
Unit 6: Testing

Unit 6 1Chang, Huang, Li, Lin, Liu

․Course contents
–Fault Modeling
–Fault Simulation
–Test Generation
–Design For Testability

․Reading
⎯ Supplementary readings

Unit 6 2Chang, Huang, Li, Lin, Liu

Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability

Unit 6 3Chang, Huang, Li, Lin, Liu

Chip Design & Manufacturing Flow

IC Fabrication
Idea

Wafer
(hundreds of dies)

Architecture Design

Sawing & Packaging

Block
diagram Final chips

Circuit & Layout Design Final Testing

Layout

customers
Good chipsBad chips

Design Verification, Testing and Diagnosis

Unit 6 Chang, Huang, Li, Lin, Liu

․Design Verification:
⎯ Ascertain the design perform its specified behavior

․Testing:
⎯ Exercise the system and analyze the response to ascertain

whether it behaves correctly after manufacturing

․Diagnosis:
⎯ To locate the cause(s) of misbehavior after the incorrect

behavior is detected

Unit 6 5Chang, Huang, Li, Lin, Liu

Manufacturing Defects

․Processing Faults
⎯ missing contact windows
⎯ parasitic transistors
⎯ oxide breakdown

․Material Defects
⎯ bulk defects (cracks, crystal imperfections)
⎯ surface impurities

․Time-Dependent Failures
⎯ dielectric breakdown
⎯ electro-migration

․Packaging Failures
⎯ contact degradation
⎯ seal leaks

Faults, Errors and Failures

Unit 6 Chang, Huang, Li, Lin, Liu

․Fault:
⎯ A physical defect within a circuit or a system
⎯ May or may not cause a system failure

․Error:
⎯ Manifestation of a fault that results in incorrect circuit (system)
outputs or states
⎯ Caused by faults

․Failure:
⎯ Deviation of a circuit or system from its specified behavior
⎯ Fails to do what it should do
⎯ Caused by an error

․Fault ---> Error ---> Failure

Unit 6 7Chang, Huang, Li, Lin, Liu

Scenario of Manufacturing Test

TEST VECTORS

Manufactured
Circuits

Comparator

CIRCUIT RESPONSE

PASS/FAILCORRECT
RESPONSES

Unit 6 8Chang, Huang, Li, Lin, Liu

Tester: Advantest T6682

Unit 6 9Chang, Huang, Li, Lin, Liu

Purpose of Testing

․Verify Manufacturing of Circuit
⎯ Improve System Reliability
⎯ Diminish System Cost

․Cost of repair
⎯ goes up by an order of magnitude each step away from the

fab. line

0.5

5

50

500

IC
Test

Board
Test

System
Test

Warranty
Repair

10

1

100

1000

Cost
per

fault
(Dollars)

IC Test Board
Test

System
Test

Warranty
Repair

Cost
Per

Fault
(dollars) 1

10

1000

100

B. Davis, “The Economics of Automatic Testing” McGraw-Hill 1982

Unit 6 10Chang, Huang, Li, Lin, Liu

Testing and Quality

ASIC
Fabrication TestingYield:

Fraction of
Good parts

Rejects

Shipped Parts

Quality:
Defective parts
Per Million (DPM)

Quality of shipped part is a function of
yield Y and the test (fault) coverage T.

Unit 6 11Chang, Huang, Li, Lin, Liu

Fault Coverage

․Fault Coverage T
⎯ Is the measure of the ability of a set of tests to detect a given

class of faults that may occur on the device under test (DUT)

T =
No. of detected faults

No. of all possible faults

Unit 6 12Chang, Huang, Li, Lin, Liu

Defect Level

․Defect Level
⎯ Is the fraction of the shipped parts that are defective

DL = 1 – Y(1-T)

Y: yield
T: fault coverage

Unit 6 13Chang, Huang, Li, Lin, Liu

Defect Level v.s. Fault Coverage

Defect Level

Fault Coverage (%)
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0 Y = 0.01Y = 0.1

Y = 0.25

Y = 0.5

Y = 0.75
Y = 0.9

(Williams IBM 1980)

High fault coverage Low defect level

Unit 6 14Chang, Huang, Li, Lin, Liu

DPM v.s. Yield and Coverage

Yield Fault Coverage DPM

50% 90% 67,000
75% 90% 28,000
90% 90% 10,000
95% 90% 5,000
99% 90% 1,000

90% 90%
95%
99%
99.9%

10,000
5,000
1,000

100

90%
90%
90%

Unit 6 15Chang, Huang, Li, Lin, Liu

Why Testing Is Difficult ?

․Test application time can be exploded for exhaustive
testing of VLSI

⎯ For a combinational circuit with 50 inputs, we need
250 = 1.126x1015 test patterns.

⎯ Assume one test per 10-7sec, it takes 1.125x108sec = 3.57yrs.
to test such a circuit.

⎯ Test generation for sequential circuits are even more difficult
due to the lack of controllability and observability at flip-flops
(latches)

․Functional testing
⎯ may NOT be able to detect the physical faults

Unit 6 16Chang, Huang, Li, Lin, Liu

The Infamous Design/Test Wall

30 years of experience proves that
test after design does not work!

Functionally correct!
We're done!

Oh no!
What does

this chip do?!

Design Engineering Test Engineering

Unit 6 17Chang, Huang, Li, Lin, Liu

Old Design & Test Flow

spec.

design flow

layout
test

patterns

manufacturing

Low-quality test patterns
high defect level

Unit 6 18Chang, Huang, Li, Lin, Liu

New Design and Test Flow

spec.

Design flow

layout
better test
patterns

manufacturing

Introduces circuitry to
make design testable

DFT flow

good
chips

Unit 6 19Chang, Huang, Li, Lin, Liu

Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability

Functional v.s. Structural Testing

Unit 6 Chang, Huang, Li, Lin, Liu

․I/O function tests inadequate for manufacturing
⎯ Functionality vs. component & interconnection testing

․Exhaustive testing is Prohibitively expensive

Why Fault Model ?

