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Unit 7: Simulation
․Content

⎯ Circuit Simulation
⎯ Switch-Level Simulation
⎯ Gate-Level (Logic) Simulation
⎯ RTL-Level (Cycle-Based) Simulation
⎯ Behavior-Level Simulation
⎯ Instruction Set Simulation
⎯ System-Level Simulation

Hardware-Software Co-simulation
Mixed-Level Simulation
Mixed-Signal Simulation

⎯ Timing-Simulation
․Reading

⎯ Chapter 10
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Simulation
․Simulation is a design validation process for checking a circuit’s 

function, timing, etc., encompassing from the lowest through the
highest design levels.

․Simulation makes a computing model of the circuit, executes the 
model for a set of input signals (stimuli, patterns, or vector), and 
verifies the output signals. 
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Why Simulation Tools? 

․Murphy's Law: “Anything that can go wrong, will!”
․Circuits are too large and complex! 
․Hard to fix a chip!
․Long manufacturing turnaround time! 
․Although it can not guarantee 100% validation 

(except that one can exhaust all the input stimuli), it 
is easiest and direct way to validate a circuit’s 
function or timing. 
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Types of Simulation
․Device-level simulation

⎯ tests the effect of fabrication parameters
․Circuit-level simulation

⎯ detailed analysis of voltage and current
․Switch-level simulation

⎯ treats transistors as switches.
․Gate-level simulation

⎯ uses gates as the basic elements.
․Register-transfer-level (RTL) simulation 

⎯ register + combinational logic. 
․Behavior-level simulation

⎯ describes designs in higher level abstraction such as by an 
algorithm, a data flow graph, etc. using hardware description 
languages or high level languages.
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Types of Simulation (cont’d)

․Instruction set simulation
⎯ verifies the design of a CPU and evaluate its performance. 

․System-level simulation
⎯ verifies the function of a system whose constituent components 

could be everything, electrical, mechanical, optical elements, 
etc.

․ Timing simulation
⎯ Inspects timing behavior based on a given timing model for 

logic components and interconnects. 

․Fault simulation
⎯ checks whether a given set of test vectors could attain a certain 

level of fault coverage for production test. 
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Device, Circuit, Timing Simulation 

․Device-level simulation
⎯ Used to test the effect of fabrication parameters
⎯ Used by technologists, not by circuit or system designers

․Circuit-level simulation (e.g., SPICE)
⎯ Analog
⎯ Nodal/tableau equations: KCL, KVL laws
⎯ Numerical integration

․Timing simulation
⎯ Intrinsically analog, use a circuit simulator such as SPICE 

to obtain signal waveforms for compute timing,
⎯ But simplifications using macro models, look-up tables, 

piecewise-linear models, etc. for tackling large designs.
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Switch, Gate, RTL Simulation
․Switch-level simulation

⎯ Transistors are modeled as bidirectional switches
⎯ Mainly digital
⎯ Circuits extracted from mask patterns can directly be simulated

․Gate-level (or logic) simulation
⎯ ‘‘Gate’’ mainly refers to elements found in a component library 

(e.g. for standard-cell design)
NAND, NOR, multiplexer, D-flip-flop, latch, etc.

⎯ Unidirectional signal flow
⎯ Closely related to ‘‘fault simulation’’

․Register-transfer-level (RTL) simulation
⎯ Circuit is seen as composed of registers to store the state and 

combinational logic to compute the next state (finite state 
machine model)
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Behavior-Level Simulation

․Its goal is to achieve highest simulation speed.
․Designs are described in higher-level  abstraction using 

HDL languages, e.g. VHDL (VHSIC Hardware 
Description Language), Verilog, System C, C, C++, etc.

․The behavior model focuses more on verifying the 
function of a design rather than the timing performance 
of the design, i.e., we don’t even have to know how 
long the design will take to perform its function.
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Instruction Set Simulator

․Its goal is to verify the design of a particular CPU and 
evaluate its performance under certain workload. 

․The simulator is normally written in high-level 
languages such as C, C++, etc. to achieve highest 
execution speed.

․The program  input to an instruction set simulator is an 
executable code segment. Programs written in 
assembly language or higher level languages should be 
compiled into machine code.

․It plays an important role in hardware/software co-
simulation.
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System-Level of Simulation
․System-Level Simulation:

⎯ Validates the whole system described in different design levels 
with different types of components. 

․It might have to use a variety of aforementioned 
simulators integrated as a whole to validate a system. 
For example,
⎯ Mixed-level simulation: For the designs described in different 

levels of abstractions within the same simulation environment
⎯ mixed-mode simulation: For the designs with different kinds of 

signal abstractions such as digital versus analog signals, etc.
⎯ hardware-software co-simulation: For the designs with software 

running on a target hardware. It becomes more and more 
important
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Circuit Simulation
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Circuit Simulation
․Circuit simulators like SPICE numerically solve device 

models and Kirchoff's Voltage and Current Laws (KVL, 
KCL) to determine time(frequency)-domain circuit 
behavior.
⎯ KVL (Mesh Analysis): The algebraic sum of the voltage 

drops around a closed path is zero.
⎯ KCL(Nodal Analysis): The algebraic sum of all the currents 

incident on a node is zero. 
․Unlike resistors and capacitors, transistors are non-

linear devices ⇒ shall apply numerical approaches for 
circuit simulation.

․Numerical solution allows more sophisticated models, 
non-functional (table-driven) models, etc.

