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․Course contents
–Fault Modeling
–Fault Simulation
–Test Generation
–Design For Testability

․Reading 
⎯ Supplementary readings
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Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability
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Chip Design & Manufacturing Flow
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Design Verification, Testing and Diagnosis
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․Design Verification: 
⎯ Ascertain the design perform its specified behavior

․Testing: 
⎯ Exercise the system and analyze the response to ascertain 

whether it behaves correctly after manufacturing

․Diagnosis: 
⎯ To locate the cause(s) of misbehavior after the incorrect 

behavior is detected
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Manufacturing Defects

․Processing Faults
⎯ missing contact windows
⎯ parasitic transistors
⎯ oxide breakdown

․Material Defects
⎯ bulk defects (cracks, crystal imperfections)
⎯ surface impurities

․Time-Dependent Failures
⎯ dielectric breakdown
⎯ electro-migration

․Packaging Failures
⎯ contact degradation
⎯ seal leaks



Faults, Errors and Failures
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․Fault: 
⎯ A physical defect within a circuit or a system
⎯ May or may not cause a system failure

․Error: 
⎯ Manifestation of a fault that results in incorrect circuit (system) 
outputs or states
⎯ Caused by faults

․Failure: 
⎯ Deviation of a circuit or system from its specified behavior
⎯ Fails to do what it should do
⎯ Caused by an error

․Fault ---> Error ---> Failure 
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Scenario of Manufacturing Test

TEST VECTORS

Manufactured
Circuits

Comparator

CIRCUIT RESPONSE

PASS/FAILCORRECT
RESPONSES
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Tester: Advantest T6682
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Purpose of Testing

․Verify Manufacturing of Circuit
⎯ Improve System Reliability
⎯ Diminish System Cost

․Cost of repair 
⎯ goes up by an order of magnitude each step away from the 

fab. line
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Testing and Quality

ASIC
Fabrication TestingYield:

Fraction of
Good parts

Rejects

Shipped Parts

Quality:
Defective parts
Per Million (DPM)

Quality of shipped part is a function of
yield Y and the test  (fault) coverage T.
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Fault Coverage

․Fault Coverage T
⎯ Is the measure of the ability of a set of tests to detect a given 

class of faults that may occur on the device under test (DUT)

T = 
No. of detected faults

No. of all possible faults
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Defect Level

․Defect Level
⎯ Is the fraction of the shipped parts that are defective

DL = 1 – Y(1-T)

Y: yield
T: fault coverage
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Defect Level v.s. Fault Coverage

Defect Level

Fault Coverage ( % )
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(Williams IBM 1980)

High fault coverage              Low defect level



Unit 6 14Chang, Huang, Li, Lin, Liu

DPM v.s. Yield and Coverage

Yield Fault Coverage DPM

50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000
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Why Testing Is Difficult ?

․Test application time can be exploded for exhaustive 
testing of VLSI

⎯ For a combinational circuit with 50 inputs, we need 
250 = 1.126x1015 test patterns.   

⎯ Assume one test per 10-7sec, it takes 1.125x108sec = 3.57yrs. 
to test such a circuit. 

⎯ Test generation for sequential circuits are even more difficult 
due to the lack of controllability and observability at flip-flops 
(latches)

․Functional testing 
⎯ may NOT be able to detect the physical faults 
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The Infamous Design/Test Wall

30 years of experience proves that
test after design does not work!

Functionally correct!
We're done!

Oh no!
What does

this chip do?!

Design Engineering Test  Engineering
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Old Design & Test Flow

spec.

design flow

layout
test

patterns

manufacturing

Low-quality test patterns
high defect level
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New Design and Test Flow

spec.

Design flow

layout
better test
patterns

manufacturing

Introduces circuitry to 
make design testable

DFT flow

good
chips
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Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability



Functional v.s. Structural Testing
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․I/O function tests inadequate for manufacturing
⎯ Functionality vs. component & interconnection testing

․Exhaustive testing is Prohibitively expensive



Why Fault Model ? 
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․Fault model identifies target faults
⎯ Model faults most likely to occur 

․Fault model limits the scope of test generation
⎯ Create tests only for the modeled faults

․Fault model makes effectiveness measurable by 
experiments

⎯ Fault coverage can be computed for specific test patterns to 
reflect its effectiveness

․Fault model makes analysis possible 
⎯ Associate specific defects with specific test patterns
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Fault Modeling
․Fault Modeling

⎯ Model the effects of physical defects on the logic function and 
timing

․Physical Defects
⎯ Silicon Defects
⎯ Photolithographic Defects
⎯ Mask Contamination
⎯ Process Variation
⎯ Defective Oxides
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Fault Modeling (cont’d)

․Electrical Effects
⎯ Shorts (Bridging Faults)
⎯ Opens
⎯ Transistor Stuck-On/Open
⎯ Resistive Shorts/Opens
⎯ Change in Threshold Voltages

․Logical Effects
⎯ Logical Stuck-at 0/1
⎯ Slower Transition (Delay Faults)
⎯ AND-bridging, OR-bridging
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Fault Types Commonly Used To Guide Test 
Generation

․Stuck-at Faults
․Bridging Faults
․Transistor Stuck-On/Open Faults
․Delay Faults
․IDDQ Faults
․State Transition Faults (for FSM)
․Memory Faults
․PLA Faults
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Single Stuck-At Fault

0

1

1

1

0

1/0

1/0

stuck-at-0

True Response
Test Vector

Faulty Response

Assumptions:
• Only One line is faulty
• Faulty line permanently set to 0 or 1
• Fault can be at an input or output of a gate



Multiple Stuck-At Faults
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․Several stuck-at faults occur at the same time 
⎯ Important in high density circuits

․For a circuit with k lines
⎯ there are 2k single stuck-at faults
⎯ there are 3k-1 multiple stuck-at faults

A line could be stuck-at-0, stuck-at-1, or fault-free
One out of 3k resulting circuits is fault-free 
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Why Single Stuck-At Fault Model

․Complexity is greatly reduced
⎯ Many different physical defects may be modeled by the same 

logical single stuck-at fault

․Stuck-at fault is technology independent
⎯ Can be applied to TTL, ECL, CMOS, BiCMOS etc.

․Design style independent
⎯ Gate array, standard cell, custom VLSI

․Detection capability of un-modeled defects
⎯ Empirically many defects accidentally detected by test derived 

based on single stuck-at fault

․Cover a large percentage of multiple stuck-at faults



Multiple Faults
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․Multiple stuck-fault coverage by single-fault tests of 
combinational circuit:

⎯ 4-bit ALU (Hughes & McCluskey, ITC-84)
All double and most triple-faults covered.

⎯ Large circuits (Jacob & Biswas, ITC-87)
Almost 100% multiple faults covered for circuits with 3 or more 
outputs.

․No results available for sequential circuits.
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Bridging Faults

․Two or more normally distinct points (lines) are shorted 
together

⎯ Logic effect depends on technology
⎯ Wired-AND for TTL

⎯ Wired-OR for ECL

⎯ CMOS ?

A

B

f

g

A

B

f

g

A

B

f

g

A

B

f

g
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Bridging Faults For CMOS Logic

․The result
⎯ could be AND-bridging or OR-bridging
⎯ depends on the the inputs

VDD

A

B A

VDD

GND

f

C

gbridging

E.g., (A=B=0) and (C=1, D=0)
(f and g) are AND-bridging fault

pull to VDD

pull to zero
C D

GND



Unit 6 31Chang, Huang, Li, Lin, Liu

CMOS Transistor Stuck-On

․Transistor Stuck-On
⎯ May cause ambiguous logic level
⎯ Depends on the relative impedances of the pull-up and pull-

down networks

․When Input Is Low
⎯ Both P and N transistors are conducting, causing increased 

quiescent current, called IDDQ fault

0 stuck-on

?

IDDQVDD
Example:

N transistor 
is always ON

GND



Unit 6 32Chang, Huang, Li, Lin, Liu

CMOS Transistor Stuck-Open (I)

․Transistor stuck-open 
⎯ May cause the output to be floating
⎯ The faulty becomes exhibits sequential behavior

0

stuck-open

? = previous state
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CMOS Transistor Stuck-Open (II)

․The circuit may turn into a sequential one
․Stuck-open requires two vector tests

0  1

stuck-open

(1 0) / (0 0)Initialization
vector

Should be 1
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Fault Coverage in a CMOS Chip
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Summary of Stuck-Open Faults

․First Report: 
⎯ Wadsack, Bell System Technology, J., 1978

․Recent Results
⎯ Woodhall et. al, ITC-87 (1-micron CMOS chips)
⎯ 4552 chips passed parametric test
⎯ 1255 chips (27.57%) failed tests for stuck-at faults
⎯ 44 chips (0.97%) failed tests for stuck-open faults
⎯ 4 chips with stuck-open faults passed tests for stuck-at faults

․Conclusion
⎯ Stuck-at faults are about 20 times more frequent than stuck-open 

faults
⎯ About 91% of chips with stuck-open faults may also have stuck-

at faults
⎯ Faulty chips escaping tests for stuck-at faults = 0.121%



Memory Faults
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․Parametric Faults
⎯ Output Levels
⎯ Power Consumption
⎯ Noise Margin
⎯ Data Retention Time

․Functional Faults
⎯ Stuck Faults in Address Register, Data Register, 

and Address Decoder
⎯ Cell Stuck Faults
⎯ Adjacent Cell Coupling Faults
⎯ Pattern-Sensitive Faults
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Delay Testing