Unit 6 Chang, Huang, Li, Lin, Liu

․Fault model identifies target faults
⎯ Model faults most likely to occur

․Fault model limits the scope of test generation
⎯ Create tests only for the modeled faults

․Fault model makes effectiveness measurable by
experiments

⎯ Fault coverage can be computed for specific test patterns to
reflect its effectiveness

․Fault model makes analysis possible
⎯ Associate specific defects with specific test patterns

Unit 6 22Chang, Huang, Li, Lin, Liu

Fault Modeling
․Fault Modeling

⎯ Model the effects of physical defects on the logic function and
timing

․Physical Defects
⎯ Silicon Defects
⎯ Photolithographic Defects
⎯ Mask Contamination
⎯ Process Variation
⎯ Defective Oxides

Unit 6 23Chang, Huang, Li, Lin, Liu

Fault Modeling (cont’d)

․Electrical Effects
⎯ Shorts (Bridging Faults)
⎯ Opens
⎯ Transistor Stuck-On/Open
⎯ Resistive Shorts/Opens
⎯ Change in Threshold Voltages

․Logical Effects
⎯ Logical Stuck-at 0/1
⎯ Slower Transition (Delay Faults)
⎯ AND-bridging, OR-bridging

Unit 6 24Chang, Huang, Li, Lin, Liu

Fault Types Commonly Used To Guide Test
Generation

․Stuck-at Faults
․Bridging Faults
․Transistor Stuck-On/Open Faults
․Delay Faults
․IDDQ Faults
․State Transition Faults (for FSM)
․Memory Faults
․PLA Faults

Unit 6 25Chang, Huang, Li, Lin, Liu

Single Stuck-At Fault

0

1

1

1

0

1/0

1/0

stuck-at-0

True Response
Test Vector

Faulty Response

Assumptions:
• Only One line is faulty
• Faulty line permanently set to 0 or 1
• Fault can be at an input or output of a gate

Multiple Stuck-At Faults

Unit 6 Chang, Huang, Li, Lin, Liu

․Several stuck-at faults occur at the same time
⎯ Important in high density circuits

․For a circuit with k lines
⎯ there are 2k single stuck-at faults
⎯ there are 3k-1 multiple stuck-at faults

A line could be stuck-at-0, stuck-at-1, or fault-free
One out of 3k resulting circuits is fault-free

Unit 6 27Chang, Huang, Li, Lin, Liu

Why Single Stuck-At Fault Model

․Complexity is greatly reduced
⎯ Many different physical defects may be modeled by the same

logical single stuck-at fault

․Stuck-at fault is technology independent
⎯ Can be applied to TTL, ECL, CMOS, BiCMOS etc.

․Design style independent
⎯ Gate array, standard cell, custom VLSI

․Detection capability of un-modeled defects
⎯ Empirically many defects accidentally detected by test derived

based on single stuck-at fault

․Cover a large percentage of multiple stuck-at faults

Multiple Faults

Unit 6 Chang, Huang, Li, Lin, Liu

․Multiple stuck-fault coverage by single-fault tests of
combinational circuit:

⎯ 4-bit ALU (Hughes & McCluskey, ITC-84)
All double and most triple-faults covered.

⎯ Large circuits (Jacob & Biswas, ITC-87)
Almost 100% multiple faults covered for circuits with 3 or more
outputs.

․No results available for sequential circuits.

Unit 6 Chang, Huang, Li, Lin, Liu

Bridging Faults

․Two or more normally distinct points (lines) are shorted
together

⎯ Logic effect depends on technology
⎯ Wired-AND for TTL

⎯ Wired-OR for ECL

⎯ CMOS ?

A

B

f

g

A

B

f

g

A

B

f

g

A

B

f

g

Unit 6 30Chang, Huang, Li, Lin, Liu

Bridging Faults For CMOS Logic

․The result
⎯ could be AND-bridging or OR-bridging
⎯ depends on the the inputs

VDD

A

B A

VDD

GND

f

C

gbridging

E.g., (A=B=0) and (C=1, D=0)
(f and g) are AND-bridging fault

pull to VDD

pull to zero
C D

GND

Unit 6 31Chang, Huang, Li, Lin, Liu

CMOS Transistor Stuck-On

․Transistor Stuck-On
⎯ May cause ambiguous logic level
⎯ Depends on the relative impedances of the pull-up and pull-

down networks

․When Input Is Low
⎯ Both P and N transistors are conducting, causing increased

quiescent current, called IDDQ fault

0 stuck-on

?

IDDQVDD
Example:

N transistor
is always ON

GND

Unit 6 32Chang, Huang, Li, Lin, Liu

CMOS Transistor Stuck-Open (I)

․Transistor stuck-open
⎯ May cause the output to be floating
⎯ The faulty becomes exhibits sequential behavior

0

stuck-open

? = previous state

Unit 6 33Chang, Huang, Li, Lin, Liu

CMOS Transistor Stuck-Open (II)

․The circuit may turn into a sequential one
․Stuck-open requires two vector tests

0 1

stuck-open

(1 0) / (0 0)Initialization
vector

Should be 1

Unit 6 34Chang, Huang, Li, Lin, Liu

Fault Coverage in a CMOS Chip

0

20

40

60

80

100

1000 2000 3000

stuck and open faults

stuck faults only

C
ov

er
ag

e
(%

)

Test Vectors

Unit 6 35Chang, Huang, Li, Lin, Liu

Summary of Stuck-Open Faults

․First Report:
⎯ Wadsack, Bell System Technology, J., 1978

․Recent Results
⎯ Woodhall et. al, ITC-87 (1-micron CMOS chips)
⎯ 4552 chips passed parametric test
⎯ 1255 chips (27.57%) failed tests for stuck-at faults
⎯ 44 chips (0.97%) failed tests for stuck-open faults
⎯ 4 chips with stuck-open faults passed tests for stuck-at faults

․Conclusion
⎯ Stuck-at faults are about 20 times more frequent than stuck-open

faults
⎯ About 91% of chips with stuck-open faults may also have stuck-

at faults
⎯ Faulty chips escaping tests for stuck-at faults = 0.121%

Memory Faults

Unit 6 Chang, Huang, Li, Lin, Liu

․Parametric Faults
⎯ Output Levels
⎯ Power Consumption
⎯ Noise Margin
⎯ Data Retention Time

․Functional Faults
⎯ Stuck Faults in Address Register, Data Register,

and Address Decoder
⎯ Cell Stuck Faults
⎯ Adjacent Cell Coupling Faults
⎯ Pattern-Sensitive Faults

Unit 6 37Chang, Huang, Li, Lin, Liu

Delay Testing

․Chip with timing defects
⎯ may pass the DC stuck-fault testing, but fail when operated

at the system speed
⎯ For example, a chip may pass testing under 10 MHz

operation, but fail under 100 MHz

․Delay Fault Models
⎯ Gate-Delay Fault
⎯ Path-Delay Fault

Gate-Delay Fault

Unit 6 Chang, Huang, Li, Lin, Liu

․Slow to rise, slow to fall
⎯ x is slow to rise when channel resistance R1 is abnormally

high

VDD VDD

Cload

X
X

H ---> L

R1

Unit 6 39Chang, Huang, Li, Lin, Liu

Gate-Delay Fault (cont’d)

slow

․Test Based on Gate-Delay Fault
⎯ May not detect those delay faults that result from the

accumulation of a number of small incremental delay defects
along a path !! (Disadvantage)

Unit 6 40Chang, Huang, Li, Lin, Liu

Path-Delay Fault

․Associated with a Path (e.g. A-B-C-Z)
⎯ Whose delay exceeds the clock interval

․More complicated than gate-delay fault
⎯ Because the number of paths grows exponentially

C

B

ZA

Why Logical Fault Modeling ?