․SPICE Home Page
⎯ http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
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Numerical Solutions
․For Nodal Analysis, the (non)linear system describing a circuit 

network can be formulated as follows:

⎯ I is the vector consisting of independent current sources. 
⎯ Y is the system matrix consisting of admittance terms from all 

components except from independent sources. 
⎯ U is the vector of node voltages to be solved. 

․The above equation can describe a huge system with hundreds or 
thousands of elements. However, the system matrix Y is usually 
sparse such that both memory usage and calculation time can be 
reduced with sparse matrix solution techniques. 

․ Its simulation time step is decided by the accuracy requirement of 
numerical algorithms for solving the system equations. The 
simulator can not predict the next simulation time point based on 
the current time.

I=YU
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Types of Circuit Analysis 

․DC Analysis
⎯ It finds the operating point of a circuit. 

․AC (Small-Signal) Analysis
⎯ It finds the frequency response of a circuit. 

․Transient Analysis
⎯ It finds the time domain response for a circuit when it 

is excited with a sinusoidal signal. 
․Harmonic Balance Analysis

⎯ find the harmonic steady state response for a circuits 
when it is excited with a sinusoidal signal. 
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DC Analysis

․All dynamic components such as capacitances and 
inductances are ignored in this analysis. 
⎯ Capacitances are removed from the circuit and inductances are 

short circuited. If the circuit is nonlinear, the analysis is 
performed using an iterative method. An amplifier circuit

Building the netlist ( a SPICE-like format)

#define kRLoad 1

Model ALPHA=0.995EMoll ALPHAR=0.5 RB=25 

FLAG+ =DIODE_BC CJO=22p RS=5 

+ FLAG=DIODE_BE RS=1 

Vcc DC=10 R=1Volt n1 0 

Res RB1 n3 0 21k 

Res 170kRB2 n1 n3 

Res RL n1 n2 RLoad

Trans Q1 MODELn2 n3 0 =EMoll

DC analysis results

Operating point

Vce = 5.72 

Vbe = 697.65m 

Ic = 4.27m 

http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#define
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Scaling
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Model
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#ALPHA
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#plus
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#plus
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Flag
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Volt
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#Vcc
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#DC
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#R
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Res
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#RB
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#RB
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Fixed
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#RL
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#Trans
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/components.html#Q1
http://www.aplac.hut.fi/aplac/cookbook/basics/sim/syntax.html#ParameterMODEL
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AC Analysis

․AC analysis is used mainly in connection with 
amplifiers and filters, where the frequency response is 
of interest. 
⎯ The AC simulation is usually based on a sweep over a range of 

frequencies. The excitation consists of a single frequency at a 
time and the signal levels are assumed to be so low as not to 
affect the operating point. 

Result of AC analysis
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Transient Analysis

․Transient, or time-domain, analysis most closely 
simulates the phenomena seen in the real circuit by 
means of an oscilloscope. 
⎯ A simulation consists usually of a time sweep starting at t=0. 

When required, a DC analysis precedes the transient analysis 
and defines the initial conditions for dynamic components 
unless set by the user. 

Transient Response at n2
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Harmonic Balance Analysis

․When a nonlinear circuit is excited with one or several 
independent periodic signals, mixing products will be 
generated. 

․Harmonic balance analysis calculates, in the steady 
state, the spectrum of the signals in the circuit and thus 
mimics a spectrum analyzer. 

Spectrum Waveform
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Spice Transistor Simulation Models
․MOS transistor models

⎯ Level 1: basic transistor equations; not very accurate.
⎯ Level 2: more accurate determination of effective channel 

length, transition between the linear and saturation regions. 
⎯ Level 3: empirical model
⎯ Level 4 (BSIM): more efficient empirical model. 
⎯ Level 28 (BSIM2).
⎯ Level 47 (BSIM3): recent model for deep submicron transistors.

․Some Spice model parameters
⎯ L, W: transistor length, width (L, W)
⎯ VT0: zero-bias threshold voltage (Vt 0)
⎯ KP: transconductance (k')
⎯ GAMMA: body bias factor (γ)
⎯ TOX: oxide thickness (tox)
⎯ NSUB: substrate doping (Na, Nd)

․Commercially available circuit simulation tools: HSPICE, ST-
SPICE, etc.
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Basic Transistor Equations
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Circuit Simulation of a CMOS Inverter (0.6 µm)
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Circuit Simulation for Delay Calculation 
․Used only for small circuits or a small portion of a circuit 

which is timing critical.
․Definition of delays

⎯ rise (fall) time
As a convention, it is the time period for a signal to rise (fall) 
from 10% (90%) Vdd to 90% (10%) Vdd.

⎯ Rise (fall) delay
As a convention, rise delay is measured from the 50% Vdd
of the input transition to the 50% Vdd of output rise (fall).

⎯ Note
Some uses 20% and 80% thresholds for calculating delays.

․Propagation delay
⎯ The time period between the moment when an input signal 

transition reaches 50%Vdd and the moment when the output 
signal transition reaches 50%Vdd.
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Rise Time and Fall Time
voltage

Vdd

0.9Vdd

0.1Vdd

0

voltage
Vdd

0.9Vdd

0.1Vdd

0
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Propagation Delay 

voltage

voltage

0.5 Vdd

0.5 Vdd
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Path Definition and Delay
․Path definition

⎯ A path is defined as from a source to a sink.
A source can be the output of a flip-flop (latch) or a primary input (i.e., the 
input pin of an IC).
A sink can be the input of a flip-flip (latch) or a primary output (i.e., the 
output pin of an IC). 