․Chip with timing defects
⎯ may pass the DC stuck-fault testing, but fail when operated 

at the system speed
⎯ For example, a chip may pass testing under 10 MHz 

operation, but fail under 100 MHz

․Delay Fault Models
⎯ Gate-Delay Fault
⎯ Path-Delay Fault



Gate-Delay Fault
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․Slow to rise, slow to fall
⎯ x is slow to rise when channel resistance R1 is abnormally 

high

VDD VDD

Cload

X
X

H ---> L

R1
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Gate-Delay Fault (cont’d)

slow

․Test Based on Gate-Delay Fault
⎯ May not detect those delay faults that result from the 

accumulation of a number of small incremental delay defects
along a path !! (Disadvantage)
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Path-Delay Fault

․Associated with a Path (e.g. A-B-C-Z)
⎯ Whose delay exceeds the clock interval

․More complicated than gate-delay fault
⎯ Because the number of paths grows exponentially

C

B

ZA



Why Logical Fault Modeling ?
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․Fault analysis on logic rather than physical problem
⎯ Complexity is reduced

․Technology independent
⎯ Same fault model is applicable to many technologies
⎯ Testing and diagnosis methods remain valid despite changes in 

technology

․Tests derived 
⎯ may be used for physical faults whose effect on circuit behavior

is not completely understood or too complex to be analyzed

․Stuck-at fault is
⎯ The most popular logical fault model



Definition Of Fault Detection
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․A test (vector) t detects a fault f iff
⎯ t detects f z(t) ≠zf(t)

․Example

x
X1

X2

X3

Z1

Z2

s-a-1 Z1=X1X2 Z2=X2X3

Z1f =X1 Z2f =X2X3

The test (x1,x2,x3) = (100) detects f  because 
z1(100)=0 while z1f (100)=1



Fault Detection Requirement
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․A test t that detects a fault f
⎯ Activates f (or generate a fault effect) by creating different v 

and vf values at the site of the fault
⎯ Propagates the error to a primary output w by making all the 

lines along at least one path between the fault site and w
have different v and vf values

․Sensitized Line:
⎯ A line whose value in response to the test changes in the 

presence of the fault f is said to be sensitized by the test in 
the faulty circuit

․Sensitized Path:
⎯ A path composed of sensitized lines is called a sensitized 

path
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Fault Sensitization

X1
X2

X3

X4

G1

G2

G3

G4

1
0

1

1

1

s-a-1
0/1

1

0/1

0/1
z

z (1011)=0                      zf (1011)=1
1011 detects the fault f (G2 stuck-at 1)
v/vf :  v = signal value in the fault free circuit

vf = signal value in the faulty circuit



Detectability
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․A fault f is said to be detectable
⎯ if there exists a test t that detects f ; otherwise,

f is an undetectable fault

․For an undetectable fault f
⎯ No test can simultaneously activate f and create a sensitized 

path to a primary output



Undetectable Fault
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x
s-a-0

a

b

c

z

G1

can be removed !

․G1 output stuck-at-0 fault is undetectable
⎯ Undetectable faults do not change the function of the circuit
⎯ The related circuit can be deleted to simplify the circuit                           



Test Set
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․Complete detection test set: 
⎯ A set of tests that detect any detectable faults in a class of 

faults

․The quality of a test set 
⎯ is measured by fault coverage

․Fault coverage:  
⎯ Fraction of faults that are detected by a test set

․The fault coverage 
⎯ can be determined by fault simulation
⎯ >95% is typically required for single stuck-at fault model
⎯ >99.9% in IBM 
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Typical Test Generation Flow

Select next target fault

Generate a test
for the target fault

Discard detected faults

More faults ? Done

Fault simulation

Start

(to be further discussed)

(to be further discussed)

noyes



Fault Equivalence
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․Distinguishing test
⎯ A test t distinguishes faults α and β if

․Equivalent Faults
⎯ Two faults, α & β are said to be equivalent

in a circuit , iff the function under α is equal to the function 
under β for any input combination (sequence) of the circuit.

⎯ No test can distinguish between α and β
⎯ In other words, test-set(α) = test-set(β)

( ) ( )Z t Z tα β⊕ =1



Fault Equivalence
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․AND gate:  
⎯ all s-a-0 faults are equivalent

․OR gate:  
⎯ all s-a-1 faults are equivalent

․NAND gate:  
⎯ all the input s-a-0 faults and the output

s-a-1 faults are equivalent

․NOR gate:  
⎯ all input s-a-1 faults and the output 

s-a-0 faults are equivalent

․Inverter:  
⎯ input s-a-1 and output s-a-0 are equivalent

input s-a-0 and output s-a-1 are equivalent

x
x

s-a-0
s-a-0

same effect



Equivalence Fault Collapsing
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․n+2 instead of 2(n+1) faults need to be considered 
for n-input gates

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0



Equivalent Fault Group
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․In a combinational circuit
⎯ Many faults may form an equivalent group
⎯ These equivalent faults can be found by sweeping the circuit 

from the primary outputs to the primary inputs

s-a-1

s-a-0 s-a-1

x

x x

Three faults shown are equivalent !



Fault Dominance
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․Dominance Relation
⎯ A fault β is said to dominate another fault 

α in an irredundant circuit, iff every test (sequence) for α is 
also a test (sequence) 
for β.

⎯ I.e., test-set(β) > test-set(α)
⎯ No need to consider fault β for fault detection

α is dominated by βTest(α) Test(β)



Fault Dominance
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․AND gate: 
⎯ Output s-a-1 dominates any input s-a-1

․NAND gate: 
⎯ Output s-a-0 dominates any input s-a-1

․OR gate: 
⎯ Output s-a-0 dominates any input s-a-0

․NOR gate: 
⎯ Output s-a-1 dominates any input s-a-0

․Dominance fault collapsing: 
⎯ The reduction of the set of faults to be analyzed based 

on dominance relation

x
x

s-a-1
s-a-1

Easier-to-test

harder-to-test



Stem v.s. Branch Faults
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․Detect A sa1: 

․Detect C sa1:

․Hence, C sa1  dominates  A sa1
․Similarly

⎯ C sa1  dominates  B sa1
⎯ C sa0  dominates  A sa0
⎯ C sa0  dominates  B sa0

․In general, there might be no equivalence or dominance relations
between stem and branch faults

z t( )⊕ zf t( ) = CD⊕CE( )⊕ D⊕CE( )=D⊕CD=1

⇒ C = 0, D=1( )
z t( )⊕ zf t( ) = CD⊕CE( )⊕ D⊕E( )=1

⇒ C = 0, D=1( ) or C = 0, E=1( )

A

B

C

D

E
x

x

x
C: stem of a multiple fanout
A & B: branches
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Analysis of a Single Gate

AB C A 
sa1

B 
sa1

C 
sa1

A 
sa0

B 
sa0

C 
sa0

00

01

0 1

10

11

0 1 1

0 0

0 1 1

1 0

A

B
C

․Fault Equivalence Class
⎯ (A s-a-0, B s-a-0, C s-a-0)

․Fault Dominance Relations
⎯ (C s-a-1 > A s-a-1) and (C s-a-1 > B s-a-1)

․Faults that can be ignored:
⎯ A s-a-0, B s-a-0, and C s-a-1



Fault Collapsing 
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․Equivalence + Dominance
⎯ For each n-input gate, we only need to consider n+1 faults 

during test generation

s-a-0s-a-1

s-a-1
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Dominance Graph

․Rule
⎯ When fault α dominates fault β, then an arrow is 

pointing from α to β
․Application

⎯ Find out the transitive dominance relations among 
faults

d s-a-0
d s-a-1

a
b d

c e

a s-a-0
a s-a-1

e s-a-0
e s-a-1
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Fault Collapsing Flow

Select a representative fault from
each remaining equivalence group

Done

Discard the dominating faults

Start Sweeping the netlist from PO to PI
To find the equivalent fault groups

Equivalence
analysis

Sweeping the netlist
To construct the dominance graph

Dominance
analysis

Generate collapsed fault list



Prime Fault
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• α is a prime fault if every fault that is dominated by α is 
also equivalent to α

• Representative Set of Prime Fault (RSPF)
⎯ A set that consists of exactly one prime fault 

from each equivalence class of prime faults
⎯ True minimal RSPF is difficult to find
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Why Fault Collapsing ?

․Memory and CPU-time saving
․Ease testing generation and fault simulation

* 30 total faults     12  prime faults



Checkpoint Theorem
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․Checkpoints for test generation
⎯ A test set detects every fault on the primary inputs and 

fanout branches is complete
⎯ I.e., this test set detects all other faults too
⎯ Therefore, primary inputs and fanout branches form a 

sufficient set of checkpoints in test generation
⎯ In fanout-free combinational circuits, primary inputs are the 

checkpoints

Stem is not a checkpoint !
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Why Inputs + Branches Are Enough ?

․Example
⎯ Checkpoints are marked in blue
⎯ Sweeping the circuit from PI to PO to examine every gate, 

e.g., based on an order of (A->B->C->D->E)
⎯ For each gate, 
output faults are detected if every input fault is detected

A

B

C

D

E

a
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Fault Collapsing + Checkpoint

․ Example:
⎯ 10 checkpoint faults
⎯ a s-a-0 <=> d s-a-0 ,  c s-a-0  <=> e s-a-0

b s-a-0   >  d s-a-0   ,  b s-a-1  >  d s-a-1
⎯ 6 tests are enough

a

b

c

d

e

f

g

h
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Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability
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Why Fault Simulation ?

․To evaluate the quality of a test set
⎯ I.e., to compute its fault coverage

․Part of an ATPG program
⎯ A vector usually detected multiple faults
⎯ Fault simulation is used to compute the faults accidentally

detected by a particular vector

․To construct fault-dictionary
⎯ For post-testing diagnosis



Conceptual Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

Fault-free Circuit

Faulty Circuit #1 (A/0)

Faulty Circuit #2 (B/1)

Faulty Circuit #n (D/0)

Primary
Inputs
(PIs)

Primary Outputs
(POs)

Patterns
(Sequences)
(Vectors)

Response 
Comparison

Detected?

