t=5

n1=0, n2=0, n3=1, n4=0, n5=0,
n6=0, n7=0, n8=0, n9=0 1

Not scheduling any
triggered event
because n9 is an
output.

Unit 7 72Chang, Huang, Li, Lin, Liu

Example (10/10)

Advance time to t=6, t=7 and then
process event n9(1 0) at t=7

n1=0, n2=0, n3=1, n4=0, n5=0, n6=0,
n7=0, n8=0, n9=1->0

0

1

2
34

5

6
7

Not scheduling any
triggered event
because n9 is an
output.

• There are hazards on n8(0 1 0) and n9 (0 1 0).

• It takes 7ns to propagate the input change to the output.

Unit 7 73Chang, Huang, Li, Lin, Liu

Parallel Logic Simulation

․Logic simulation is a very important task in designing of
a VLSI circuit. It is used to verify a design, estimate
timing performance, perform fault simulation, estimate
circuit switching activity, etc. It is imperative that the
simulation is done as fast as possible.

․Parallel logic simulation over a multiprocessor or a
network of computers is a way to speed up the
simulation performance.

․Logic partitioning that minimizes the number of events
passing among processors is the key to successful
implementation of parallel logic simulation.

Unit 7 74Chang, Huang, Li, Lin, Liu

Discussion

․It is more complex and difficult to use compiled code
logic simulation to handle variable gate and
interconnect delay.

․Event-driven simulation presented previously more
flexible in handling delay.

․The bottleneck of logic simulation is the time required
for simulating a large design. Logic simulation is well
suited to be conducted in parallel computing systems if
a design can be partitioned into many loosely
connected subcircuits

Unit 7 75Chang, Huang, Li, Lin, Liu

Register Transfer Level
(Cycle-Based) Simulation

Unit 7 76Chang, Huang, Li, Lin, Liu

Register Transfer Level (RTL) Simulation
․A functional simulation performed for the designs described in

RTL descriptions.
․ In RTL designs, the transferring of logic value into a register is

governed by the arrival of a clock signal. Because a clock arrives
at a register only once per cycle, the RTL simulation is best
carried out by the so-called cycle-based simulation (CBS).

․The simulation time step is 1 cycle.

A classical
synchronous design
comprises globs of
combinatorial logic
sandwiched between
blocks of registers.

Unit 7 77Chang, Huang, Li, Lin, Liu

Basic Concepts
• A cycle-based simulator evaluates register’s values only

when clocks arrive at the registers.

• It discards the timing information and converts the
combinatorial blocks into "flat" Boolean equations or
some easily evaluated formats. That is, the timing
details in the combinational logic is immaterial.

• It usually uses only two logic values 0 and 1 for
simulation.

• It uses memory efficiently and lets you quickly verify
extremely large designs.

• It is well-suited for evaluating classical synchronous
designs.

Unit 7 78Chang, Huang, Li, Lin, Liu

Key to Faster CBS

․Must have a efficient way to derive the output of the
combinational part of the circuit given with its inputs.
We can use
⎯ Flat Boolean expression
⎯ Reduced-Order Binary Decision Diagram
⎯ Decision Diagram if the design description is in a level higher

than the gate-level description.
⎯ Other higher-level constructs described by C or C++ such that

the design description can be directly compiled into executable
code to increase simulation speed.

․The way to model the combinational part of the circuit
normally decides the speed of cycle-based simulation.
⎯ The higher-level of abstraction implemented by high level

languages will lead to more efficient simulation.

Unit 7 79Chang, Huang, Li, Lin, Liu

Decision Diagram (DD)

․R. Ubar, A. Morawiec, and J. Raik, “Cycle-based
Simulation with Decision Diagrams,” DATE, pp. 454-458,
1999.

․A DD is a directed acyclic graph G=(M, R, x, f)
⎯ M: a set of nodes.
⎯ R: a relation in M. R(m) ⊂ M denotes the set of

successor nodes of m ∈ M.
⎯ x: x(m) is a labeling function for the node m. The

labels can be variable, algebraic expression, or
constant.

⎯ f: f(m,n) is a labeling function on the edges between
two nodes m and n where m is the parent node and n
is the child node.