․Path delay comprises
⎯ The delay of a flip-flop (latch) which serves as a source.
⎯ The delay of any device along the underlying path.
⎯ The delay of any interconnect along the underlying path.
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Set-up and Hold Time Requirement

․Set-up time and hold time of a certain memory element 
forms a time window around the clock arrival edge.

․Within the time window, signal should not change its 
logic value, otherwise the memory element may goes 
into meta-stable state or be loaded with a wrong logic 
value.

․That is to say, a signal being propagated from the 
source of a path can be safely loaded into a memory 
element if the signal can be stable before the set-up 
time and remain stable during the time window.
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Purposes of Path Delay Calculation

․Check whether a signal change traversing through a 
path violates the set-up time and hold-time constraints 
at a certain memory element (flip-flop or latch). 

․To achieve this goal, we should be able to calculate the 
path delays.

․Delay calculation is usually done on per path basis for 
checking
⎯ Whether any long path in the circuit would violate setup time 

constraint of flip-flops or latches.
⎯ Whether any short path would violate hold time constraint of 

flip-flops or latches.
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Event Driven Simulation
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Event-Driven Simulation

․Event-driven simulation is a widely-used mechanism 
in gate- and switch-level simulators.

․An event is a change of a signal value that may trigger 
new changes.

․There is a queue of events ordered by the time when 
the event is going to happen.

․Basic steps:
⎯ The output of a gate G changes at time ti.
⎯ The fanout of the gate is inspected; it consists of the inputs of 

the gates Gk that are connected to the output of gate G.
⎯ If the outputs of the gates Gk change, they are scheduled to 

change at time ti + ∆k, where ∆k is the delay associated with the 
transition.
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Timing Wheel

․Instead of using an event queue, a timing wheel is most 
often used to manage events. 

․It is a circularly linked list which contains the scheduled 
events based on their temporal information about when 
the events ought to occur.

•

tj
tj+∆

tj+2∆

……

…

…
tj+L∆

tj is current time

∆ is the minimum time 
resolution used in the 
simulation

L+1 is the number of entries 
in the timing wheel
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Operation of a Timing Wheel
• Remove an event from the linked list pointed by the current time.

• Evaluate the event.

• Schedule all events triggered by the evaluation of the above event 
to the linked-list based on their occurring times.

• When the linked list pointed by the current time is empty, 
advance the current time by ∆.

• More directly, the time is advanced to the time slot pointing to a non-
empty list. Then, the simulation time step is simply the time period 
between two non-empty time slots.

• This process is repeated until the wheel is empty.
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Hierarchical Timing Wheel
• If the event occurring time exceeds the maximum 

allowable time permitted by a timing wheel, a hierarchy 
of timing wheel can be used.

Time resolution is ∆

tj+L∆
tj

tj+∆

Time resolution is L∆

Time resolution is L2∆
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Switch-Level Simulation
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Basics of Switch-Level Simulation

․Treating transistor as bidirectional switches.
․Signals are with discrete values.
․Transistor and interconnect parasitic resistance and 

capacitance can be included in the circuit network to 
have a better approximation of real circuit behavior.

․Purposes of switch-level simulation
⎯ Validate the function of a circuit
⎯ Simulate timing behavior of a circuit
⎯ Estimate power consumption of a circuit
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Validation of Functional Behavior
․Transistors are modeled as bidirectional switches.
․Transistor on-resistance (related to transistor size) is 

modeled as a strength (from a set of discrete values) 
driving the load.

․Transistor network is modeled as a graph model where
⎯ Transistor is modeled as an edge between two circuit nodes.
⎯ Circuit node is modeled as either the input node or storage 

node.
Input node can be Vdd, Gnd or a strong logic 1 or 0.
Storage (charged) node is a node with a capacitance.
A node is also associated with a strength.
An input node has the largest strength.
A storage node has a strength proportional to its 
capacitance.  
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Strength Value and Signal Representation 

․Strength
⎯ k < s <w: s is the strength of a transistor;
⎯ 1 ≤ s ≤ k: s is the strength of a storage node;
⎯ w: is the strength of an input node;

․Signal Representation
⎯ Represented by a pair of (s, v), where 

s is a strength
v is a level, a voltage denoted with discrete values at least 
including 1, 0, and X, where X represents the unknown 
signal value. 
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Strength Model Example

Input node with 
strength 5

Strength of 
a transistor

Strength of a 
storage node

© 1987 IEEE
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Switch-Level Simulation Techniques
․Partitioning the circuit into subcircuits that can be 

treated as unidirectional components.
⎯ Static partitioning: Connections to the gate of a 

transistor determine subcircuit boundaries 
irrespective of the signals carried by the nets.

⎯ Dynamic partitioning: Known signal values in the 
network are taken into account  such that further 
partitioning of subcircuits is possible.

․Each subcircuit is then modeled as a channel-
connected component or a switch graph (multigraph) 
G=(V, E), where
⎯ V is a set of vertices representing input or storage 

nodes labeled with node (net) names and strengths.
⎯ E is a set of edges representing transistors labeled 

with a transistor name and strength.
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Switch-Level Simulation Techniques (cont’d)

․Apply special methods to compute the steady state of a 
subcircuit whose inputs are given with logic values.

․The steady state output value of a subcircuit (called B) 
is then served as the input value to the other subcircuits
that have a connection to the output of B.

․Event-driven simulation is normally used to propagate 
the signal changes and find the steady state.

․The simulation time step is decided by the two most 
adjacent events. It is normally not a fixed time value, 
but the simulator can predict the next simulation time 
point.