A B

C
D

Logic simulation on both good (fault-free) and faulty circuits



Some Basics for Logic Simulation
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․For fault simulation purpose, 
⎯ mostly the gate delay is assumed to be zero unless the delay 

faults are considered. Our main concern is the functional faults

․The logic values 
⎯ can be either two (0, 1) or  three values (0, 1, X)

․Two simulation mechanisms:
⎯ Oblivious compiled-code: 

circuit is translated into a program and all gates are executed 
for each pattern. (may have redundant computation)

⎯ Interpretive event-driven: 
Simulating a vector is viewed as a sequence of value-change 
events propagating from the PI’s to the PO’s
Only those logic gates affected by the events are re-evaluated



Compiled-Code Simulation
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A
B
C

E
Z

D

․Compiled code
⎯ LOAD A /* load accumulator with value of  A */
⎯ AND B /* calculate A and B */
⎯ AND C /* calculate  E = AB and C */
⎯ OR D /* calculate  Z = E or D */
⎯ STORE Z /* store result of  Z */
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Event-Driven Simulation

A
B
C

E

Z
D

1
0
0

1
1
1

0 0

? 0

? 0

G1
G2

Initialize the events at PI’s
In the event-queue

Pick an event
Evaluate its effect

More event in Q ? Done

Schedule the newly born events
In the event-queue, if any

Start

yes no



Complexity of Fault Simulation
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#Gate (G)

#Pattern (P)

#Fault (F)

• Complexity ~ F ‧P‧G ~ O(G3)
• The complexity is higher than logic simulation by a factor of F,

while usually is much lower than ATPG
• The complexity can be greatly reduced using

• Fault dropping and other advanced techniques



Characteristics of Fault Simulation
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․Fault activity with respect to fault-free circuit 
⎯ is often sparse both in time and in space.

․For example
⎯ F1 is not activated by the given pattern, while F2 affects only 

the lower part of  this circuit.

F1(s-a-0)

F2(s-a-0)
×

×
0

1

1



Fault Simulation Techniques
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․Serial Fault Simulation
⎯ trivial single-fault single-pattern

․Parallel Fault Simulation
․Deductive Fault Simulation
․Concurrent Fault Simulation



Parallel Fault Simulation
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․Simulate multiple circuits at a time:
⎯ The inherent parallel operation of computer words to  

simulate faulty circuits in parallel with fault-free circuit
⎯ The number of faulty circuits, or faults, can be processed 

simultaneously is limited by the word length, e.g., 32 circuits 
for a 32-bit computer

․Extra Cost:
⎯ An event, a value-change of a single fault or fault-free circuit 

leads to the computation of the entire word
⎯ The fault-free logic simulation is repeated for each pass



Example: Parallel Fault Simulation
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• Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0)

• Bit-space: (FF denotes fault-free) 
J/0 B/1 F/0 FF

fault-free

A

B

C

D

E

F

G

H
J

1

0

1

1

0   0   0   0

0   1   0   0

1   1   1   1

1   0   0   1

0   1   0   0 0   1   0   1

1   1   0   11   1   1   1

1   1   0   1

1   0   1   1

F/0

J/0B/0

×

×
×

1

0

0



Deductive Fault Simulation
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․Simulate all faulty circuits in one pass
⎯ For each pattern, sweep the circuit from PI’s to PO’s.
⎯ During the process, a list of faults is associated with each 

line
⎯ The list contains faults that would produce a fault effect on 

this line
⎯ The union fault list at every PO contains the detected faults 

by the simulated input vector

․Major operation: fault list propagation
⎯ Related to the gate types and values
⎯ The size of the list may grow dynamically, leading to a 

potential memory explosion problem



Illustration of Fault List Propagation
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A

B
C

LA

LB
LCConsider a two-input AND-gate:

Case 1:  A=1, B=1, C=1 at fault-free,
LC = LA + LB + {C/0}

Case 2:  A=1, B=0, C=0 at fault-free,
LC = LA * LB + {C/1}

Case 3:  A=0, B=0, C=0 at fault-free,
LC = LA * LB + {C/1}

Non-controlling case:

Controlling cases:

LA is the set of all faults not in LA



Fault List Propagation Rule
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․Notations:
⎯ Let I be the set of inputs of a gate Z with controlling value 

c and inversion i
(i.e., i is 0 for AND, OR and 1 for NAND, NOR)

⎯ Let C be the set of inputs with value c

( ){ }if  c= L Z  s a c iz j
j I

∅ = − − ⊕
∈

  then  L   { }Υ Υ

( ){ }else  L L L Z  s a c iz j
j C

j
j I C

= − − − ⊕
∈ ∈ −

{ } { }Ι Υ Υ    

Non-controlling case:

Controlling cases: intersection

union

C=φ

∩

∪ ∪

∪



Example: Deductive Simulation (1)
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• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

Fault List at PI’s:

LB = {B/1},    LF = {F/0},  LA = φ,  LC=LD = {B/1}



Example: Deductive Simulation (2)
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• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

Fault Lists at G and E: 

LB = {B/1}, LF = {F/0}, LA = φ, LC=LD = {B/1},  
LG = (LA * LC) = {B/1}
LE = (LD) = {B/1}



Example: Deductive Simulation (3)
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• Consider  3 faults: B/1,  F/0, and J/0
A

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

Computed Fault List at H:

LB = {B/1},    LF = {F/0},  LC=LD = {B/1},  
LG = {B/1},  LE = {B/1}
LH = (LE + LF) = {B/1, F/0}



Example: Deductive Simulation (4)
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• Consider  3 faults: B/1,  F/0, and J/0

Final Fault List at the output J: 

LB = {B/1},    LF = {F/0},  LC=LD = {B/1},  
LG = {B/1},  LE = {B/1}
LH = {B/1, F/0},
LJ = {F/0,J/0}

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A



Example: Deductive Simulation
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• When A changes from 1 to 0

A

x

x

x
B

C

D
E

F

G

H

J

0 1

0

1

1

1

0 0

1

0

Event-driven operation:

LB = {B/1},  LF = {F/0}, LA = φ
LC=LD = {B/1},  LG = φ, 
LE = {B/1},  LH = {B/1,F/0},   LJ = {B/1,F/0,J/0}



Concurrent Fault Simulation
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․Simulate all faulty circuits in one pass:
⎯ Each gate retains a list of fault copies and each of them 

stores the status of  a fault exhibiting difference from fault-
free values

․Simulation mechanism
⎯ is similar to the conceptual fault simulation except that only 

the dynamical difference w.r.t. fault-free circuit is retained. 

․Theoretically, 
⎯ all faults in a circuit can be processed in one pass

․Practically,
⎯ memory explosion problem may restrict the number of faults 

that can be processed in each pass



Concurrent Fault Simulation
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Fault-free

1

0
0 0

Fault Copies:
updated by both logic 
event and fault events

1

0
1

0

0
0

1

1
1

F100

F73

F2



Example: Concurrent Simulation (1)
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• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11
0

1

A

LG = {10_0, B/1:11_1}     LE = {0_1, B/1:1_0}



Example: Concurrent Simulation (2)
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• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11

1

0

A

LG = {10_0, B/1:11_1}     LE = {0_1, B/1:1_0}  
LH = {11_1, B/1:01_0, F/0:10_0}



Example: Concurrent Simulation (3)
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• Consider  3 faults: B/1,  F/0, and J/0

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11

1

0

A

LG = {10_0, B/1:11_1}     LE = {0_1, B/1:1_0}  
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:10_1, F/0:00_0, J/0:01_0}



Example: Concurrent Simulation (4)
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• When A changes from 1 to 0

A

x

x

x
B

C

D
E

F

G

H

J

0 1

0

1

1

1

0 0

1

LG = {00_0, B/1:01_0}     LE = {0_1, B/1:1_0}  
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:00_0, F/0:00_0, J/0:01_0}



Fault List of AND Gate
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A

A/1

B/1

D/1

0
0

0

0
0

1

01
0

1
0

0

D
B
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Fault List Propagation

A

B

D0

0
0

C
E0

0
0

A

B

D1

0
0

C
E0

0
0

A/1: 10_0 C/1: 01_1

B/1: 01_0 D/1: 10_1

D/1: 00_1 E/1: 00_1

*A/0: 00_0 *B/1: 10_1

*B/1: 11_1 C/1: 01_1

*D/1: 10_1 D/1: 10_1

E/1: 00_1

*

propagated

These 2 faults are 
not propagated
after evaluation

propagated



Parallel-Pattern Single-Fault Simulation
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․Basic Idea: 
⎯ Event Driven + Parallel Simulation

․Parallel-Pattern Simulation
⎯ Many patterns are simulated  in parallel for both fault-free circuit 

and faulty circuits
⎯ The number of patterns is a multiple of  the computer word-

length

․Event-Driven
⎯ reduction of logic event simulation time

․Simple and Extremely Efficient
⎯ basis of most modern combinational fault simulators 



Example: Parallel Pattern Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider one fault F/0 and four patterns:  P3,P2,P1,P0
Bit-Space: P3 P2 P1 P0

x

A

B

C

D E

F

G

H
J

0   1   0   1

0   1   0   1

1   1   1   1

1   0   0   0

0   1   0   1

1   0   0   11   0   0   1

1   0   1   0

0   0   0   0

0   1   0   1
1   1   0   1

0   0   0   0



Sensitive Input and Critical Path
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․Sensitive Input of a gate:
⎯ A gate input i is sensitive if complementing the value of i

changes the value of the gate output
․Critical line

⎯ Assume that the fault-free value of w is v in response to t
⎯ A line w is critical w.r.t. a pattern t iff t detects the fault w stuck-

at v
․Critical paths

⎯ Paths consisting of critical lines only

1
0

0

i
Sensitive input

Non-sensitive input
Z PO

Sensitized ?

i is critical if Z is sensitized to at least one PO



Basics of Critical Path Tracing
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Z is critical PO

sensitization
Path(s)1

0
0

PO is sensitive to i, or i is critical
i

․A gate input i is critical w.r.t. a pattern t if 
⎯ (1) the gate output is critical and  
⎯ (2) i is a sensitive input to t
⎯ Use recursion to prove that i is also critical 

․In a fanout-free circuit
⎯ the criticality of  a line can be determined by backward 

traversing the sensitive gate inputs from PO’s, in linear time



Analysis of Critical Path Tracing
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․Three-step Procedure:
⎯ Step 1: Fault-free simulation
⎯ Step 2: Mark the sensitive inputs of each gate
⎯ Step 3: Identification of the critical lines by backward critical 

path tracing)

․Complexity is O(G)
⎯ Where G is the gate count
⎯ for fanout-free circuits --- very rare in practice

․Application
⎯ Applied to fanout-free regions, while stem faults are still 

simulated by parallel-pattern fault simulator.