Unit 7 80Chang, Huang, Li, Lin, Liu

Example of Decision Diagram (DD)

Original RTL
behavior

Decision
Diagram

Terminal
nodes

Given y4=2, y3=3, and
y2=0, an activated path
leading to R1*R2 is formed.

• A terminal
node always
leads to an
evaluation of
an expression.

Mi: Mux

Ri: Register

IN: Inputs

yi: Control signal

Unit 7 81Chang, Huang, Li, Lin, Liu

DDs for Data Path

• Decompose a
circuit into many
DDs. The
decomposition
may not be unique.

DDs for

Original Circuit

Unit 7 82Chang, Huang, Li, Lin, Liu

DDs for Control Part
․The control logic for the above

example can be synthesized
into a finite state machine
(FSM).

State/Output table

• Next state function
q=F(q’,x)

• Output function

• y1=H1(q’,x)

y2=H2(q’,x)

y3=H3(q’,x)

q y1 y2 y3

The highlighted path
indicates when q’ is at state
2 and the input x=0 (i.e.,
R’2=0), the next state is q=2,
the output is y1y2y3=121.

Unit 7 83Chang, Huang, Li, Lin, Liu

Behavior-Level Simulation

Unit 7 84Chang, Huang, Li, Lin, Liu

Behavior Model for Digital Designs
․It is normally described in high level languages for

efficient simulation without structural information.
⎯ For example, a 32-bit by 32-bit multiplication is simply modeled

as A*B rather than being modeled as a Booth multiplier formed
by some basic logic gates.

․For a design described in HDL, an effective behavioral
simulator should be built for behavior-level simulation
and a modeling library for efficient simulation should
also be created.

․For a design described in System C, C, C++, or other
high level languages, the design itself can be complied
into executable code that can be run directly on a
machine. A library should also be provided for the
compiler.

Unit 7 85Chang, Huang, Li, Lin, Liu

Behavior Level Simulation for Digital Designs
․If the behavior model is implemented in high level

language such as C, C++, etc., behavior-level
simulation is fulfilled by running the executable code.
⎯ The way how the behavior of a design is modeled, rather than

the simulator itself, mainly decides the behavior level
simulation speed.

․If the behavior model is implemented in HDL, an HDL
simulator must be implemented to execute the behavior
model.
⎯ The simulation speeds also depends on the efficiency of the

HDL simulator.
․The behavior of a digital design should be correctly

modeled. This is what behavior level simulation would
like to achieve.

Unit 7 86Chang, Huang, Li, Lin, Liu

Behavior Model for Analog Designs
․The behavior of an analog circuit can be described by a

set of linear or non-linear equations in time domain or
frequency domain.

․To know how an analog circuit responds to an external
event, an evaluation of equations is performed to
generate response.

․The equations can be
⎯ simple (first order approximation for fast simulation).
⎯ Second order approximation for moderate simulation speed

and accuracy.
⎯ Higher order approximation for accurate simulation.

․There is a tradeoff between modeling accuracy and
simulation speed (note that this point is quite different
from the modeling of a digital design).

Unit 7 87Chang, Huang, Li, Lin, Liu

Example of an Analog Behavior Model

․Using MAST Language for example (MAST is a
modeling language for SABER which is a mixed-signal
simulator, see http://www.analogy.com).

The behavior model for a resistor must satisfy Ohm’s Law.

Unit 7 88Chang, Huang, Li, Lin, Liu

More Complicate Analog Behavior Model

․More complicate behavior models for some analog
circuits such as VCO (voltage controlled oscillator),
PLL(phase locked loop), ADC (analog to digital
converter) are more difficult to obtain.
⎯ Extensive characterization may be performed to

extract important parameters for faster simulation
speed.

Unit 7 89Chang, Huang, Li, Lin, Liu

Behavior Level Simulation for Analog Designs

․The modeling of a design itself and the algorithms used
to solve a system of linear equations is the key to the
simulation speed. Normally, a simulator always faces
the trade-off between accuracy and simulation speed.