․This process is repeated until the steady values of all 
subcircuits are computed.
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Static Versus Dynamic Partitioning

dddd

ss

ss

dddd

ss

ss

｀ ＇

Static partitioning Dynamic partitioning
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Example of Switch Graph

․A convenient representation 
for switch-level circuits is a 
multigraph rather than the 
more general cell-port net 
model.

․Vertices represent nets and 
are labeled with the net 
name and strength.

․Edges represent transistors 
and are labeled with a 
transistor ID and strength. 
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Signals and Signal Propagation

․A signal on a vertex           is denoted by .
․The strength of a transistor                 is given by        

when the transistor is off.
․ denotes the strength of the signal flowing from

․The level of the signal flowing remains .
․There are two types of nets:

⎯ driven nets: nets having a conducting path to an input net
⎯ charged nets: nets electrically isolated from input nets

u V∈ ,u uσ λ

( , )u v E∈

 to u V v V∈ ∈ ( ),min ,u v u u vσ σ ε→ =

uλ

u vσ →

, ,. 0u v u vε ε =
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Signals and Signal Propagation (cont’d)

․Suppose that a driven net           has edges (u1, v), …, 
(um, v)     V, then

․For a charged net, the net’s own signal should be taken 
into account,

․When combining signals from different directions, the 
level of the new signal equals the level of the strongest 
signals. In case of multiple signals with equal strength 
and different levels, the new level becomes ’X’. 

1    
 max

ii m
v u vσ σ

≤ ≤
= →

V∈v
∈

1    
max( ,   )max

ii m
v v u vσ σ σ

≤ ≤
→=
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Simulation Algorithm Principles

․The algorithm is based on a repeated application of:

․This should be done carefully

⎯ propagate the strongest signals first, i.e., the algorithm must 
wait until all the signal activity subsides at a node before the
signal value is propagated forward.

․Implement with an array of queues, one array position 
for each strength value.

max( ,  )v v u vσ σ σ= →
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Example

• The table below 
shows how input 
signal changes are 
propagated to the 
output.

Propagate from to State of n2 State of n3

“Initial state” (1, X) (1, X)

no n2 (3, 1) (1, X)

n1 n2 (4, 0) (1, X)

n2 n3 (4, 0) (3, 0)

Logic valueStrength
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Discussion

․The above algorithm operates in linear time with 
respect to the number of nets and transistors.

․The algorithm is static, i.e.,
⎯ Changes to input signals require repeating the 

complete propagation.
⎯ The algorithm does not propagate any type of delays 

related to the physical implementation 
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Switch-Level Timing Simulation

․Simulate the timing behavior of a circuit to find out 
timing problem.

․Need delay models to account for 
⎯ Transistor on-resistance and capacitance
⎯ Interconnect resistance and capacitance

․Delay Models
⎯ Lumped RC model (overestimating delay)
⎯ Lumped RC model + input slope (slew rate)
⎯ Distributed RC model + input slope

․Need to find input vectors that activate the longest 
paths and shortest paths. This is no guarantee of 
finding such vectors.
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Model Library for Switch-Level Simulation
․Just like the SPICE, we need a model for each type of 

transistors to perform switch-level simulation
⎯ For functional verification, a transistor is modeled as a 

bidirectional switch with various strengths.
⎯ For timing simulation, the strength of a transistor is 

replaced with an on-resistance of the transistor.
․Switch-level transistor model is relatively simpler than 

the models of components for other types of simulators
⎯ What we need is the on-resistance of a transistor for a 

given process technology under certain operating 
condition. 

⎯ The computation of on-resistance can be implemented as 
a part of a simulator using the information provided by a 
process technology file.
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Switch-Level Timing Verification
․Need delay models for transistors and interconnects.
․ Input vector independent (it actually uses all the input vector 

combinations at the same time).
․Propagate all the inputs with rise and fall transitions to find out the 

worst-case delay path.
․The algorithms to propagate the rise and fall transitions from 

sources to sinks are similar to those used for simulation
⎯ A circuit is first decomposed into stages. 
⎯ The output change of a stage would turn on or turn off some 

transistors in other stages and as such the changes are 
propagated from sources to sinks.

⎯ On the propagating the change from stages to another stages, 
transistor and interconnect delay models are used compute the 
path delay.
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Gate-Level (Logic) Simulation
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Signal Modeling for Gate-Level Simulation

․Signal values are discrete. 
․The minimum set consists of ‘0’, ‘1’ and ‘X’. 

⎯ ‘X’ means ‘‘unknown’’.
․Many models use more signal values. 

⎯ IEEE std_logic data type with 9 values: mixture of level
and strength.

‘U’ (uninitialized)
‘X’ (forcing unknown)
‘0’ (forcing 0); ‘1’ (forcing 1)
‘Z’ (high impedance)
‘W’(weak unknown)
‘L’ (weak 0), ‘H’, (weak 1)
‘–’ (don’t care). 
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Gate Modeling

․Gate models should 
deal with multiple-
valued logic.

․Gate behavior can be 
represented by truth 
tables or compiled 
code.
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Delay Models for Gate-Level Simulation

․Inertial delay
⎯ a change to an input signal has to last at least a certain time 

before it can trigger any reaction. 

․Propagation (or transport) delay
⎯ some time passes between the start of a signal change at the 

gate input and the start of a signal change at its output.