Example of Critical Path Tracing

Unit 6 Chang, Huang, Li, Lin, Liu

A

B 
(stem)

C
D E    

1

F

G     0

H    1
J

1

0

1

1

sensitive input,             critical line

(fanout-free region)

Detected faults  in the fanout-free region: 
{J/0, H/0, F/0, E/0, D/1}
Question: is B stuck-at-1 detected ?



Anomaly of Critical Path Tracing
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• Stem criticality is hard to infer from branches. 
E.g. is B/1 detectable by the given pattern?

x
B

C
D E

F

G

H J

1

1

10
0

1
1

• It turns out that B/1 is not detectable even though both C 
and D are critical, because their effects cancel out each 
other at gate J, (i.e., fault masking problem)

• There is also a so-called multiple path sensitization problem.



Multiple Path Sensitization
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A

B 
(stem)

C
D

F

G     1

H    1 J

1

1

1

1

(fanout-free region)

Both C and D are not critical, yet B is critical and B/0
can be detected at J by multiple path sensitization.



Sequential Fault Simulation
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․Modern Techniques:
⎯ Fault simulation without restoration
⎯ Parallel fault simulation
⎯ Adoption of advanced combinational techniques
⎯ Management of hypertrophic faults
⎯ Other  techniques:

parallel-sequence and parallel-pattern



Unit 6 101Chang, Huang, Li, Lin, Liu

Sequential Design Model

FFs FFs

clk

Comb.
logic

Comb.
logic

A
B
C out1

out2

Sequential Circuits

FFs

Combinational
Logic

A
B
C

OUT1
OUT2

Hoffman Model
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Time-Frame-Expansion Model

Ex: Input Sequence (‘0’, ‘0’, ‘0’)
State Sequence (S0 S1 S2 S3)

f

‘0’

f

‘0’

PO’s
f

‘0’

PO’s PO’sPO PO PO

S0 S1 S2 S3

Time-frame: 1 2 3

PPI PPO
Notations: PPI: pseudo primary inputs (I.e., outputs of flip-flops)

PPO: pseudo primary outputs (I.e., inputs of flip-flops)

A single fault becomes multiple faults in
the time-frame-expansion model 
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Parallel Pattern Simulation for Sequential 
Circuits?

Ex: Input Sequence (v1, v2, v3, …)
State Sequence (S0 S1 S2 S3 …)

f

v1

f

v2

PO’s
f

v3

PO’s PO’sPO PO PO

S0 S1 S2 S3

PPI PPO

If (next-state function) depends on only k previous input vectors
Then parallel pattern simulation would take (k+1) passes to converge !
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Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability
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Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis 
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]
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General ATPG Flow

․ATPG (Automatic Test Pattern Generation)
⎯ Generate a set of vectors for a set of target faults

․Basic flow
Initialize the vector set to NULL
Repeat

Generate a new test vector
Evaluate fault coverage for the test vector
If the test vector is acceptable, then add it to the vector set

Until required fault coverage is obtained
․To accelerate the ATPG

⎯ Random patterns are often generated first to detect easy-to-
detect faults, then a deterministic TG is performed to generate 
tests for the remaining faults
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Combinational ATPG

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis

․Milestone Structural ATPG Algorithms
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]



A Test Pattern
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A Fully Specified Test Pattern
(every PI is either 0 or 1)

stuck-at 10
0
1
1 1

0/1
0/1

A Partially Specified Test Pattern
(certain PI’s could be undefined)

stuck-at 01
x
x
x x

x
1/0

1/0



Test Generation Methods
(From Truth Table)
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Ex: How to generate tests 
for the stuck-at 0 fault 
(fault α)? abc f fα

000
001
010
011
100
101
110
111

0
0
0
0
0
1
1
1

0
0
0
0
0
1
0
1

c

a

f
b

α stuck-at 0



Test Generation Methods
(Using Boolean Equation)
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f = ab+ac, fα = ac
Tα = the set of all tests for fault α

= ON_set(f♁fα)

= ON_set(f) ∗ OFF_set(fα) + OFF_set(f) ∗ ON_set(fα) 
= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) = 1 } 
= {(a,b,c) | abc'=1}
= { (110) }. High complexity !!

Since it needs to compute the faulty
function for each fault.

c

a

f
b

α stuck-at 0

Boolean equation

* ON_set(f): All input combinations to which f evaluates to 1.
OFF_set(f): All input combinations to which f evaluates to 0.
Note: a function is characterized by its ON_SET
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Boolean Difference
․Physical Meaning of Boolean Difference

⎯ For a logic function F(X)=F(x1, ..., xi, ..., xn), find all the input 
combinations that make a value-change at xi also cause a value-
change at F.

․Logic Operation of Boolean Difference
⎯ The Boolean difference of F(X) w.r.t. input xi is

where Fi(0) = F(x1, ..., 0, ..., xn) and Fi(1) = F(x1, ..., 1, ..., xn).

F
0

1
0

1

1
0or

x1

xi

xn

circuit
F

1
0

1
0

0
1or

x1

xi

xn

circuit

dF(x)/dxi = Fi(0)♁Fi(1) = Fi(0) · Fi(1)’ + Fi(0)’ · Fi(1)
Where 

Fi(0) = F(x1, …, 0, …, xn)
Fi(1) = F(x1, …, 1, …, xn)

• Illustrations of Boolean Difference
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Chain Rule

fA
B G( f(A, B), {C, D} )

{A,B} and {C,D} have no 
variables in common

C
D

dG/df = (C’ + D’)
df/dA = B

f = AB
G = f + CD

dG/dA = (dG/df) · (df/dA) = (C’+D’) · B

An Input vector v sensitizes a fault effect from A to G
Iff v sensitizes the effect from A to f and from f to G
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Boolean Difference (con’t)

․Boolean Difference
⎯ With respect to an internal signal, w, Boolean difference 

represents the set of input combinations that sensitize a fault 
effect from w to the primary output F

․Calculation
⎯ Step 1: convert the function F into a new one G that takes the 

signal w as an extra primary input
⎯ Step 2: dF(x1, …, xn)/dw = dG (x1, …, xn, w)/dw

x

w

w
x1

xn

x1

xn

.

.

.
.
.
.

Free w
GF
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Test Gen. By Boolean Difference

Case 1: Faults are present at PIs.
a

F = ab + ac
F(a=0) = 0
F(a=1) = (b+c)

x
b

c

Fault Sensitization Requirement: 
dF/da = F(a=0) ♁ F(a=1) = 0 ♁ (b+c) = (b+c)

Test-set for a s-a-1 = {(a,b,c) | a'• (b+c)=1} = {(01x), (0x1)}.
Test-set for a s-a-0 = {(a,b,c) | a • (b+c)=1} = {(11x), (1x1)}.

Fault sensitization
requirement

Fault activation
requirement

No need to compute
The faulty function !!
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Test Generation By Boolean Difference (con’t)

Case 2: Faults are present at internal lines.

c

a

F = ab + ac
b x

h

G(i.e., F with h floating ) = h + ac
dG/dh = G(h=0) ♁G(h=1) = (ac ♁ 1) = (a’+c’)

Test-set for h s-a-1 is 
{ (a,b,c)| h‘ • (a'+c')=1 } = { (a,b,c)| (a'+b') • (a'+c')=1 } = { (0xx), (x00) }.

Test-set for h s-a-0 is
{(a,b,c)| h • (a'+c')=1} = {(110)}.