Unit 6 Chang, Huang, Li, Lin, Liu

․Fault analysis on logic rather than physical problem
⎯ Complexity is reduced

․Technology independent
⎯ Same fault model is applicable to many technologies
⎯ Testing and diagnosis methods remain valid despite changes in

technology

․Tests derived
⎯ may be used for physical faults whose effect on circuit behavior

is not completely understood or too complex to be analyzed

․Stuck-at fault is
⎯ The most popular logical fault model

Definition Of Fault Detection

Unit 6 Chang, Huang, Li, Lin, Liu

․A test (vector) t detects a fault f iff
⎯ t detects f z(t) ≠zf(t)

․Example

x
X1

X2

X3

Z1

Z2

s-a-1 Z1=X1X2 Z2=X2X3

Z1f =X1 Z2f =X2X3

The test (x1,x2,x3) = (100) detects f because
z1(100)=0 while z1f (100)=1

Fault Detection Requirement

Unit 6 Chang, Huang, Li, Lin, Liu

․A test t that detects a fault f
⎯ Activates f (or generate a fault effect) by creating different v

and vf values at the site of the fault
⎯ Propagates the error to a primary output w by making all the

lines along at least one path between the fault site and w
have different v and vf values

․Sensitized Line:
⎯ A line whose value in response to the test changes in the

presence of the fault f is said to be sensitized by the test in
the faulty circuit

․Sensitized Path:
⎯ A path composed of sensitized lines is called a sensitized

path

Unit 6 Chang, Huang, Li, Lin, Liu

Fault Sensitization

X1
X2

X3

X4

G1

G2

G3

G4

1
0

1

1

1

s-a-1
0/1

1

0/1

0/1
z

z (1011)=0 zf (1011)=1
1011 detects the fault f (G2 stuck-at 1)
v/vf : v = signal value in the fault free circuit

vf = signal value in the faulty circuit

Detectability

Unit 6 Chang, Huang, Li, Lin, Liu

․A fault f is said to be detectable
⎯ if there exists a test t that detects f ; otherwise,

f is an undetectable fault

․For an undetectable fault f
⎯ No test can simultaneously activate f and create a sensitized

path to a primary output

Undetectable Fault

Unit 6 Chang, Huang, Li, Lin, Liu

x
s-a-0

a

b

c

z

G1

can be removed !

․G1 output stuck-at-0 fault is undetectable
⎯ Undetectable faults do not change the function of the circuit
⎯ The related circuit can be deleted to simplify the circuit

Test Set

Unit 6 Chang, Huang, Li, Lin, Liu

․Complete detection test set:
⎯ A set of tests that detect any detectable faults in a class of

faults

․The quality of a test set
⎯ is measured by fault coverage

․Fault coverage:
⎯ Fraction of faults that are detected by a test set

․The fault coverage
⎯ can be determined by fault simulation
⎯ >95% is typically required for single stuck-at fault model
⎯ >99.9% in IBM

Unit 6 48Chang, Huang, Li, Lin, Liu

Typical Test Generation Flow

Select next target fault

Generate a test
for the target fault

Discard detected faults

More faults ? Done

Fault simulation

Start

(to be further discussed)

(to be further discussed)

noyes

Fault Equivalence

Unit 6 Chang, Huang, Li, Lin, Liu

․Distinguishing test
⎯ A test t distinguishes faults α and β if

․Equivalent Faults
⎯ Two faults, α & β are said to be equivalent

in a circuit , iff the function under α is equal to the function
under β for any input combination (sequence) of the circuit.

⎯ No test can distinguish between α and β
⎯ In other words, test-set(α) = test-set(β)

() ()Z t Z tα β⊕ =1

Fault Equivalence

Unit 6 Chang, Huang, Li, Lin, Liu

․AND gate:
⎯ all s-a-0 faults are equivalent

․OR gate:
⎯ all s-a-1 faults are equivalent

․NAND gate:
⎯ all the input s-a-0 faults and the output

s-a-1 faults are equivalent

․NOR gate:
⎯ all input s-a-1 faults and the output

s-a-0 faults are equivalent

․Inverter:
⎯ input s-a-1 and output s-a-0 are equivalent

input s-a-0 and output s-a-1 are equivalent

x
x

s-a-0
s-a-0

same effect

Equivalence Fault Collapsing

Unit 6 Chang, Huang, Li, Lin, Liu

․n+2 instead of 2(n+1) faults need to be considered
for n-input gates

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-1

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

s-a-0

Equivalent Fault Group

Unit 6 Chang, Huang, Li, Lin, Liu

․In a combinational circuit
⎯ Many faults may form an equivalent group
⎯ These equivalent faults can be found by sweeping the circuit

from the primary outputs to the primary inputs

s-a-1

s-a-0 s-a-1

x

x x

Three faults shown are equivalent !

Fault Dominance

Unit 6 Chang, Huang, Li, Lin, Liu

․Dominance Relation
⎯ A fault β is said to dominate another fault

α in an irredundant circuit, iff every test (sequence) for α is
also a test (sequence)
for β.

⎯ I.e., test-set(β) > test-set(α)
⎯ No need to consider fault β for fault detection

α is dominated by βTest(α) Test(β)

Fault Dominance

Unit 6 Chang, Huang, Li, Lin, Liu

․AND gate:
⎯ Output s-a-1 dominates any input s-a-1

․NAND gate:
⎯ Output s-a-0 dominates any input s-a-1

․OR gate:
⎯ Output s-a-0 dominates any input s-a-0

․NOR gate:
⎯ Output s-a-1 dominates any input s-a-0

․Dominance fault collapsing:
⎯ The reduction of the set of faults to be analyzed based

on dominance relation

x
x

s-a-1
s-a-1

Easier-to-test

harder-to-test

Stem v.s. Branch Faults

Unit 6 Chang, Huang, Li, Lin, Liu

․Detect A sa1:

․Detect C sa1:

․Hence, C sa1 dominates A sa1
․Similarly

⎯ C sa1 dominates B sa1
⎯ C sa0 dominates A sa0
⎯ C sa0 dominates B sa0

․In general, there might be no equivalence or dominance relations
between stem and branch faults

z t()⊕ zf t() = CD⊕CE()⊕ D⊕CE()=D⊕CD=1

⇒ C = 0, D=1()
z t()⊕ zf t() = CD⊕CE()⊕ D⊕E()=1

⇒ C = 0, D=1() or C = 0, E=1()

A

B

C

D

E
x

x

x
C: stem of a multiple fanout
A & B: branches

Unit 6 56Chang, Huang, Li, Lin, Liu

Analysis of a Single Gate

AB C A
sa1

B
sa1

C
sa1

A
sa0

B
sa0

C
sa0

00

01

0 1

10

11

0 1 1

0 0

0 1 1

1 0

A

B
C

․Fault Equivalence Class
⎯ (A s-a-0, B s-a-0, C s-a-0)