․Rise/fall delay(time)
⎯ due to capacitances that have to be charged or discharged, 

there is a time difference between the moment when an output 
starts to change and the moment when the output has reached 
its final value.
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More Accurate Gate Delay Model
․Timing (delay) model for each gate in the library should 

contain
⎯ rise and fall delays as a function of gate size, load capacitance 

(as well as resistance if wire is long), and Input slope
⎯ propagation delay as a function of gate size, load capacitance, 

and input slope.
․Typically, three kinds of delay are of interest

⎯ Worst case delay
Using T(emperature) = 125° C, supply voltage= 90% Vdd, 
and worst case SPICE model for delay characterization.

⎯ Best case delay
Using T = 0° C, supply voltage= 110% Vdd, and best case 
SPICE model for delay characterization.

⎯ Typical case delay
Using T = 27° C, supply voltage= 100% Vdd, and typical 
case SPICE model for delay characterization.
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Timing Library For Logic Simulation

․Usually organized as a table when given
⎯ a cell, its input slew rate, and its output loading, looking up the 

table will return to you the output transition time (rise or fall time) 
and the propagation delay.

Delay table for 
some cell in 
Cadence TLF 
format
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Delay Model Example
With a single delay value 3 units 
for output rise and fall

With a fall delay value 3 units 
and rise delay value 2 units
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Compiler-Driven Simulation
․Compiler-driven simulation is often used in gate-level 

simulators. 
․Based on making an executable-code model of a circuit.
․Efficient simulation mechanism (few machine 

instructions per gate).
․Applicable to few delay models in synchronous circuits 

(e.g. zero-delay model).
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Unit-Delay Simulation

․Assumes that all gate 
delays equal 1.

․Provides some 
information about signal 
evolution in time, 
especially to detect 
glitches.
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Compiled Code for Unit-Delay Simulation
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Event-Driven Logic Simulation (EDLS)
․Normally use a timing wheel to keep track of event 

occurrences.
․The occurrence of an event is a change of the logic 

value on a signal. It is possible that there are multiple 
events occurring for the same signal due to the different 
arrival times of triggering events.

․More accurate delay model can be used 
⎯ to find out hazards or glitches 
⎯ to perform more accurate path delay calculation
⎯ to perform more accurate estimation of node switching activity 

for power computation
․It is slower than compiled-code simulation.
․Its simulation time step is decided by the two most 

adjacent events. It is not a fixed time value, but the 
simulator knows which event will be processed next 
and thus know the next time point. 



Unit 7 61Chang, Huang, Li, Lin, Liu

Algorithm for EDLS
Event_Driven_Simulation()
{

struct event_queue *Q; // Used as a timing wheel
Q new_queue();  // Create timing wheel
insert_stimuli(); // Put the events caused by the given stimuli
initialize_network(); // Set all network nodes representing  memory

// elements to ‘U’ and all other nodes to ‘X’

for(t=tstart; t<tend){
current_event first_event(Q, t);
while (current_event != NULL){

process_current_event(current_event);
add_new_events(current_event, Q);
current_event first_event(Q, t);

}
Advance_current_time(t);
}

}

This is only 
an outline of 
a simple 
timing wheel 
algorithm. 
For more 
complex 
timing wheel 
implementati
on, one has 
to add codes 
to manage 
the timing 
wheel.
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Example (1/10)

․Suppose the two-input ORs have a propagation delay of 2 ns and 
two input AND gates have a propagation delay of 3 ns. Suppose 
the time resolution for simulation is 1 ns (i.e., ∆ = 1ns).

․Suppose at time zero, the five inputs go through the following logic 
value changes:
⎯ A: 1 0, B:0 0, C: 0 1, D: 0 0, E: 0 0

․Perform logic simulation using a timing-wheel with 8 slots (one slot 
= 1ns).
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Example (2/10)

․ Set up the timing-
wheel for the changes 
of input A and C.

n1(1 0)

0

1

2

3…

…

…

n3(0 1)

…
Current time t=0

n1=1, n2=0, 
n3=0, n4=0, 
n5=0, n6=1, 
n7=0, n8=0, 
n9=0

ni(x y) : A scheduled 
event which 
will make 
x y 
transition.

0

1

2

3…

…

…
…Process event n1(1 0) at t= 0

n1=1 0, n2=0, n3=0, n4=0, 
n5=0, n6=1, n7=0, n8=0, n9=0

Schedule the triggered 
event n6(1 0)

n3(0 1)

n6(1 0)
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Example (3/10)

Process event n3(0 1) at t=0 
n1=0, n2=0, n3=0 1, n4=0, 
n5=0, n6=1, n7=0, n8=0, n9=0

0

1

2

3…

…

…
…

Schedule the triggered 
event n8 (0 1)n8(0 1)

n6(1 0)

0

1

2

3…

…

…
…Advance current time 

by one resolution unit 
to t = 1
n1=0, n2=0, n3=1, n4=0, 
n5=0, n6=1, n7=0, n8=0, 
n9=0

n6(1 0)

n8(0 1)
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Example (4/10)

0

1

2
3…

…

…
…Advance current 

time by one 
resolution unit to 
t=2

n1=0, n2=0, n3=1, 
n4=0, n5=0, n6=1, 
n7=0, n8=0, n9=0

n6(1 0)

n8(0 1)
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Example (5/10)

0

1

2
34

5

…
…

Process event n6(1 0) at t=2

n1=0, n2=0, n3=1, n4=0, n5=0,
n6=1 0, n7=0, n8=0, n9=0

Schedule triggered event n8(1 0) n8(0 1)

n8(1 0)
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Example (6/10)