․ Analog simulators work by guessing the next time step
based on the previous one or two time points. A better
way to predict the time step is to vary it during
simulation.
⎯ Make time step smaller when there is a lot of signal activities.
⎯ Make time step larger when signal is quiet.

․The predicted time step may not be able to make the
solution satisfying the desired accuracy. Thus, time
must be rolled back and a smaller time step is used.

Unit 7 90Chang, Huang, Li, Lin, Liu

Mixed-Level Simulation
․The design is described in different levels of abstraction.

⎯ More critical parts that would decide the performance of the
whole design may be described in transistor or gate level, while
the rest can be described in RTL or behavior level for efficient
simulation.

․multiple simulators must work together to carry out
mixed-level simulation.
⎯ At this situation, synchronization of simulation time plays an

important role for correct implementation of a mixed-level
simulator.

⎯ Recalled that the time step for SPICE (analog simulator) is not
predictable, for transistor-level and gate level simulators is
event dependent, for cycle-based simulation is 1 cycle, and for
digital behavior level simulation is not even clearly defined.

⎯ Synchronization of simulation time is not a trivial task.

Unit 7 91Chang, Huang, Li, Lin, Liu

Mixed-Signal Simulation
․The simulation involves dealing with both digital and analog signals.
․Like mixed-level simulation, multiple simulators must work together

to perform mixed signal simulation.
⎯ Synchronization of simulation time is the key.
⎯ The selection of time step in analog simulator will have an

influence on the time when the input of a logic gate will pass its
logic threshold.

Input threshold crossing time
does not lie exactly on a
simulation time point.

Smaller time step leads
to smaller tplh

Larger time
step

A Circuit

Analog to
digital
interface

Digital to analog
interface

Unit 7 92Chang, Huang, Li, Lin, Liu

Instruction Set Simulation

․An instruction set simulator (ISS) simulates how a CPU
executes the instructions of a program.
⎯ For verifying the function of the CPU.
⎯ For evaluating the performance of the CPU.
⎯ For exploring the architectural trade-off.
⎯ For evaluating an instruction set.

․The primary design consideration for an ISS
⎯ Rapid execution by ignoring the timing and architectural

information for functional verification, or
⎯ Detailed implementation of architectural feature with timing

information for architectural design space exploration and
performance evaluation.

Unit 7 93Chang, Huang, Li, Lin, Liu

Public Domain ISS: SimpleScalar
․Simplescalar is a powerful simulation tool that provides both

detailed and high-performance simulation of modern
microprocessors.

․The Simplescalar toolset can perform fast, flexible, and accurate
simulation of modern processors to accelerate hardware
development and design a high-performance machine.

․http://www.simplescalar.com

Simulator Description Lines of code Simulation
speed

Sim-safe Simple function simulator 320 6MIPS

Sim-fast Speed-optimized function simulator 780 7MIPS

Sim-profile Dynamic program analyzer 1300 4MIPS

Sim-bpred Branch predictor simulator 1200 5MIPS

Sim-cache Multilevel cache memory simulator 1400 4MIPS

Sim-fuzz Random instruction generator and tester 2300 2MIPS

Sim-outorder Detailed micro-architectural timing model 3900 0.3MIPS

The above table shows the ISS in SimpleScalar can be
configured to implement different architectural options.

Unit 7 94Chang, Huang, Li, Lin, Liu

Hardware/Software CoSimulation
․Hardware normally consists a processor that could execute a

software program.
․The cosimulation of hardware and software can occur in different

level of abstraction.
⎯ The hardware can be described in transistor, gate, RTL, or

behavior level.
⎯ The software can be simply described in high level language

such as C, or C++, or even in HDL.
․ If hardware and software are described in the same HDL language,

cosimulation will be simpler, but multiple simulators might still need
to work together to perform cosimulation if hardware and software
are not described in the same level of abstraction.

․ If hardware and software are described in the same high level
language, cosimulation can be easily done because both the
hardware and software can be compiled into executable code.
Then cosimulation is carried out by simply executing the
executable code.

Unit 7 95Chang, Huang, Li, Lin, Liu

A Flow of H/W CoSimulation

The first phase of H/W cosimulation is done with C specification.