․Fault Dominance Relations
⎯ (C s-a-1 > A s-a-1) and (C s-a-1 > B s-a-1)

․Faults that can be ignored:
⎯ A s-a-0, B s-a-0, and C s-a-1

Fault Collapsing

Unit 6 Chang, Huang, Li, Lin, Liu

․Equivalence + Dominance
⎯ For each n-input gate, we only need to consider n+1 faults

during test generation

s-a-0s-a-1

s-a-1

Unit 6 58Chang, Huang, Li, Lin, Liu

Dominance Graph

․Rule
⎯ When fault α dominates fault β, then an arrow is

pointing from α to β
․Application

⎯ Find out the transitive dominance relations among
faults

d s-a-0
d s-a-1

a
b d

c e

a s-a-0
a s-a-1

e s-a-0
e s-a-1

Unit 6 59Chang, Huang, Li, Lin, Liu

Fault Collapsing Flow

Select a representative fault from
each remaining equivalence group

Done

Discard the dominating faults

Start Sweeping the netlist from PO to PI
To find the equivalent fault groups

Equivalence
analysis

Sweeping the netlist
To construct the dominance graph

Dominance
analysis

Generate collapsed fault list

Prime Fault

Unit 6 Chang, Huang, Li, Lin, Liu

• α is a prime fault if every fault that is dominated by α is
also equivalent to α

• Representative Set of Prime Fault (RSPF)
⎯ A set that consists of exactly one prime fault

from each equivalence class of prime faults
⎯ True minimal RSPF is difficult to find

Unit 6 61Chang, Huang, Li, Lin, Liu

Why Fault Collapsing ?

․Memory and CPU-time saving
․Ease testing generation and fault simulation

* 30 total faults 12 prime faults

Checkpoint Theorem

Unit 6 Chang, Huang, Li, Lin, Liu

․Checkpoints for test generation
⎯ A test set detects every fault on the primary inputs and

fanout branches is complete
⎯ I.e., this test set detects all other faults too
⎯ Therefore, primary inputs and fanout branches form a

sufficient set of checkpoints in test generation
⎯ In fanout-free combinational circuits, primary inputs are the

checkpoints

Stem is not a checkpoint !

Unit 6 63Chang, Huang, Li, Lin, Liu

Why Inputs + Branches Are Enough ?

․Example
⎯ Checkpoints are marked in blue
⎯ Sweeping the circuit from PI to PO to examine every gate,

e.g., based on an order of (A->B->C->D->E)
⎯ For each gate,
output faults are detected if every input fault is detected

A

B

C

D

E

a

Unit 6 Chang, Huang, Li, Lin, Liu

Fault Collapsing + Checkpoint

․ Example:
⎯ 10 checkpoint faults
⎯ a s-a-0 <=> d s-a-0 , c s-a-0 <=> e s-a-0

b s-a-0 > d s-a-0 , b s-a-1 > d s-a-1
⎯ 6 tests are enough

a

b

c

d

e

f

g

h

Unit 6 65Chang, Huang, Li, Lin, Liu

Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability

Unit 6 66Chang, Huang, Li, Lin, Liu

Why Fault Simulation ?

․To evaluate the quality of a test set
⎯ I.e., to compute its fault coverage

․Part of an ATPG program
⎯ A vector usually detected multiple faults
⎯ Fault simulation is used to compute the faults accidentally

detected by a particular vector

․To construct fault-dictionary
⎯ For post-testing diagnosis

Conceptual Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

Fault-free Circuit

Faulty Circuit #1 (A/0)

Faulty Circuit #2 (B/1)

Faulty Circuit #n (D/0)

Primary
Inputs
(PIs)

Primary Outputs
(POs)

Patterns
(Sequences)
(Vectors)

Response
Comparison

Detected?

A B

C
D

Logic simulation on both good (fault-free) and faulty circuits

Some Basics for Logic Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․For fault simulation purpose,
⎯ mostly the gate delay is assumed to be zero unless the delay

faults are considered. Our main concern is the functional faults

․The logic values
⎯ can be either two (0, 1) or three values (0, 1, X)

․Two simulation mechanisms:
⎯ Oblivious compiled-code:

circuit is translated into a program and all gates are executed
for each pattern. (may have redundant computation)

⎯ Interpretive event-driven:
Simulating a vector is viewed as a sequence of value-change
events propagating from the PI’s to the PO’s
Only those logic gates affected by the events are re-evaluated

Compiled-Code Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

A
B
C

E
Z

D

․Compiled code
⎯ LOAD A /* load accumulator with value of A */
⎯ AND B /* calculate A and B */
⎯ AND C /* calculate E = AB and C */
⎯ OR D /* calculate Z = E or D */
⎯ STORE Z /* store result of Z */

Unit 6 70Chang, Huang, Li, Lin, Liu

Event-Driven Simulation

A
B
C

E

Z
D

1
0
0

1
1
1

0 0

? 0

? 0

G1
G2

Initialize the events at PI’s
In the event-queue

Pick an event
Evaluate its effect

More event in Q ? Done

Schedule the newly born events
In the event-queue, if any

Start

yes no

Complexity of Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

#Gate (G)

#Pattern (P)

#Fault (F)

• Complexity ~ F ‧P‧G ~ O(G3)
• The complexity is higher than logic simulation by a factor of F,

while usually is much lower than ATPG
• The complexity can be greatly reduced using

• Fault dropping and other advanced techniques

Characteristics of Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․Fault activity with respect to fault-free circuit
⎯ is often sparse both in time and in space.

․For example
⎯ F1 is not activated by the given pattern, while F2 affects only

the lower part of this circuit.

F1(s-a-0)

F2(s-a-0)
×

×
0

1

1

Fault Simulation Techniques

Unit 6 Chang, Huang, Li, Lin, Liu

․Serial Fault Simulation
⎯ trivial single-fault single-pattern

․Parallel Fault Simulation
․Deductive Fault Simulation
․Concurrent Fault Simulation

Parallel Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․Simulate multiple circuits at a time:
⎯ The inherent parallel operation of computer words to

simulate faulty circuits in parallel with fault-free circuit
⎯ The number of faulty circuits, or faults, can be processed

simultaneously is limited by the word length, e.g., 32 circuits
for a 32-bit computer

․Extra Cost:
⎯ An event, a value-change of a single fault or fault-free circuit

leads to the computation of the entire word
⎯ The fault-free logic simulation is repeated for each pass

Example: Parallel Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider three faults:
(J s-a-0, B s-a-1, and F s-a-0)