For fault activation For fault sensitization
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Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis 
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]
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Test Generation Method
(From Circuit Structure)

․Two basic goals
⎯ (1) Fault activation (FA)
⎯ (2) Fault propagation (FP)
⎯ Both of which requires Line Justification (LJ), I.e., finding input 

combinations that force certain signals to their desired values
․Notations:

⎯ 1/0 is denoted as D, meaning that good-value is 1 while faulty 
value is 0

⎯ Similarly, 0/1 is denoted D’
⎯ Both D and D’ are called fault effects (FE)

fault propagation

fault activation

c

a

f
b

1/0

0

1
1

0
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Common Concepts for Structural TG

․Fault activation
⎯ Setting the faulty signal to either 0 or 1 is a Line Justification 

problem

․Fault propagation
⎯ (1) select a path to a PO decisions
⎯ (2) Once the path is selected a set of line justification (LJ) 

problems are to be solved

․Line Justification
⎯ Involves decisions or implications
⎯ Incorrect decisions: need backtracking

a
b cTo justify c=1 a=1 and b=1 (implication)

To justify c=0 a=0 or b=0 (decision)
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Ex: Decision on Fault Propagation

f1G5

G6

G1

G2

G3
G4

a
bc

d

e

G5 G6

fail success

{ G5, G6 }

f2

⎯ Fault activation
G1=0 { a=1, b=1, c=1 } { G3=0 }

⎯ Fault propagation: through G5 or G6
⎯ Decision through G5:

G2=1 { d=0, a=0 } inconsistency at a backtrack !!
⎯ Decision through G6:

G4=1 e=0 done !! The resulting test is (111x0)

decision tree

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.
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Various Graphs

A Combinational Circuit: is usually modeled as a DAG, but not tree

Graph = (V, E)

DAG
(Directed Acyclic Graph)

Tree

Digraph
(directed graph)
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Ex: Decisions On Line Justification

⎯ FA set h to 0
⎯ FP e=1, f=1 ( o=0) ;  FP q=1, r=1
⎯ To justify q=1 l=1 or k=1
⎯ Decision: l =1 c=1, d=1 m=0, n=0 r=0 inconsistency at r 

backtrack !
⎯ Decision: k=1 a=1, b=1
⎯ To justify r=1 m=1 or n=1 ( c=0 or d=0) Done ! (J-frontier is φ)

a
b
c
d

e
f
h

p

k

l
q

r
m
n
o

s

The corresponding 
decision tree

l=1 k=1

m=1 o=1
n=1

J-frontier: is the set of gates 
whose output value is known
(I.e., 0 or 1), but is not implied 
by its input values. 
Ex: initially, J-frontier is {q=1, r=1}

Decision point

fail

success

q=1

r=1



Unit 6 122Chang, Huang, Li, Lin, Liu

Branch-and-Bound Search

․Test Generation 
⎯ Is a branch-and-bound search
⎯ Every decision point is a branching point
⎯ If a set of decisions lead to a conflict (or bound), a backtrack

is taken to explore other decisions
⎯ A test is found when

(1) fault effect is propagated to a PO
(2) all internal lines are justified 

⎯ No test is found after all possible decisions are tried Then, 
target fault is undetectable

⎯ Since the search is exhaustive, it will find a test if one exists

For a combinational circuit, an undetectable fault is also a 
redundant fault Can be used to simplify circuit.
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Implications

․Implications
⎯ Computation of the values that can be uniquely determined

Local implication: propagation of values from one line to 
its immediate successors or predecessors
Global implication: the propagation involving a larger 
area of the circuit and re-convergent fanout

․Maximum Implication Principle
⎯ Perform as many implications as possible
⎯ It helps to either reduce the number of problems that need 

decisions or to reach an inconsistency sooner
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Local Implications (Forward)

Before After

0
x x

1
1 x

1
x a

0 J-frontier={ ...,a }

D'
D a

x D-frontier={ ...,a }

0
x 0

1
1 1

1
0 a

0 J-frontier={ ... }

D'
D a

0 D-frontier={ ... }



Unit 6 125Chang, Huang, Li, Lin, Liu

Local Implications (Backward)

Before After

x
x

x
1

x
x J-frontier={ ... }

1

0

x
1

x

a
0

1
1 1

0
1 0

x
x a

0 J-frontier={ ...,a }

1 1

1
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Global Implications

x

D

1

x

D

x

x

After

d

g
x

x

x

D

x

Before

g

e

d

x

x

e

․Unique D-Drive Implication
⎯ Suppose D-frontier (or D-drive) is {d, e}, g is a dominator for 

both d and e, hence a unique D-drive is at g

g is called a dominator of d:
because every path from d to an PO passes through g
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Learning for Global Implication

․Static Learning
⎯ Global implication derived by contraposition law
⎯ Learn static (I.e., input independent) signal implications

․Dynamic Learning
⎯ Contraposition law + other signal values
⎯ Is input pattern dependent

A B => ~B ~A

A

B

C

D

E

F1

F=1 implies B=1
Because B=0 F=0

(Static Learning)

A

B

C

D

E

F0

1

F=0 implies B=0 When A=1
Because {B=1, A=1} F=1

(Dynamic Learning)
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Early Detection of Inconsistency

Aggressive implication may 
help to realize that the sub-
tree below is fruitless, thus 
avoiding unnecessary search

success

q=1

r=1s=1

u=1t=1 v=1

v=1

f

f f

f

f f
A potential

sub-tree

sub-tree without a solution
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Ex: D-Algorithm (1/3)

․Five logic values
⎯ { 0, 1, x, D, D’ }

h
Try to propagate
Fault effect thru G1

Set d to 1

Try to propagate
Fault effect thru G2

Set j,k,l,m to 1

1

1

1

1

D
n

d

e

f
f'

e'

d'

i

j

k

l

m

ga
b
c

1

0

G1
D’

D0
1
1

G2
0

1
D’ ≠

Conflict at k
Backtrack !
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Ex: D-Algorithm (2/3)

․Five logic values
⎯ { 0, 1, x, D, D’ }

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
b
c

1

0

G1
D’

D0
1
1

G2

1

1

1

0

1

0

1
D’ ≠

D

Conflict at m
Backtrack !

D’ (next D-frontier chosen)

Try to propagate
Fault effect thru G2

Set j,l,m to 1
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Ex: D-Algorithm (3/3)

․Five logic values
⎯ { 0, 1, x, D, D’ }

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
b
c

1

0

G1
D’

D0
1
1

G2

D’

1

1

0

1

D’ (next D-frontier chosen)

0

1

D

Fault propagation
and line justification
are both complete

A test is found !

This is a case of 
multiple path sensitization !

Try to propagate
Fault effect thru G2

Set j,l to 11
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D-Algorithm: Value Computation

Decision Implication Comments

a=0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D’
d’=0

j=1 Propagate via n
k=1
l=1
m=1

n=D
e’=0
e=1
k=D’ Contradiction

e=1 Propagate via k
k=D’
e’=0
j=1

l=1 Propagate via n
m=1

n=D
f’=0
f=1
m=D’ Contradiction

f=1 Propagate via m
m=D’
f’=0
l=1
n=D
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Decision Tree on D-Frontier

․The decision tree below
⎯ Node D-frontier
⎯ Branch Decision Taken
⎯ A Depth-First-Search (DFS) strategy is often used

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

D’

1

D

0

1

0

1
D’

1

{i,k,m}

{k,m,n}

{m,n}F

F S

i

n k

mn
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9-Value D-Algorithm

․Logic values (fault-free / faulty)
⎯ {0/0, 0/1, 0/u, 1/0, 1/1, 1/u, u/0, u/1, u/u}, 
⎯ where 0/u={0,D'}, 1/u={D,1}, u/0={0,D}, u/1={D',1}, 

u/u={0,1,D,D'}.
․Advantage:

⎯ Automatically considers multiple-path 
sensitization, thus reducing the amount of search 
in D-algorithm

⎯ The speed-up is NOT very significant in practice 
because most faults are detected through single-
path sensitization
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Example: 9-Value D-Algorithm

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

u/1

G1

D (1/0)0/1
u/1
u/1

G2
D(=1/0)

1/u 1/1

u/1

u/1

u/1

D’ (=0/1)

u/0

1/u

u/1

Decision Tree

{i, k, m}

{k, m, n}

success

i

n

No-backtrack !

D’ or 1

D’(0/1)

0/1

u/0
u/1

1/u

0/u
1/u
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Final Step of 9-Value D-Algorithm

․To derive the test vector
A = (0/1) 0 (take the fault-free one)
B = (1/u) 1
C = (1/u) 1
D = (u/1) 1
E = (u/1) 1
F = (u/1) 1

․The final vector
⎯ (A,B,C,D,E,F) = (0, 1, 1, 1, 1, 1)
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Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis 
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]
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PODEM: Path-Oriented DEcision Making

․Fault Activation (FA) and Propagation (FP)

⎯ lead to sets of Line Justification (LJ) problems. The LJ problems 
can be solved via value assignments.  

․ In D-algorithm

⎯ TG is done through indirect signal assignment for FA, FP, and LJ, 
that eventually maps into assignments at PI’s

⎯ The decision points are at internal lines

⎯ The worst-case number of backtracks is exponential in terms of 
the number of decision points (e.g., at least 2k for k decision 
nodes)

․ In PODEM
⎯ The test generation is done through a sequence of direct 

assignments at PI’s

⎯ Decision points are at PIs, thus the number of backtracking might 
be fewer
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Search Space of PODEM

․Complete Search Space

⎯ A binary tree with 2n leaf nodes, where n is the number of PI’s

․Fast Test Generation

⎯ Need to find a path leading to a SUCCESS terminal quickly

0 1

c

d

0

d

1

d

0 1

b0 1

c

d

0

d

1
c

d

0

d

1

0 1

F F F F

b

c

d

a

S S F F
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Objective() and Backtrace()
․PODEM

⎯ Also aims at establishing a sensitization path based on fault 
activation and propagation like D-algorithm

⎯ Instead of justifying the signal values required for sensitizing the 
selected path, objectives are setup to
guide the decision process at PI’s

․Objective
⎯ is a signal-value pair (w, vw)

․Backtrace
⎯ Backtrace maps a desired objective into a PI assignment that is 

likely to contribute to the achievement of the objective
⎯ Is a process that traverses the circuit back from the objective 

signal to PI’s
⎯ The result is a PI signal-value pair (x, vx)
⎯ No signal value is actually assigned during backtrace !往輸入端追蹤
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Objective Routine