Unit 7 96Chang, Huang, Li, Lin, Liu

System-Level Simulation
(SLS)

Unit 7 97Chang, Huang, Li, Lin, Liu

What Is a System ?
․A set or arrangement of things so related or connected as to form a

unity or organic whole. (From Webster’s Dictionary).
․Things can be a chair, a desk, a computer, a person, a camera, etc.

These things can be so related or connected as to form a system of
working place where a person sits on the chair using the computer
on the desk and holding the camera to take a picture and down load
it into the computer.

․From the definition, systems form a hierarchy. That is to say, a thing
within a system could be a system itself.

․A system can be too complicate to be described and validated
effectively. Thus, to describe a system effectively for system-level
simulation requires a multi-disciplined core team that understand
the details of the system.

․We satisfy ourselves here to deal with a system consisting of only
electronic devices. However, the same concepts can be applied to
a system that may contains some optical or mechanical devices.

Unit 7 98Chang, Huang, Li, Lin, Liu

An Electronic System
․What do you see in the following picture?

⎯ Many chips
⎯ Passive devices such as resistors, capacitors, …, etc.
⎯ Mechanical switches
⎯ A board holding electronic components
⎯ A system of connected components for doing something

Unit 7 99Chang, Huang, Li, Lin, Liu

An Example of an Electronic System

Unit 7 100Chang, Huang, Li, Lin, Liu

System Modeling and Model Library
․For system-level simulation we must have a way to describe the

behavior of the things (components) we see in a system and the
relations among the things. This is called “system modeling.”

․Normally, the system description for simulation may involves
⎯ Using of different languages such as C, C++, VHDL, Verilog, etc.
⎯ Modeling of digital components as well as analog components.
⎯ Modeling of non-electronic components such as motors, MEMS

(Microelectromechanical Systems), optical devices, etc.
․The behavioral models of components form a system model library

which is used in high-level synthesis and system-level simulation
(SLS).

․System modeling should be done in a manner to maximize
simulation speed without losing the accuracy.

․Model development itself represents substantial extra cost of
unclear value.

Unit 7 101Chang, Huang, Li, Lin, Liu

Purposes of SLS

․System Validation
⎯ For a large system that is described in different languages and

different design levels, system-level simulation (SLS) is often
the only way to validate the correctness of system design.

․Design Space Exploration
⎯ Exploring the system design parameters to find out the trade-off

among performance, cost, power, design complexity, etc.

Unit 7 102Chang, Huang, Li, Lin, Liu

Who Should Perform SLS?

․System designers
⎯ Should build a model for the targeted system using the models

that describe the functions of components. The purpose is to
validate the system function and system performance and carry
out design space exploration

․Component designers
⎯ Should build a model for its component and a model for the

targeted system to validate whether its component could
perform its function correctly within a targeted system.

․Both need to set up a testbench to perform SLS, which
itself is a complicate task.

․Generally, it requires an SLS platform that weaves
various kinds of simulators together to perform SLS.

Unit 7 103Chang, Huang, Li, Lin, Liu

System-Level Simulation Backplane
․Mixed-level, mixed-mode (signal), hardware/software

cosimulations usually work under a simulation backplane to carry
out SLS.

․The synchronization of simulation time step is the foremost
important task for a simulation backplane which integrates
different simulators.

Unit 7 104Chang, Huang, Li, Lin, Liu

Discussions
․Simulation is sometimes the only way to verify a design and decide

a design’s performance.
⎯ Achieving both objectives need to develop a set of stimuli. While

we are not able to exhaust all the stimuli for a large design,
carefully developing a set of effective stimuli is very important.

For design verification, we may have to pay more attention
to the corner cases.
For performance evaluation, we may have to find a stimulus
to activate some particular path or a set of stimuli that
reasonably represent to the real world situation.

․Timing simulation can be performed at different level of abstraction,
for example
⎯ At transistor, gate, and RTL levels, we are interested in the

delay of the longest path and the number of cycles to complete
a certain task.

⎯ At behavioral level, we may concern with only the number of
operations to complete a task.

․Hardware emulation is another effective way to speed up simulation
speed if gate-level description of a design is available.