• Bit-space: (FF denotes fault-free)
J/0 B/1 F/0 FF

fault-free

A

B

C

D

E

F

G

H
J

1

0

1

1

0 0 0 0

0 1 0 0

1 1 1 1

1 0 0 1

0 1 0 0 0 1 0 1

1 1 0 11 1 1 1

1 1 0 1

1 0 1 1

F/0

J/0B/0

×

×
×

1

0

0

Deductive Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․Simulate all faulty circuits in one pass
⎯ For each pattern, sweep the circuit from PI’s to PO’s.
⎯ During the process, a list of faults is associated with each

line
⎯ The list contains faults that would produce a fault effect on

this line
⎯ The union fault list at every PO contains the detected faults

by the simulated input vector

․Major operation: fault list propagation
⎯ Related to the gate types and values
⎯ The size of the list may grow dynamically, leading to a

potential memory explosion problem

Illustration of Fault List Propagation

Unit 6 Chang, Huang, Li, Lin, Liu

A

B
C

LA

LB
LCConsider a two-input AND-gate:

Case 1: A=1, B=1, C=1 at fault-free,
LC = LA + LB + {C/0}

Case 2: A=1, B=0, C=0 at fault-free,
LC = LA * LB + {C/1}

Case 3: A=0, B=0, C=0 at fault-free,
LC = LA * LB + {C/1}

Non-controlling case:

Controlling cases:

LA is the set of all faults not in LA

Fault List Propagation Rule

Unit 6 Chang, Huang, Li, Lin, Liu

․Notations:
⎯ Let I be the set of inputs of a gate Z with controlling value

c and inversion i
(i.e., i is 0 for AND, OR and 1 for NAND, NOR)

⎯ Let C be the set of inputs with value c

(){ }if c= L Z s a c iz j
j I

∅ = − − ⊕
∈

 then L { }Υ Υ

(){ }else L L L Z s a c iz j
j C

j
j I C

= − − − ⊕
∈ ∈ −

{ } { }Ι Υ Υ

Non-controlling case:

Controlling cases: intersection

union

C=φ

∩

∪ ∪

∪

Example: Deductive Simulation (1)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

Fault List at PI’s:

LB = {B/1}, LF = {F/0}, LA = φ, LC=LD = {B/1}

Example: Deductive Simulation (2)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

Fault Lists at G and E:

LB = {B/1}, LF = {F/0}, LA = φ, LC=LD = {B/1},
LG = (LA * LC) = {B/1}
LE = (LD) = {B/1}

Example: Deductive Simulation (3)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0
A

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

Computed Fault List at H:

LB = {B/1}, LF = {F/0}, LC=LD = {B/1},
LG = {B/1}, LE = {B/1}
LH = (LE + LF) = {B/1, F/0}

Example: Deductive Simulation (4)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0

Final Fault List at the output J:

LB = {B/1}, LF = {F/0}, LC=LD = {B/1},
LG = {B/1}, LE = {B/1}
LH = {B/1, F/0},
LJ = {F/0,J/0}

x

x

x
B C

D
E

F

G

H

J

1

0

1

11

A

Example: Deductive Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

• When A changes from 1 to 0

A

x

x

x
B

C

D
E

F

G

H

J

0 1

0

1

1

1

0 0

1

0

Event-driven operation:

LB = {B/1}, LF = {F/0}, LA = φ
LC=LD = {B/1}, LG = φ,
LE = {B/1}, LH = {B/1,F/0}, LJ = {B/1,F/0,J/0}

Concurrent Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․Simulate all faulty circuits in one pass:
⎯ Each gate retains a list of fault copies and each of them

stores the status of a fault exhibiting difference from fault-
free values

․Simulation mechanism
⎯ is similar to the conceptual fault simulation except that only

the dynamical difference w.r.t. fault-free circuit is retained.

․Theoretically,
⎯ all faults in a circuit can be processed in one pass

․Practically,
⎯ memory explosion problem may restrict the number of faults

that can be processed in each pass

Concurrent Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

Fault-free

1

0
0 0

Fault Copies:
updated by both logic
event and fault events

1

0
1

0

0
0

1

1
1

F100

F73

F2

Example: Concurrent Simulation (1)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11
0

1

A

LG = {10_0, B/1:11_1} LE = {0_1, B/1:1_0}

Example: Concurrent Simulation (2)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11

1

0

A

LG = {10_0, B/1:11_1} LE = {0_1, B/1:1_0}
LH = {11_1, B/1:01_0, F/0:10_0}

Example: Concurrent Simulation (3)

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider 3 faults: B/1, F/0, and J/0

x

x

x
B

C

D
E

F

G

H

J

1

0

1

11

1

0

A

LG = {10_0, B/1:11_1} LE = {0_1, B/1:1_0}
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:10_1, F/0:00_0, J/0:01_0}

Example: Concurrent Simulation (4)

Unit 6 Chang, Huang, Li, Lin, Liu

• When A changes from 1 to 0

A

x

x

x
B

C

D
E

F

G

H

J

0 1

0

1

1

1

0 0

1

LG = {00_0, B/1:01_0} LE = {0_1, B/1:1_0}
LH = {11_1, B/1:01_0, F/0:10_0}
LJ = {01_1, B/1:00_0, F/0:00_0, J/0:01_0}

Fault List of AND Gate

Unit 6 Chang, Huang, Li, Lin, Liu

A

A/1

B/1

D/1

0
0

0

0
0

1

01
0

1
0

0

D
B

Unit 6 Chang, Huang, Li, Lin, Liu

Fault List Propagation

A

B

D0

0
0

C
E0

0
0

A

B

D1

0
0

C
E0

0
0

A/1: 10_0 C/1: 01_1

B/1: 01_0 D/1: 10_1

D/1: 00_1 E/1: 00_1

*A/0: 00_0 *B/1: 10_1

*B/1: 11_1 C/1: 01_1

*D/1: 10_1 D/1: 10_1

E/1: 00_1

*

propagated

These 2 faults are
not propagated
after evaluation

propagated

Parallel-Pattern Single-Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․Basic Idea:
⎯ Event Driven + Parallel Simulation

․Parallel-Pattern Simulation
⎯ Many patterns are simulated in parallel for both fault-free circuit

and faulty circuits
⎯ The number of patterns is a multiple of the computer word-

length

․Event-Driven
⎯ reduction of logic event simulation time

․Simple and Extremely Efficient
⎯ basis of most modern combinational fault simulators

Example: Parallel Pattern Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

• Consider one fault F/0 and four patterns: P3,P2,P1,P0
Bit-Space: P3 P2 P1 P0

x

A

B

C

D E

F

G

H
J

0 1 0 1

0 1 0 1

1 1 1 1

1 0 0 0

0 1 0 1

1 0 0 11 0 0 1

1 0 1 0

0 0 0 0

0 1 0 1
1 1 0 1

0 0 0 0

Sensitive Input and Critical Path

Unit 6 Chang, Huang, Li, Lin, Liu

․Sensitive Input of a gate:
⎯ A gate input i is sensitive if complementing the value of i

changes the value of the gate output
․Critical line

⎯ Assume that the fault-free value of w is v in response to t
⎯ A line w is critical w.r.t. a pattern t iff t detects the fault w stuck-

at v
․Critical paths

⎯ Paths consisting of critical lines only

1
0

0

i
Sensitive input

Non-sensitive input
Z PO

Sensitized ?