․Objective Routine Involves
⎯ The selection of a D-frontier, G
⎯ The selection of an unspecified input gate of G

Objective() {
/* The target fault is w s-a-v */
/* Let variable obj be a signal-value pair */
if (the value of w is x) obj = ( w, v’ );
else {

select a gate (G) from the D-frontier;
select an input (j) of G with value x;
c = controlling value of G;
obj = (j, c’);

}
return (obj);

}   

fault activation

fault propagation



Unit 6 142Chang, Huang, Li, Lin, Liu

Backtrace Routine

․Backtrace Routine
⎯ Involves finding an all-x path from objective site to a PI, I.e., 

every signal in this path has value x 

Backtrace(w, vw) {
/* Maps objective into a PI assignment */
G = w;  /* objective node */  
v = vw; /* objective value */
while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;
select an input (j) of G with value x;
G = j;           /* new objective node */
v = v♁inv;  /* new objective value */

}
/* G is a PI */    return (G, v);

}   
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Example: Backtrace

A
B

FC D

E
x

x

x

x
x x

A
B

FC D

E
0

1

1

x
x x

A
B

FC D

E
0

1

1

0
1 1

=>

=>

The first time of backtracing

The second time of backtracing

Objective to achieved: (F, 1)
PI assignments: 

(1) A = 0 fail
(2) B = 1 succeed

A
B

FC D

E
0

1

1

x
x x
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PI Assignment in PODEM

0 1

0 1

0

b

c

d

a

S

Assume that: PI’s: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0 objective fails
Reverse decision: b=1
Decision: c=0 objective fails
Reverse decision: c=1
Decision: d=0

failure

failureFailure means fault effect cannot be 
propagated to any PO under current
PI assignments 0
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Example: PODEM (1/3)

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

0

1

1

0

1 Select D-frontier G2 and 
set objective to (k,1) 

e = 0 by backtrace
Break the sensitization
across G2
Backtrack !
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Example: PODEM (2/3)

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1 Select D-frontier G3 and 
set objective to (e,1) 

No backtrace is needed
Success at G3

G3

G4

1
0

1



Unit 6 147Chang, Huang, Li, Lin, Liu

Example: PODEM (3/3)

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

D’

0

1

1

D

Select D-frontier G4 and 
set objective to (f,1) 

No backtrace is needed
Success at G4 and G2
D appears at one PO
A test is found !!

G3

G4

1
0

1
D’
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PODEM: Value Computation

Objective PI assignment Implications D-frontier Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i,k,m
d=1 d=1 d’=0

i=D’ k,m,n
k=1 e=0 e’=1

j=0
k=1
n=1 m no solutions ! backtrack

e=1 e’=0 reverse PI assignment
j=1
k=D’ m,n

l=1 f=1 f’=0
l=1
m=D’
n=D

n

d

e

f
f'

e'

d' h

i

j

k

l

m

gabc

1
0

D’

D0
1
1

1

D’

1

D

0

1

0

1
D’

1

Assignments need to be
reversed during backtracking



Decision Tree in PODEM
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a

b

c

d

e

0

0

1

1

1

f

1

fail

success

• Decision node: the PI selected through backtrace for value assignment
• Branch: the value assignment to the selected PI
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Terminating Conditions

․ D-algorithm
⎯ Success: 

(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty

⎯ Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

․ PODEM
⎯ Success:

Fault effect seen at an output
⎯ Failure:

Every PI assignment leads to failure, in which D-frontier is 
empty while fault has been activated
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PODEM: Recursive Algorithm
PODEM () /* using depth-first-search */

begin
If(error at PO) return(SUCCESS);

If(test not possible) return(FAILURE);

(k, vk) = Objective(); /* choose a line to be justified */

(j, vj) = Backtrace(k, vk); /* choose the PI to be assigned */

Imply (j, vj); /* make a decision */

If ( PODEM()==SUCCESS ) return (SUCCESS);

Imply (j, vj’); /* reverse decision */

If ( PODEM()==SUCCESS ) return(SUCCESS);

Imply (j, x);

Return (FAILURE);

end

What PI to assign ?

j=vj j=vj’

Recursive-call Recursive-call
If necessary
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Overview of PODEM

․PODEM 

⎯ examines all possible input patterns implicitly but 
exhaustively (branch-and-bound) for finding a test

⎯ It is complete like D-algorithm (I.e., will find one if a test 
exists)

․Other Key Features
⎯ No J-frontier, since there are no values that require 

justification
⎯ No consistency check, as conflicts can never occur
⎯ No backward implication, because values are propagated 

only forward
⎯ Backtracking is implicitly done by simulation rather than by 

an explicit and time-consuming save/restore process
⎯ Experimental results show that PODEM is generally faster

than the D-algorithm
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The Selection Strategy in PODEM

․In Objective() and Backtrace()
⎯ Selections are done arbitrarily in original PODEM
⎯ The algorithm will be more efficient if certain guidance used in

the selections of objective node and backtrace path
․Selection Principle

⎯ Principle 1: Among several unsolved problems
Attack the hardest one

Ex: to justify a ‘1’ at an AND-gate output
⎯ Principle 2: Among several solutions for solving a problem

Try the easiest one
Ex: to justify a ‘1’ at OR-gate output

1

1
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Controllability As Guidance
․Controllability of a signal w

⎯ CY1(w): the probability that line w has value 1.
⎯ CY0(w): the probability that line w has value 0.
⎯ Example: 

f = ab
Assume CY1(a)=CY0(a)=CY1(b)=CY0(b)=0.5 
CY1(f)=CY1(a)xCY1(b)=0.25, 
CY0(f)=CY0(a)+CY0(b)-CY0(a)xCY0(b)=0.75 

․Example of Smart Backtracing
⎯ Objective (c, 1) choose path c a for backtracing
⎯ Objective (c, 0) choose path c a for backtracing

CY1(a) = 0.33
CY0(a) = 0.67 a c

bCY1(b) = 0.5
CY0(b) = 0.5
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Testability Analysis

․Applications
⎯ To give an early warning about the testing problems that lie 

ahead
⎯ To provide guidance in ATPG

․Complexity
⎯ Should be simpler than ATPG and fault simulation, I.e., need 

to be linear or almost linear in terms of circuit size

․Topology analysis
⎯ Only the structure of the circuit is analyzed
⎯ No test vectors are involved
⎯ Only approximate, reconvergent fanouts cause inaccuracy



SCOAP
(Sandia Controllability/Observability Analysis Program)
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․Computes six numbers for each node N
⎯ CC0(N) and CC1(N)

Combinational 0 and 1 controllability of a node N
⎯ SC0(N) and SC1(N)

Sequential 0 and 1 controllability of a node N
⎯ CO(N)

Combinational observability
⎯ SO(N)

Sequential observability
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General Characteristic of Controllability and 
Observability

Controllability calculation: sweeping the circuit from PI to PO
Observability calculation: sweeping the circuit from PO to PI

Boundary conditions:
(1) For PI’s: CC0 = CC1 = 1  and SC0 = SC1 = 0
(2) For PO’s: CO = SO = 0
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Controllability Measures
⎯ CC0(N) and CC1(N)

The number of combinational nodes that must be 
assigned values to justify a 0 or 1 at node N

⎯ SC0(N) and SC1(N)

The number of sequential nodes that must be assigned 
values to justify a 0 or 1 at node N

x1

x2
Y

CC0(Y) = min [CC0(x1) , CC0(x2) ] + 1
CC1(Y) = CC1(x1) + CC1(x2) + 1
SC0(Y) = min [SC0(x1) , SC0(x2) ]
SC1(Y) = SC1(x1) + SC1(x2)
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Controllability Measure (con’t)

⎯ CC0(N) and CC1(N)

The number of combinational nodes that must be 
assigned values to justify a 0 or 1 at node N

⎯ SC0(N) and SC1(N)

The number of sequential nodes that must be assigned 
values to justify a 0 or 1 at node N

x1
x2 Y
x3

CC0(Y) = CC0(x1) + CC0(x2) + CC0(x3) + 1
CC1(Y) = min [ CC1(x1), CC1(x2), CC1(x3) ] + 1
SC0(Y) = SC0(x1) + SC0(x2) + SC0(x3) 
SC1(Y) = min [ SC1(x1) , SC1(x2) , SC1(x3) ]
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Observability Measure

– CO(N) and SO(N)

• The observability of a node N is a function of the 
output observability and of the cost of holding all 
other inputs at non-controlling values

x1
x2 Y
x3

CO(x1) = CO(Y) + CC0(x2) + CC0(x3) + 1
SO(x1) = SO(Y) + SC0(x2) + SC0(x3)
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PODEM: Example 2 (1/3)

Initial objective=(G5,1).
G5 is an AND gate Choose the hardest-1 

Current objective=(G1,1). 
G1 is an AND gate Choose the hardest-1 

Arbitrarily, Current objective=(A,1). A is a PI Implication G3=0.

A
B

C
G6

CY1=0.25

CY1=0.656

G5

G7

G1

G2

G3

G4

1/01

0



PODEM: Example 2 (2/3)
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The initial objective satisfied? No! Current objective=(G5,1).
G5 is an AND gate Choose the hardest-1 Current objective=(G1,1). 
G1 is an AND gate Choose the hardest-1 

Arbitrarily, Current objective=(B,1). B is a PI Implication G1=1, G6=0.

A
B

C
G6

CY1=0.25

CY1=0.656

G5

G7

G1

G2

G3

G4

1/01

0
0

1

1

0



Unit 6 Chang, Huang, Li, Lin, Liu

PODEM: Example 2 (3/3)

The initial objective satisfied? No! Current objective=(G5,1).
The value of G1 is known Current objective=(G4,0). 
The value of G3 is known Current objective=(G2,0).
A, B is known Current objective=(C,0).
C is a PI Implication G2=0, G4=0, G5=D, G7=D.