0

1

2
34

5

…
…Advance time to t=3

n1=0, n2=0, n3=1, n4=0, 
n5=0, n6=0, n7=0, n8=0, 
n9=0

n8(0 1)

n8(1 0)
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Example (7/10)

Process event n8(0 1) at t=3

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=0 1, n9=0

0

1

2
34

5

6
7

n8(1 0)n9(0 1)

Schedule event n9(0 1)
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Example (8/10)

Advance time to t=4 and then 
to t=5

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=1, n9=0

0

1

2
34

5

6
7

n8(1 0)n9(0 1)
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Example (8/10)

0

1

2
34

5

6
7

Process event n8(1 0) at t=5

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=1 0, n9=0

n9(0 1)

n9(1 0) Schedule event n9(1 0)
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Example (9/10)

0

1

2
34

5

6
7

n9(1 0)
Process event n9(0 1) at t=5

n1=0, n2=0, n3=1, n4=0, n5=0, 
n6=0, n7=0, n8=0, n9=0 1

Not scheduling any 
triggered event 
because n9 is an 
output.
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Example (10/10)

Advance time to t=6, t=7 and then 
process event n9(1 0) at t=7

n1=0, n2=0, n3=1, n4=0, n5=0, n6=0, 
n7=0, n8=0, n9=1->0

0

1

2
34

5

6
7

Not scheduling any 
triggered event 
because n9 is an 
output.

• There are hazards on n8(0 1 0) and n9 (0 1 0).

• It takes 7ns to propagate the input change to the output. 
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Parallel Logic Simulation

․Logic simulation is a very important task in designing of 
a VLSI circuit.  It is used to verify a design, estimate 
timing performance, perform fault simulation, estimate 
circuit switching activity, etc. It is imperative that the 
simulation is done as fast as possible.

․Parallel logic simulation over a multiprocessor or a 
network of computers is a way to speed up the 
simulation performance.

․Logic partitioning that minimizes the number of events 
passing among processors is the key to successful 
implementation of parallel logic simulation.
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Discussion

․It is more complex and difficult to use compiled code 
logic simulation to handle variable gate and 
interconnect delay.

․Event-driven simulation presented previously more 
flexible in handling delay.

․The bottleneck of logic simulation is the time required 
for simulating a large design. Logic simulation is well 
suited to be conducted in parallel computing systems if 
a design can be partitioned into many loosely 
connected subcircuits
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Register Transfer Level 
(Cycle-Based) Simulation
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Register Transfer Level (RTL) Simulation
․A functional simulation performed for the designs described in 

RTL descriptions.
․ In RTL designs, the transferring of logic value into a  register is 

governed by the arrival of a clock signal. Because a clock arrives 
at a register only once per cycle, the RTL simulation is best 
carried out by the so-called cycle-based simulation (CBS).

․The simulation time step is 1 cycle. 

A classical 
synchronous design 
comprises globs of 
combinatorial logic 
sandwiched between 
blocks of registers.
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Basic Concepts
• A cycle-based simulator evaluates register’s values only 

when clocks arrive at the registers. 

• It discards the timing information and converts the 
combinatorial blocks into "flat" Boolean equations or 
some easily evaluated formats. That is, the timing 
details in the combinational logic is immaterial.

• It usually uses only two logic values 0 and 1 for 
simulation.

• It uses memory efficiently and lets you quickly verify 
extremely large designs. 

• It is well-suited for evaluating classical synchronous 
designs.
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Key to Faster CBS

․Must have a efficient way to derive the output of the 
combinational part of the circuit given with its inputs. 
We can use
⎯ Flat Boolean expression 
⎯ Reduced-Order Binary Decision Diagram
⎯ Decision Diagram if the design description is in a level higher 

than the gate-level description. 
⎯ Other higher-level constructs described by C or C++ such that 

the design description can be directly compiled into executable 
code to increase simulation speed.

․The way to model the combinational part of the circuit 
normally decides the speed of cycle-based simulation.
⎯ The higher-level of abstraction implemented by high level 

languages will lead to more efficient simulation.
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Decision Diagram (DD)

․R. Ubar, A. Morawiec, and J. Raik, “Cycle-based 
Simulation with Decision Diagrams,” DATE, pp. 454-458, 
1999.

․A DD is a directed acyclic graph G=(M, R, x, f) 
⎯ M: a set of nodes.
⎯ R: a relation in M. R(m) ⊂ M denotes the set of 

successor nodes of m ∈ M.
⎯ x:  x(m) is a labeling function for the node m. The 

labels can be variable, algebraic expression, or 
constant.

⎯ f: f(m,n) is a labeling function on the edges between 
two nodes m and n where m is the parent node and n 
is the child node.
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Example of Decision Diagram (DD)

Original RTL 
behavior

Decision 
Diagram

Terminal 
nodes

Given y4=2, y3=3, and  
y2=0, an activated path
leading to R1*R2 is formed.

• A terminal 
node always 
leads to an 
evaluation of 
an expression.

Mi: Mux

Ri: Register

IN: Inputs

yi: Control signal
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DDs for Data Path

• Decompose a 
circuit into many 
DDs. The 
decomposition 
may not be unique.

DDs for

Original Circuit
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DDs for Control Part
․The control logic for the above 

example can be synthesized 
into a finite state machine 
(FSM). 