i is critical if Z is sensitized to at least one PO

Basics of Critical Path Tracing

Unit 6 Chang, Huang, Li, Lin, Liu

Z is critical PO

sensitization
Path(s)1

0
0

PO is sensitive to i, or i is critical
i

․A gate input i is critical w.r.t. a pattern t if
⎯ (1) the gate output is critical and
⎯ (2) i is a sensitive input to t
⎯ Use recursion to prove that i is also critical

․In a fanout-free circuit
⎯ the criticality of a line can be determined by backward

traversing the sensitive gate inputs from PO’s, in linear time

Analysis of Critical Path Tracing

Unit 6 Chang, Huang, Li, Lin, Liu

․Three-step Procedure:
⎯ Step 1: Fault-free simulation
⎯ Step 2: Mark the sensitive inputs of each gate
⎯ Step 3: Identification of the critical lines by backward critical

path tracing)

․Complexity is O(G)
⎯ Where G is the gate count
⎯ for fanout-free circuits --- very rare in practice

․Application
⎯ Applied to fanout-free regions, while stem faults are still

simulated by parallel-pattern fault simulator.

Example of Critical Path Tracing

Unit 6 Chang, Huang, Li, Lin, Liu

A

B
(stem)

C
D E

1

F

G 0

H 1
J

1

0

1

1

sensitive input, critical line

(fanout-free region)

Detected faults in the fanout-free region:
{J/0, H/0, F/0, E/0, D/1}
Question: is B stuck-at-1 detected ?

Anomaly of Critical Path Tracing

Unit 6 Chang, Huang, Li, Lin, Liu

• Stem criticality is hard to infer from branches.
E.g. is B/1 detectable by the given pattern?

x
B

C
D E

F

G

H J

1

1

10
0

1
1

• It turns out that B/1 is not detectable even though both C
and D are critical, because their effects cancel out each
other at gate J, (i.e., fault masking problem)

• There is also a so-called multiple path sensitization problem.

Multiple Path Sensitization

Unit 6 Chang, Huang, Li, Lin, Liu

A

B
(stem)

C
D

F

G 1

H 1 J

1

1

1

1

(fanout-free region)

Both C and D are not critical, yet B is critical and B/0
can be detected at J by multiple path sensitization.

Sequential Fault Simulation

Unit 6 Chang, Huang, Li, Lin, Liu

․Modern Techniques:
⎯ Fault simulation without restoration
⎯ Parallel fault simulation
⎯ Adoption of advanced combinational techniques
⎯ Management of hypertrophic faults
⎯ Other techniques:

parallel-sequence and parallel-pattern

Unit 6 101Chang, Huang, Li, Lin, Liu

Sequential Design Model

FFs FFs

clk

Comb.
logic

Comb.
logic

A
B
C out1

out2

Sequential Circuits

FFs

Combinational
Logic

A
B
C

OUT1
OUT2

Hoffman Model

Unit 6 102Chang, Huang, Li, Lin, Liu

Time-Frame-Expansion Model

Ex: Input Sequence (‘0’, ‘0’, ‘0’)
State Sequence (S0 S1 S2 S3)

f

‘0’

f

‘0’

PO’s
f

‘0’

PO’s PO’sPO PO PO

S0 S1 S2 S3

Time-frame: 1 2 3

PPI PPO
Notations: PPI: pseudo primary inputs (I.e., outputs of flip-flops)

PPO: pseudo primary outputs (I.e., inputs of flip-flops)

A single fault becomes multiple faults in
the time-frame-expansion model

Unit 6 103Chang, Huang, Li, Lin, Liu

Parallel Pattern Simulation for Sequential
Circuits?

Ex: Input Sequence (v1, v2, v3, …)
State Sequence (S0 S1 S2 S3 …)

f

v1

f

v2

PO’s
f

v3

PO’s PO’sPO PO PO

S0 S1 S2 S3

PPI PPO

If (next-state function) depends on only k previous input vectors
Then parallel pattern simulation would take (k+1) passes to converge !

Unit 6 104Chang, Huang, Li, Lin, Liu

Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability

Unit 6 105Chang, Huang, Li, Lin, Liu

Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]

Unit 6 106Chang, Huang, Li, Lin, Liu

General ATPG Flow

․ATPG (Automatic Test Pattern Generation)
⎯ Generate a set of vectors for a set of target faults

․Basic flow
Initialize the vector set to NULL
Repeat

Generate a new test vector
Evaluate fault coverage for the test vector
If the test vector is acceptable, then add it to the vector set

Until required fault coverage is obtained
․To accelerate the ATPG

⎯ Random patterns are often generated first to detect easy-to-
detect faults, then a deterministic TG is performed to generate
tests for the remaining faults

Unit 6 107Chang, Huang, Li, Lin, Liu

Combinational ATPG

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis

․Milestone Structural ATPG Algorithms
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]

A Test Pattern

Unit 6 Chang, Huang, Li, Lin, Liu

A Fully Specified Test Pattern
(every PI is either 0 or 1)

stuck-at 10
0
1
1 1

0/1
0/1

A Partially Specified Test Pattern
(certain PI’s could be undefined)

stuck-at 01
x
x
x x

x
1/0

1/0

Test Generation Methods
(From Truth Table)

Unit 6 Chang, Huang, Li, Lin, Liu

Ex: How to generate tests
for the stuck-at 0 fault
(fault α)? abc f fα

000
001
010
011
100
101
110
111

0
0
0
0
0
1
1
1

0
0
0
0
0
1
0
1

c

a

f
b

α stuck-at 0

Test Generation Methods
(Using Boolean Equation)

Unit 6 Chang, Huang, Li, Lin, Liu

f = ab+ac, fα = ac
Tα = the set of all tests for fault α

= ON_set(f♁fα)

= ON_set(f) ∗ OFF_set(fα) + OFF_set(f) ∗ ON_set(fα)
= {(a,b,c) | (ab+ac)(ac)' + (ab+ac)'(ac) = 1 }
= {(a,b,c) | abc'=1}
= { (110) }. High complexity !!

Since it needs to compute the faulty
function for each fault.

c

a

f
b

α stuck-at 0

Boolean equation

* ON_set(f): All input combinations to which f evaluates to 1.
OFF_set(f): All input combinations to which f evaluates to 0.
Note: a function is characterized by its ON_SET

Unit 6 Chang, Huang, Li, Lin, Liu

Boolean Difference
․Physical Meaning of Boolean Difference

⎯ For a logic function F(X)=F(x1, ..., xi, ..., xn), find all the input
combinations that make a value-change at xi also cause a value-
change at F.

․Logic Operation of Boolean Difference
⎯ The Boolean difference of F(X) w.r.t. input xi is

where Fi(0) = F(x1, ..., 0, ..., xn) and Fi(1) = F(x1, ..., 1, ..., xn).