Unit 7 105Chang, Huang, Li, Lin, Liu

Summary
․We have studied different kinds of simulations for simulating the

designs described in different level of abstractions.
⎯ Circuit simulation for analog and digital design verification.
⎯ Transistor-level simulation for circuits being modeled as a

network of bidirectional switches.
⎯ Gate-level simulation for circuits being implemented into a

network of basic logic gates.
⎯ RTL-level (Cycle-based) simulation for circuits whose

combinational parts are described in a more abstracted manner
without caring about timing information.

⎯ Behavior-level simulation for digital circuits being described in
high level language or HDL without knowing the number of
cycles required for perform its function. For analog circuits
being described in a manner to trade off simulation speed and
accuracy.

⎯ System-level simulation using a simulation backplane
Mixed-level, mixed-signal, H/W cosimulation, etc.

	Unit 7: Simulation
	Simulation
	Why Simulation Tools?
	Types of Simulation
	Types of Simulation (cont’d)
	Device, Circuit, Timing Simulation
	Switch, Gate, RTL Simulation
	Behavior-Level Simulation
	Instruction Set Simulator
	System-Level of Simulation
	Circuit Simulation
	Numerical Solutions
	Types of Circuit Analysis
	DC Analysis
	AC Analysis
	Transient Analysis
	Harmonic Balance Analysis
	Spice Transistor Simulation Models
	Basic Transistor Equations
	Circuit Simulation of a CMOS Inverter (0.6 m)
	Circuit Simulation for Delay Calculation
	Rise Time and Fall Time
	Propagation Delay
	Path Definition and Delay
	Set-up and Hold Time Requirement
	Purposes of Path Delay Calculation
	Event-Driven Simulation
	Timing Wheel
	Operation of a Timing Wheel
	Hierarchical Timing Wheel
	Switch-Level Simulation
	Basics of Switch-Level Simulation
	Validation of Functional Behavior
	Strength Value and Signal Representation
	Strength Model Example
	Switch-Level Simulation Techniques
	Switch-Level Simulation Techniques (cont’d)
	Static Versus Dynamic Partitioning
	Example of Switch Graph
	Signals and Signal Propagation
	Signals and Signal Propagation (cont’d)
	Simulation Algorithm Principles
	Example
	Discussion
	Switch-Level Timing Simulation
	Model Library for Switch-Level Simulation
	Switch-Level Timing Verification
	Signal Modeling for Gate-Level Simulation
	Gate Modeling
	Delay Models for Gate-Level Simulation
	More Accurate Gate Delay Model
	Timing Library For Logic Simulation
	Delay Model Example
	Compiler-Driven Simulation
	Unit-Delay Simulation
	Compiled Code for Unit-Delay Simulation
	Event-Driven Logic Simulation (EDLS)
	Algorithm for EDLS
	Example (1/10)
	Example (2/10)
	Example (3/10)
	Example (4/10)
	Example (5/10)
	Example (6/10)
	Example (7/10)
	Example (8/10)
	Example (8/10)
	Example (9/10)
	Example (10/10)
	Parallel Logic Simulation
	Discussion
	Register Transfer Level (Cycle-Based) Simulation
	Register Transfer Level (RTL) Simulation
	Basic Concepts
	Key to Faster CBS
	Decision Diagram (DD)
	Example of Decision Diagram (DD)
	DDs for Data Path
	DDs for Control Part
	Behavior-Level Simulation
	Behavior Model for Digital Designs
	Behavior Level Simulation for Digital Designs
	Behavior Model for Analog Designs
	Example of an Analog Behavior Model
	More Complicate Analog Behavior Model
	Behavior Level Simulation for Analog Designs
	Mixed-Level Simulation
	Mixed-Signal Simulation
	Instruction Set Simulation
	Public Domain ISS: SimpleScalar
	Hardware/Software CoSimulation
	A Flow of H/W CoSimulation
	System-Level Simulation(SLS)
	What Is a System ?
	An Electronic System
	An Example of an Electronic System
	System Modeling and Model Library
	Purposes of SLS
	Who Should Perform SLS?
	System-Level Simulation Backplane
	Discussions
	Summary