State/Output table

• Next state function 
q=F(q’,x)

• Output function 

• y1=H1(q’,x)

y2=H2(q’,x)

y3=H3(q’,x)

q y1 y2 y3

The highlighted path 
indicates when q’ is at state 
2 and the input x=0 (i.e., 
R’2=0), the next state is q=2, 
the output is y1y2y3=121.
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Behavior-Level Simulation
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Behavior Model for Digital Designs
․It is normally described in high level languages for 

efficient simulation without structural information.
⎯ For example, a 32-bit by 32-bit multiplication is simply modeled 

as A*B rather than being modeled as a Booth multiplier formed 
by some basic logic gates.

․For a design described in HDL, an effective behavioral 
simulator should be built for behavior-level simulation 
and  a modeling library for efficient simulation should 
also be created.

․For a design described in System C, C, C++, or other 
high level languages, the design itself can be complied 
into executable code that can be run directly on a 
machine. A library should also be provided for the 
compiler.
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Behavior Level Simulation for Digital Designs
․If the behavior model is implemented in high level 

language such as C, C++, etc., behavior-level 
simulation is fulfilled by running the executable code. 
⎯ The way how the behavior of a design is modeled, rather than 

the simulator itself,  mainly decides the behavior level 
simulation speed. 

․If the behavior model is implemented in HDL, an HDL 
simulator must be implemented to execute the behavior 
model.
⎯ The simulation speeds also depends on the efficiency of the 

HDL simulator.
․The behavior of a digital design should be correctly 

modeled. This is what behavior level simulation would 
like to achieve.
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Behavior Model for Analog Designs
․The behavior of an analog circuit can be described by a 

set of linear or non-linear equations in time domain or 
frequency domain.

․To know how an analog circuit responds to an external 
event, an evaluation of equations is performed to 
generate response.

․The equations can be 
⎯ simple (first order approximation for fast simulation).
⎯ Second order approximation for moderate simulation speed 

and accuracy.
⎯ Higher order approximation for accurate simulation.

․There is a tradeoff between modeling accuracy and 
simulation speed (note that this point is quite different 
from the modeling of a digital design).
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Example of an Analog Behavior Model

․Using MAST Language for example (MAST is a 
modeling language for SABER which is a mixed-signal 
simulator, see http://www.analogy.com). 

The behavior model for a resistor must satisfy Ohm’s Law.
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More Complicate Analog Behavior Model

․More complicate behavior models for some analog 
circuits such as VCO (voltage controlled oscillator), 
PLL(phase locked loop), ADC (analog to digital 
converter)  are more difficult to obtain.
⎯ Extensive characterization may be performed to 

extract important parameters for faster simulation 
speed.
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Behavior Level Simulation for Analog Designs

․The modeling of a design itself and the algorithms used 
to solve a system of linear equations is the key to the 
simulation speed. Normally, a simulator always faces 
the trade-off between accuracy and simulation speed.

․ Analog simulators work by guessing the next time step 
based on the previous one or two time points. A better 
way to predict the time step is to vary it during 
simulation.
⎯ Make time step smaller when there is a lot of signal activities.
⎯ Make time step larger when signal is quiet.

․The predicted time step may not be able to make the 
solution satisfying the desired accuracy. Thus, time 
must be rolled back and a smaller time step is used. 
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Mixed-Level Simulation
․The design is described in different levels of abstraction.

⎯ More critical parts that would decide the performance of the 
whole design may be described in transistor or gate level, while
the rest can be described in RTL or behavior level for efficient
simulation. 

․multiple simulators must work together to carry out 
mixed-level simulation.  
⎯ At this situation, synchronization of simulation time plays an 

important role for correct implementation of a mixed-level 
simulator.

⎯ Recalled that the time step for SPICE (analog simulator) is not 
predictable, for transistor-level and gate level simulators is 
event dependent, for cycle-based simulation is 1 cycle, and for 
digital behavior level simulation is not even clearly defined.

⎯ Synchronization of simulation time is not a trivial task.
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Mixed-Signal Simulation
․The simulation involves dealing with both digital and analog signals.
․Like mixed-level simulation, multiple simulators must work together 

to perform mixed signal simulation.
⎯ Synchronization of simulation time is the key.
⎯ The selection of time step in analog simulator will have an 

influence on the time when the input of a  logic gate will pass its 
logic threshold.

Input threshold crossing time 
does not lie exactly on a 
simulation time point.

Smaller time step leads 
to smaller tplh

Larger time 
step

A Circuit

Analog to 
digital  
interface

Digital to analog 
interface
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Instruction Set Simulation

․An instruction set simulator (ISS) simulates how a CPU 
executes the instructions of a program. 
⎯ For verifying the function of the CPU.
⎯ For evaluating the performance of the CPU.
⎯ For exploring the architectural trade-off.
⎯ For evaluating an instruction set.

․The primary design consideration for an ISS
⎯ Rapid execution by ignoring the timing and architectural 

information for functional verification,  or 
⎯ Detailed implementation of  architectural feature with timing 

information for architectural design space exploration and 
performance evaluation.
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Public Domain ISS: SimpleScalar
․Simplescalar is a powerful simulation tool that provides both 

detailed and high-performance simulation of modern 
microprocessors. 

․The Simplescalar toolset can perform fast, flexible, and accurate 
simulation of modern processors to accelerate hardware 
development and design a high-performance machine.