F
0

1
0

1

1
0or

x1

xi

xn

circuit
F

1
0

1
0

0
1or

x1

xi

xn

circuit

dF(x)/dxi = Fi(0)♁Fi(1) = Fi(0) · Fi(1)’ + Fi(0)’ · Fi(1)
Where

Fi(0) = F(x1, …, 0, …, xn)
Fi(1) = F(x1, …, 1, …, xn)

• Illustrations of Boolean Difference

Unit 6 112Chang, Huang, Li, Lin, Liu

Chain Rule

fA
B G(f(A, B), {C, D})

{A,B} and {C,D} have no
variables in common

C
D

dG/df = (C’ + D’)
df/dA = B

f = AB
G = f + CD

dG/dA = (dG/df) · (df/dA) = (C’+D’) · B

An Input vector v sensitizes a fault effect from A to G
Iff v sensitizes the effect from A to f and from f to G

Unit 6 113Chang, Huang, Li, Lin, Liu

Boolean Difference (con’t)

․Boolean Difference
⎯ With respect to an internal signal, w, Boolean difference

represents the set of input combinations that sensitize a fault
effect from w to the primary output F

․Calculation
⎯ Step 1: convert the function F into a new one G that takes the

signal w as an extra primary input
⎯ Step 2: dF(x1, …, xn)/dw = dG (x1, …, xn, w)/dw

x

w

w
x1

xn

x1

xn

.

.

.
.
.
.

Free w
GF

Unit 6 Chang, Huang, Li, Lin, Liu

Test Gen. By Boolean Difference

Case 1: Faults are present at PIs.
a

F = ab + ac
F(a=0) = 0
F(a=1) = (b+c)

x
b

c

Fault Sensitization Requirement:
dF/da = F(a=0) ♁ F(a=1) = 0 ♁ (b+c) = (b+c)

Test-set for a s-a-1 = {(a,b,c) | a'• (b+c)=1} = {(01x), (0x1)}.
Test-set for a s-a-0 = {(a,b,c) | a • (b+c)=1} = {(11x), (1x1)}.

Fault sensitization
requirement

Fault activation
requirement

No need to compute
The faulty function !!

Unit 6 115Chang, Huang, Li, Lin, Liu

Test Generation By Boolean Difference (con’t)

Case 2: Faults are present at internal lines.

c

a

F = ab + ac
b x

h

G(i.e., F with h floating) = h + ac
dG/dh = G(h=0) ♁G(h=1) = (ac ♁ 1) = (a’+c’)

Test-set for h s-a-1 is
{ (a,b,c)| h‘ • (a'+c')=1 } = { (a,b,c)| (a'+b') • (a'+c')=1 } = { (0xx), (x00) }.

Test-set for h s-a-0 is
{(a,b,c)| h • (a'+c')=1} = {(110)}.

For fault activation For fault sensitization

Unit 6 116Chang, Huang, Li, Lin, Liu

Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]

Unit 6 117Chang, Huang, Li, Lin, Liu

Test Generation Method
(From Circuit Structure)

․Two basic goals
⎯ (1) Fault activation (FA)
⎯ (2) Fault propagation (FP)
⎯ Both of which requires Line Justification (LJ), I.e., finding input

combinations that force certain signals to their desired values
․Notations:

⎯ 1/0 is denoted as D, meaning that good-value is 1 while faulty
value is 0

⎯ Similarly, 0/1 is denoted D’
⎯ Both D and D’ are called fault effects (FE)

fault propagation

fault activation

c

a

f
b

1/0

0

1
1

0

Unit 6 118Chang, Huang, Li, Lin, Liu

Common Concepts for Structural TG

․Fault activation
⎯ Setting the faulty signal to either 0 or 1 is a Line Justification

problem

․Fault propagation
⎯ (1) select a path to a PO decisions
⎯ (2) Once the path is selected a set of line justification (LJ)

problems are to be solved

․Line Justification
⎯ Involves decisions or implications
⎯ Incorrect decisions: need backtracking

a
b cTo justify c=1 a=1 and b=1 (implication)

To justify c=0 a=0 or b=0 (decision)

Unit 6 119Chang, Huang, Li, Lin, Liu

Ex: Decision on Fault Propagation

f1G5

G6

G1

G2

G3
G4

a
bc

d

e

G5 G6

fail success

{ G5, G6 }

f2

⎯ Fault activation
G1=0 { a=1, b=1, c=1 } { G3=0 }

⎯ Fault propagation: through G5 or G6
⎯ Decision through G5:

G2=1 { d=0, a=0 } inconsistency at a backtrack !!
⎯ Decision through G6:

G4=1 e=0 done !! The resulting test is (111x0)

decision tree

D-frontiers: are the gates whose output value is x, while one or more
Inputs are D or D’. For example, initially, the D-frontier is { G5, G6 }.

Unit 6 120Chang, Huang, Li, Lin, Liu

Various Graphs

A Combinational Circuit: is usually modeled as a DAG, but not tree

Graph = (V, E)

DAG
(Directed Acyclic Graph)

Tree

Digraph
(directed graph)

Unit 6 121Chang, Huang, Li, Lin, Liu

Ex: Decisions On Line Justification

⎯ FA set h to 0
⎯ FP e=1, f=1 (o=0) ; FP q=1, r=1
⎯ To justify q=1 l=1 or k=1
⎯ Decision: l =1 c=1, d=1 m=0, n=0 r=0 inconsistency at r

backtrack !
⎯ Decision: k=1 a=1, b=1
⎯ To justify r=1 m=1 or n=1 (c=0 or d=0) Done ! (J-frontier is φ)

a
b
c
d

e
f
h

p

k

l
q

r
m
n
o

s

The corresponding
decision tree

l=1 k=1

m=1 o=1
n=1

J-frontier: is the set of gates
whose output value is known
(I.e., 0 or 1), but is not implied
by its input values.
Ex: initially, J-frontier is {q=1, r=1}

Decision point

fail

success

q=1

r=1

Unit 6 122Chang, Huang, Li, Lin, Liu

Branch-and-Bound Search

․Test Generation
⎯ Is a branch-and-bound search
⎯ Every decision point is a branching point
⎯ If a set of decisions lead to a conflict (or bound), a backtrack

is taken to explore other decisions
⎯ A test is found when

(1) fault effect is propagated to a PO
(2) all internal lines are justified

⎯ No test is found after all possible decisions are tried Then,
target fault is undetectable

⎯ Since the search is exhaustive, it will find a test if one exists

For a combinational circuit, an undetectable fault is also a
redundant fault Can be used to simplify circuit.