A
B

C
G6

CY1=0.25

CY1=0.656

G5

G7

G1

G2

G3

G4

1/0=D1

0

1
1

0

D

No backtracking !!

0
0

0

1



If The Backtracing Is Not Guided (1/3)
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Initial objective=(G5,1).
Choose path G5-G4-G2-A A=0.
Implication for A=0 G1=0, G5=0 Backtracking to A=1.
Implication for A=1 G3=0.

A
B

C
G6

G5

G7

G1

G2

G3

G4

1

0

1/0



If The Backtracing Is Not Guided (2/3)
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The initial objective satisfied? No! Current objective=(G5,1).
Choose path G5-G4-G2-B B=0.
Implication for B=0 G1=0, G5=0 Backtracking to B=1.
Implication for B=1 G1=1, G6=0.

A
B

C
G6

G5

G7

G1

G2

G3

G4

1

0

1

1

0

1/0



If The Backtracing Is Not Guided (3/3)
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The initial objective satisfied? No! Current objective=(G5,1).
Choose path G5-G4-G2-C C=0.
Implication for C=0 G2=0, G4=0, G5=D, G7=D.

0

A
B

C
G6

G5

G7

G1

G2

G3

G4

1
1

1

0

1/0=D

D

A

B

C

F

S

F

0 1

10

0

0
0

0

1

Two times of  backtracking !!
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Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis 
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]
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FAN (Fanout Oriented) Algorithm

․FAN
⎯ Introduces two major extensions to PODEM’s backtracing 

algorithm

․1st extension
⎯ Rather than stopping at PI’s, backtracing in FAN may stop at 

an internal lines

․2nd extension
⎯ FAN uses multiple backtrace procedure, which attempts to 

satisfy a set of objectives simultaneously
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Headlines and Bound Lines

․Bound line
⎯ A line reachable from at least one stem

․Free line
⎯ A line that is NOT bound line

․Head line
⎯ A free line that directly feeds a bound line

Bound lines

Head lines K

L

HE
MF

A
JB

C
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Decision Tree (PODEM v.s. FAN)

Bound lines

Head lines

A

B

C

H

J

E
F

K

L

M

A

B

CS

S

1

1

10

0

All makes J = 0

Assume that:
Objective is (J, 0)

J is a head line
Backtrace stops at J
Avoid unnecessary search

J

S

0 1

PODEM FAN
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Why Stops at Head Lines ?

․Head lines are mutually independent
⎯ Hence, for each given value combination at head lines, there 

always exists an input combination to realize it.

․FAN has two-steps
⎯ Step 1: PODEM using headlines as pseudo-PI’s
⎯ Step 2: Generate real input pattern to realize the value 

combination at head lines.
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Why Multiple Backtrace ?

․Drawback of Single Backtrace
⎯ A PI assignment satisfying one objective may preclude 

achieving another one, and this leads to backtracking

․Multiple Backtrace
⎯ Starts from a set of objectives (Current_objectives)
⎯ Maps these multiple objectives into a head-line assignment k=vk

that is likely to
Contribute to the achievement of a subset of the objectives
Or show that some subset of the original objectives cannot 
be simultaneously achieved

1

0
0

1

Multiple objectives
May have conflicting
Requirements at a stem
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Example: Multiple Backtrace

H

GE1
EA

B E2

A2

A1

C

0

1

1

1

1
1

1

0

Consistent stem

conflicting stem 1I

0
J

Current_objectives Processed entry Stem_objectives Head_objectives

(I,1)
(J,0)
(G,0)
(H,1)
(A1,1)
(E1,1)
(E2,1)
(C,1)

(E,1)
(A2,0)

(I,1), (J,0)
(J,0), (G,0)
(G,0), (H,1)
(H,1), (A1,1), (E1,1)
(A1,1), (E1,1), (E2,1), (C,1)
(E1,1), (E2,1), (C,1)
(E2,1), (C,1)
(C,1)
Empty restart from (E,1)
(E,1)
(A2,0)
empty

A
A,E
A,E
A,E
A
A
A
A

C
C
C
C
C
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Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability
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Why DFT ?

․Direct Testing is Way Too Difficult !
⎯ Large number of FFs
⎯ Embedded memory blocks
⎯ Embedded analog blocks

• Design For Testability is inevitable
• Like death and tax



Unit 6 177Chang, Huang, Li, Lin, Liu

Design For Testability

․Definition
⎯ Design For Testability (DFT) refers to those design 

techniques that make test generation and testing cost-
effective

․DFT Methods
⎯ Ad-hoc methods
⎯ Scan, full and partial
⎯ Built-In Self-Test (BIST)
⎯ Boundary scan

․Cost of DFT
⎯ Pin count, area, performance, design-time, test-time
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Important Factors

․Controllability
⎯ Measure the ease of controlling a line

․Observability
⎯ Measure the ease of observing a line at PO

․Predictability
⎯ Measure the ease of predicting output values

․DFT deals with ways of improving
⎯ Controllability
⎯ Observability
⎯ Predictability
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Test Point Insertion
․Employ test points to enhance

⎯ Controllability
⎯ Observability

․CP: Control Points
⎯ Primary inputs used to enhance controllability

․OP: Observability Points
⎯ Primary outputs used to enhance observability

0
POAdd 0-CP

Add OP
1

Add 1-CP
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0/1 Injection Circuitry

․Normal operation
When CP_enable = 0

․Inject 0
⎯ Set CP_enable = 1 and CP = 0

․Inject 1
⎯ Set CP_enable = 1 and CP = 1

C1 C2MUX
0

1

Inserted circuit for controlling line w

w

CP

CP_enable
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Control Point Selection

․Impact
⎯ The controllability of the fanout-cone of the added point is 

improved

․Common selections
⎯ Control, address, and data buses
⎯ Enable / Hold inputs
⎯ Enable and read/write inputs to memory
⎯ Clock and preset/clear signals of flip-flops
⎯ Data select inputs to multiplexers and demultiplexers
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Example: Use CP to Fix DFT Rule Violation

․DFT rule violations
⎯ The set/clear signal of a flip-flop is generated by other logic, 

instead of directly controlled by an input pin
⎯ Gated clock signals

․Violation Fix
⎯ Add a control point to the set/clear signal or clock signals

Q

logic

clear

DQ

logic

clear

D

CK
Violation

fix CK

CLEAR
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Example: Fixing Gated Clock

․Gated Clocks
⎯ Advantage: power dissipation of a logic design can thus reduced
⎯ Drawback:  the design’s testability is also reduced

․Testability Fix

Violation
fix

QD

CK_enable

CK

MUX

CK
CP_enable

QD

Gated
CK

CK

CK_enable



Unit 6 184Chang, Huang, Li, Lin, Liu

Example: Fixing Tri-State Bus Contention

․Bus Contention
⎯ A stuck-at-fault at the tri-state enable line may cause 

bus contention – multiple active drivers connect to the 
bus simultaneously

․Fix
⎯ Add CP’s to turn off tri-state devices during testing

Enable line stuck-at-1 x

0 0

1 1

Unpredicted voltage on bus may
cause fault to go unnoticed

Enable line active
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Observation Point Selection

․Impact
⎯ The observability of the transitive fanins of the added point is 

improved

․Common choice
⎯ Stem lines having high fanout
⎯ Global feedback paths
⎯ Redundant signal lines
⎯ Output of logic devices having many inputs

MUX, XOR trees
⎯ Output from state devices
⎯ Address, control and data buses
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Problems of CP & OP

․Large number of I/O pins
⎯ Add MUX’s to reduce the number of I/O pins
⎯ Serially shift CP values by shift-registers

․Larger test time

X Z

X’ Z’Shift-register R1

control Observe

Shift-register R2
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What Is Scan ?

․Objective
⎯ To provide controllability and observability at internal 

state variables for testing
․Method

⎯ Add test mode control signal(s) to circuit
⎯ Connect flip-flops to form shift registers in test mode
⎯ Make inputs/outputs of the flip-flops in the shift register 

controllable and observable
․Types

⎯ Internal scan
Full scan, Partial scan, Random access

⎯ Boundary scan
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The Scan Concept

Combinational
Logic

FF

FF

FF

Mode Switch
(normal or test)

Scan In

Scan Out
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A Logic Design Before Scan Insertion

D Q

input
pins

clock

output
pins

D Q D Q

Combinational Logic

Sequential ATPG is extremely difficult: 
due to the lack of controllability and observability at flip-flops.



Example: A 3-stage Counter
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11

D Q

input
pins

clock

output
pins

11

D Q
11

D Q

Combinational LogicCombinational Logic

q1 q2
q3

× g stuck-at-0 

q1
q2
q3

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1),
for detecting the target fault g stuck-at-0 fault

(220 cycles for a 20-stage counter !)
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A Logic Design After Scan Insertion

11
D Q

input
pins

clock

output
pins

11
D Q

11
D Q

Combinational Logic

scan-input scan-output

M
U

X

M
U

X

M
U

X

scan-enable

× g stuck-at-0 

q1
q2
q3

q1 q2
q3

Scan Chain provides an easy access to flip-flops
Pattern Generation is much easier !! 