․http://www.simplescalar.com

Simulator Description Lines of code Simulation 
speed

Sim-safe Simple function simulator 320 6MIPS

Sim-fast Speed-optimized function simulator 780 7MIPS

Sim-profile Dynamic program analyzer 1300 4MIPS

Sim-bpred Branch predictor simulator 1200 5MIPS

Sim-cache Multilevel cache memory simulator 1400 4MIPS

Sim-fuzz Random instruction generator and tester 2300 2MIPS

Sim-outorder Detailed micro-architectural timing model 3900 0.3MIPS

The above table shows the ISS in SimpleScalar can be 
configured to implement different architectural options.
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Hardware/Software CoSimulation
․Hardware normally consists a processor that could execute a 

software program.
․The cosimulation of hardware and software can occur in different 

level of abstraction. 
⎯ The hardware can be described in transistor, gate, RTL, or 

behavior level.
⎯ The software can be simply described in high level language 

such as C, or C++, or even in HDL.
․ If hardware and software are described in the same HDL language,

cosimulation will be simpler, but multiple simulators might still need 
to work together to perform cosimulation if hardware and software 
are not described in the same level of abstraction.

․ If hardware and software are described in the same high level 
language, cosimulation can be easily done because both the 
hardware and software can be compiled into executable code. 
Then cosimulation is carried out by simply executing the 
executable code. 
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A Flow of H/W CoSimulation

The first phase of H/W cosimulation is done with C specification.
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System-Level Simulation
(SLS)
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What  Is a System ?
․A set or arrangement of things so related or connected as to form a 

unity or organic whole. (From Webster’s Dictionary).
․Things can be a chair, a desk, a computer, a person, a camera, etc. 

These things can be so related or connected as to form a system of 
working place where a person sits on the chair using the computer 
on the desk and holding the camera to take a picture and down load 
it into the computer.

․From the definition, systems form a hierarchy. That is to say, a thing 
within a system could be a system itself.

․A system can be too complicate to be described and validated 
effectively. Thus, to describe a system effectively for system-level 
simulation requires a multi-disciplined core team that understand 
the details of the system.

․We satisfy ourselves here to deal with a system consisting of only 
electronic devices. However, the same concepts can be applied to
a system that may contains some optical or mechanical devices.
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An Electronic System
․What do you see in the following picture?

⎯ Many chips
⎯ Passive devices such as resistors, capacitors, …, etc.
⎯ Mechanical switches
⎯ A board holding electronic components
⎯ A system of connected components for doing something
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An Example of an Electronic System
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System Modeling and Model Library 
․For system-level simulation we must have a way to describe the 

behavior of the things (components) we see in a system and the 
relations among the things. This is called “system modeling.”

․Normally, the system description for simulation may involves
⎯ Using of different languages such as C, C++, VHDL, Verilog, etc.
⎯ Modeling of digital components as well as analog components.
⎯ Modeling of non-electronic components such as motors, MEMS 

(Microelectromechanical Systems), optical devices, etc. 
․The behavioral models of components form a system model library 

which is used in high-level synthesis and system-level simulation 
(SLS).

․System modeling should be done in a manner to maximize 
simulation speed without losing the accuracy.  

․Model development itself represents substantial extra cost of 
unclear value.
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Purposes of SLS

․System Validation
⎯ For a large system that is described in different languages and 

different design levels, system-level simulation (SLS) is often 
the only way to validate the correctness of system design.

․Design Space Exploration
⎯ Exploring the system design parameters to find out the trade-off 

among performance, cost, power, design complexity, etc. 
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Who Should Perform SLS?

․System designers
⎯ Should build a model for the targeted system using the models 

that describe the functions of components. The purpose is to 
validate the system function and system performance and carry 
out design space exploration

․Component designers 
⎯ Should build a model for its component and a model for the 

targeted system to validate whether its component could 
perform its function correctly within a targeted system.

․Both need to set up a testbench to perform SLS, which 
itself is a complicate task. 

․Generally, it requires an SLS platform that weaves 
various kinds of simulators together to perform SLS.
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System-Level Simulation Backplane
․Mixed-level, mixed-mode (signal), hardware/software 

cosimulations usually work under a simulation backplane to carry 
out SLS.

․The synchronization of simulation time step is the foremost 
important task  for a simulation backplane which integrates 
different simulators.
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Discussions
․Simulation is sometimes the only way to verify a design and decide 

a design’s performance.
⎯ Achieving both objectives need to develop a set of stimuli. While 

we are not able to exhaust all the stimuli for a large design, 
carefully developing a set of effective stimuli is very important. 

For design verification, we may have to pay more attention 
to the corner cases.
For performance evaluation, we may have to find a stimulus 
to activate some particular path or a set of stimuli that 
reasonably represent to the real world situation. 

․Timing simulation can be performed at different level of abstraction, 
for example
⎯ At transistor, gate, and RTL levels, we are interested in the 

delay of the longest path and the number of cycles to complete 
a certain task.

⎯ At behavioral level, we may concern with only the number of 
operations to complete a task.

․Hardware emulation is another effective way to speed up simulation 
speed if gate-level description of a design is available.
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Summary
․We have studied different kinds of simulations for simulating the 

designs described in different level of abstractions.
⎯ Circuit simulation for analog and digital design verification.
⎯ Transistor-level simulation for circuits being modeled as a 

network of bidirectional switches.
⎯ Gate-level simulation for circuits being implemented into a 

network of basic logic gates.
⎯ RTL-level (Cycle-based) simulation for circuits whose 

combinational parts are described in a more abstracted manner 
without caring about timing information.

⎯ Behavior-level simulation for digital circuits being described in 
high level language or HDL without knowing the number of 
cycles required for perform its function. For analog circuits 
being described in a manner to trade off simulation speed and 
accuracy.

⎯ System-level simulation using a simulation backplane
Mixed-level, mixed-signal, H/W cosimulation, etc.
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