Procedure Of Applying Test Patterns
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․Notation
⎯ Test vectors T = < ti

I, ti
F > i= 1, 2, …

⎯ Output Response R = < ri
O, ri

F > i= 1, 2, …
․Test Application

⎯ (1) i = 1;
⎯ (2) Scan-in t1

F /* scan-in the first state vector for PPI’s */
⎯ (3) Apply ti

I /* apply current input vector at PI’s */
⎯ (4) Observe  ri

O /* observe current output response at PO’s */
⎯ (5) Parallelly load register /* load-in the next vector at PPO’s */

(I.e., set Mode to ‘Normal’)
⎯ (6) Scan-out ri

F while scanning-in ti+1
F /* overlap scan-in and scan-out */

⎯ (7) i = i+1; Goto step (3)

PI’s

PPI’s PPO’s

PO’s
Comb.
portion
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Testing Scan Chain ?

․Common practice
⎯ Scan chain is often first tested before testing core logic by 

pumping-in and pumping-out random vectors
․Procedure

⎯ (1) i = 0;
⎯ (2) Scan-in 1st random vector to flip-flops
⎯ (3) Scan-out (i)th random vector while scanning-in (i+1)th

vector for flip-flops. 
The (i)th scan-out vector should be identical to (i)th vector 
scanned in earlier, otherwise scan-chain is mal-functioning

⎯ (4) If necessary i = i+1, goto step (3)
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MUXed Scan Flip-Flop
⎯ Only D-type master-slave flip-flops are used
⎯ One extra primary input pin available for test
⎯ All flip-flop clocks controlled from primary inputs

No gated clock allowed
⎯ Clocks must not feed data inputs of flip-flops
⎯ Most popularly supported in standard cell libraries

Normal
Master-
Slave

Flip-flop

D

SC (normal / test)

SI (scan input)

CLK
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LSSD Scan flip-flop (1977 IBM)

․LSSD: Level Sensitive Scan Design
⎯ Less performance degradation than MUXed scan FF

․Clocking
⎯ Normal operation: non-overlapping CK1=1 CK3=1
⎯ Scan operation: non-overlapping CK2=1 CK3=1

D

CK1

SD

CK2
CK3

Q1 Q2
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Symbol of LSSD Scan FF

Latch 1

1D
2D

CK1
CK2

QD
SI
C
A

D

CK

Q

Latch 2

Q1 (normal level-sensitive 
latch output)

SO

B
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Scan Rule Violation Example

Q2Q1

D
Flip
Flop

D
Flip
Flop

D1 D2

Rule violation:
Flip-flops cannot form a shift-register

Clock

D
Flip
Flop

D
Flip
Flop

Clock

D1

D2

Q2

All FFs are triggered by the same clock edge
Set or reset signals are not controlled by any internal signals

A workaround
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Some Problems With Full Scan

․Problems
⎯ Area overhead
⎯ Possible performance degradation
⎯ High test application time
⎯ Power dissipation

․Features of Commercial Tools
⎯ Scan-rule violation check (e.g., DFT rule check)
⎯ Scan insertion (convert a FF to its scan version)
⎯ ATPG (both combinational and sequential)
⎯ Scan chain reordering after layout

Major Commercial Test Tool Companies
Synopsys

Mentor-Graphics
SynTest (華騰科技)

LogicVision
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Performance Overhead

․The increase of delay along the normal data paths 
include:

⎯ Extra gate delay due to the multiplexer
⎯ Extra delay due to the capacitive loading of the scan-wiring

at each flip-flop’s output

․Timing-driven partial scan
⎯ Try to avoid scan flip-flops that belong to the timing critical 

paths
⎯ The flip-flop selection algorithm for partial scan can take this 

into consideration to reduce the timing impact of scan to the 
design
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Scan-Chain Reordering

⎯ Scan-chain order is often decided at gate-level without 
knowing the cell placement

⎯ Scan-chain consumes a lot of routing resources, and could 
be minimized by re-ordering the flip-flops in the chain after 
layout is done

Scan-Out

Scan-InScan-In

Scan-Out

Scan cell

A better scan-chain orderLayout of a cell-based design
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Overhead of Scan Design

⎯ No. of CMOS gates = 2000
⎯ Fraction of flip-flops = 0.478
⎯ Fraction of normal routing = 0.471

Scan 
implementation

Predicted 
overhead

Actual area 
overhead

Normalized operating 
frequency

None 0 0 1.0

Hierarchical 14.05% 16.93% 0.87

Optimized 14.05% 11.9% 0.91
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Random Access Scan

․Comparison with Scan-Chain
⎯ More flexible – any FF can be accessed in constant time
⎯ Test time could be reduced
⎯ More hardware and routing overhead

QD
MUX

Test
data

Normal
data

X-enable

Y-enable

1

0

X decoder

Y 
de

co
de

r

Y address

X address

FF

FF
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Parameters

․link_library
⎯ The ASIC vendor library where you design is initially 

represented

․target_library
⎯ Usually the same as your link_library, unless you are 

translating a design between technologies

․test_default_scan_style
⎯ multiplexed_flip_flop, clocked_scan, aux_clock_lssd
⎯ Note that: the cell library incorporated should support these 

scan cells
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Typical Flat Design Flow

HDL

Set constraints

Set scan style

Run test-ready compile

Check constraints

Check design rules

Set scan configuration

Build scan chains

Adjust
constraints

or
compile
strategy

not met

fix problems

DESIGN COMPILER
DC EXPERT+

Optimize netlist
with scan

Check constraints

adjust
constraints

or try
incremental

compile

Save testable design

Create and format
test patterns

Compacted high fault
coverage test vectors

TEST
COMPILER
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Synthesizing The Design

․Read in HDL code
dc_shell > read –format verilog design_name.v

․Set target_library
dc_shell > target_library = asic_vendor.db

․Constraint the design
dc_shell > max_area 1000
dc_shell > create_clock clock_port –period 20 -waveform {10,15}

․Declare the test methodology
dc_shell > set_scan_configuration –methodology partial_scan

․Select scan style
dc_shell > test_default_scan_style = multiplexed_flip_flop

․Compilation
dc_shell > compile -scan
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Synthesizing The Design (con’t)

․Check constraints
dc_shell > report_constraint –all_violators

․Save design
dc_shell > write –format db –out design_test_ready.db

․Check design rules
dc_shell > check_test



Building Scan Chains
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․Declare Scan Enable Signal
dc_shell > set_scan_signal test_scan_enable –port SE
dc_shell > set_drive 2 SE

․Set Min. Fault Coverage If Partial Scan
dc_shell > set_min_fault_coverage 95

․No Scan Replacement
dc_shell > set_scan_configuration –replace false

․Build the Scan Chains
dc_shell > insert_scan

․Check the Design Rules Again
dc_shell > check_test
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Generating Test Patterns

․Generate Test Report
dc_shell > report_test –scan_path

․Write out Scan Design
dc_shell > write –format db –hierarchy –out design.db

․Generate The Test
dc_shell > create_test_patterns –compact_effort high

․Write Out Test Patterns
dc_shell > write_test –out test_vectors –format WGL

․WGL (Waveform Generation Language)
⎯ Is a format supported by Summit Design Software
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Partial Scan

․Basic idea
⎯ Select a subset of flip-flops for scan
⎯ Lower overhead (area and speed)
⎯ Relaxed design rules

․Cycle-breaking technique
⎯ Cheng & Agrawal, IEEE Trans. On Computers, April 1990
⎯ Select scan flip-flops to simplify sequential ATPG
⎯ Overhead is about 25% off than full scan

․Timing-driven partial scan
⎯ Jou & Cheng, ICCAD, Nov. 1991
⎯ Allow optimization of area, timing, and testability simultaneously
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Full Scan vs. Partial Scan

scan design

full scan partial scan

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF

test time

hardware overhead

fault coverage

ease-of-use

longer

more

~100%

easier

shorter

less

unpredictable

harder
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Partial Scan Design

PI PO

1 2

3

4 5 6

PPI PPO

Scan In Scan Out

Scan In

Scan OutScan Flip-Flops: {2, 5}
Non-Scan FFs: {1, 3, 4, 6}
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Cycle Breaking Algorithm

․Algorithm 1
⎯ Select nodes in a digraph G=(V,E) to cut all cycles of length 

greater than one

․Step 1
⎯ Find all the non-trivial SCCs Gi=(Vi, Ei), where 1≦i≦r
⎯ If no non-trivial SCC stop

․Step 2
⎯ (1) Delete a node v using one of the heuristics H1, H2, H3 (to 

be discussed later)
⎯ (2) Delete node v from Vi and delete all incoming and 

outgoing edges of v
⎯ (3) Let the resulting graph be Gi’=(Vi’, Ei’)

Execute Algorithm 1 recursively with Gi’ as input graph



Unit 6 213Chang, Huang, Li, Lin, Liu

Reducing the Length of Consecutive Self-
Loop Paths

․Definition
⎯ A graph has a consecutive self-loop path of length K if there 

exists a directed path of exactly K vertices, each having a 
self-loop

․Observation
⎯ Circuits with consecutive self-loop paths, such as counters, 

need longer test generation time

․Solution
⎯ Reduce the length of consecutive self-loop paths by 

scanning some of the flip-flops with self-loops
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Trade-Off of Area Overhead v.s. Test 
Generation Effort

CPU
Time

Area Overhead

Non-Scan Only Self
Loops Remain

Feedback
Free Circuit

Full-Scan

Area 
overhead

Test
Generation
Complexity

BALLAST
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Conclusions

․Testing
⎯ Conducted after manufacturing
⎯ Must be considered during the design process

․Major Fault Models
⎯ Stuck-At, Bridging, Stuck-Open, Delay Fault, …

․Major Tools Needed
⎯ Design-For-Testability 

By Scan Chain Insertion or Built-In Self-Test
⎯ Fault Simulation
⎯ Automatic Test Pattern Generation

․Other Applications in CAD
⎯ ATPG is a way of Boolean Reasoning, applicable to may 

logic-domain CAD problems
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