Unit 6 123Chang, Huang, Li, Lin, Liu

Implications

․Implications
⎯ Computation of the values that can be uniquely determined

Local implication: propagation of values from one line to
its immediate successors or predecessors
Global implication: the propagation involving a larger
area of the circuit and re-convergent fanout

․Maximum Implication Principle
⎯ Perform as many implications as possible
⎯ It helps to either reduce the number of problems that need

decisions or to reach an inconsistency sooner

Unit 6 124Chang, Huang, Li, Lin, Liu

Local Implications (Forward)

Before After

0
x x

1
1 x

1
x a

0 J-frontier={ ...,a }

D'
D a

x D-frontier={ ...,a }

0
x 0

1
1 1

1
0 a

0 J-frontier={ ... }

D'
D a

0 D-frontier={ ... }

Unit 6 125Chang, Huang, Li, Lin, Liu

Local Implications (Backward)

Before After

x
x

x
1

x
x J-frontier={ ... }

1

0

x
1

x

a
0

1
1 1

0
1 0

x
x a

0 J-frontier={ ...,a }

1 1

1

Unit 6 126Chang, Huang, Li, Lin, Liu

Global Implications

x

D

1

x

D

x

x

After

d

g
x

x

x

D

x

Before

g

e

d

x

x

e

․Unique D-Drive Implication
⎯ Suppose D-frontier (or D-drive) is {d, e}, g is a dominator for

both d and e, hence a unique D-drive is at g

g is called a dominator of d:
because every path from d to an PO passes through g

Unit 6 127Chang, Huang, Li, Lin, Liu

Learning for Global Implication

․Static Learning
⎯ Global implication derived by contraposition law
⎯ Learn static (I.e., input independent) signal implications

․Dynamic Learning
⎯ Contraposition law + other signal values
⎯ Is input pattern dependent

A B => ~B ~A

A

B

C

D

E

F1

F=1 implies B=1
Because B=0 F=0

(Static Learning)

A

B

C

D

E

F0

1

F=0 implies B=0 When A=1
Because {B=1, A=1} F=1

(Dynamic Learning)

Unit 6 128Chang, Huang, Li, Lin, Liu

Early Detection of Inconsistency

Aggressive implication may
help to realize that the sub-
tree below is fruitless, thus
avoiding unnecessary search

success

q=1

r=1s=1

u=1t=1 v=1

v=1

f

f f

f

f f
A potential

sub-tree

sub-tree without a solution

Unit 6 129Chang, Huang, Li, Lin, Liu

Ex: D-Algorithm (1/3)

․Five logic values
⎯ { 0, 1, x, D, D’ }

h
Try to propagate
Fault effect thru G1

Set d to 1

Try to propagate
Fault effect thru G2

Set j,k,l,m to 1

1

1

1

1

D
n

d

e

f
f'

e'

d'

i

j

k

l

m

ga
b
c

1

0

G1
D’

D0
1
1

G2
0

1
D’ ≠

Conflict at k
Backtrack !

Unit 6 130Chang, Huang, Li, Lin, Liu

Ex: D-Algorithm (2/3)

․Five logic values
⎯ { 0, 1, x, D, D’ }

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
b
c

1

0

G1
D’

D0
1
1

G2

1

1

1

0

1

0

1
D’ ≠

D

Conflict at m
Backtrack !

D’ (next D-frontier chosen)

Try to propagate
Fault effect thru G2

Set j,l,m to 1

Unit 6 131Chang, Huang, Li, Lin, Liu

Ex: D-Algorithm (3/3)

․Five logic values
⎯ { 0, 1, x, D, D’ }

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
b
c

1

0

G1
D’

D0
1
1

G2

D’

1

1

0

1

D’ (next D-frontier chosen)

0

1

D

Fault propagation
and line justification
are both complete

A test is found !

This is a case of
multiple path sensitization !

Try to propagate
Fault effect thru G2

Set j,l to 11

Unit 6 132Chang, Huang, Li, Lin, Liu

D-Algorithm: Value Computation

Decision Implication Comments

a=0 Active the fault
h=1
b=1 Unique D-drive
c=1
g=D

d=1 Propagate via i
i=D’
d’=0

j=1 Propagate via n
k=1
l=1
m=1

n=D
e’=0
e=1
k=D’ Contradiction

e=1 Propagate via k
k=D’
e’=0
j=1

l=1 Propagate via n
m=1

n=D
f’=0
f=1
m=D’ Contradiction

f=1 Propagate via m
m=D’
f’=0
l=1
n=D

Unit 6 133Chang, Huang, Li, Lin, Liu

Decision Tree on D-Frontier

․The decision tree below
⎯ Node D-frontier
⎯ Branch Decision Taken
⎯ A Depth-First-Search (DFS) strategy is often used

n

d

e

f
f'

e'

d' h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

D’

1

D

0

1

0

1
D’

1

{i,k,m}

{k,m,n}

{m,n}F

F S

i

n k

mn

Unit 6 Chang, Huang, Li, Lin, Liu

9-Value D-Algorithm

․Logic values (fault-free / faulty)
⎯ {0/0, 0/1, 0/u, 1/0, 1/1, 1/u, u/0, u/1, u/u},
⎯ where 0/u={0,D'}, 1/u={D,1}, u/0={0,D}, u/1={D',1},

u/u={0,1,D,D'}.
․Advantage:

⎯ Automatically considers multiple-path
sensitization, thus reducing the amount of search
in D-algorithm

⎯ The speed-up is NOT very significant in practice
because most faults are detected through single-
path sensitization

Unit 6 Chang, Huang, Li, Lin, Liu

Example: 9-Value D-Algorithm

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

u/1

G1

D (1/0)0/1
u/1
u/1

G2
D(=1/0)

1/u 1/1

u/1

u/1

u/1

D’ (=0/1)

u/0

1/u

u/1

Decision Tree

{i, k, m}

{k, m, n}

success

i

n

No-backtrack !

D’ or 1

D’(0/1)

0/1

u/0
u/1

1/u

0/u
1/u

Unit 6 136Chang, Huang, Li, Lin, Liu

Final Step of 9-Value D-Algorithm

․To derive the test vector
A = (0/1) 0 (take the fault-free one)
B = (1/u) 1
C = (1/u) 1
D = (u/1) 1
E = (u/1) 1
F = (u/1) 1

․The final vector
⎯ (A,B,C,D,E,F) = (0, 1, 1, 1, 1, 1)

Unit 6 137Chang, Huang, Li, Lin, Liu

Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]

Unit 6 138Chang, Huang, Li, Lin, Liu

PODEM: Path-Oriented DEcision Making

․Fault Activation (FA) and Propagation (FP)

⎯ lead to sets of Line Justification (LJ) problems. The LJ problems
can be solved via value assignments.

․ In D-algorithm

⎯ TG is done through indirect signal assignment for FA, FP, and LJ,
that eventually maps into assignments at PI’s

⎯ The decision points are at internal lines

⎯ The worst-case number of backtracks is exponential in terms of
the number of decision points (e.g., at least 2k for k decision
nodes)

․ In PODEM
⎯ The test generation is done through a sequence of direct

assignments at PI’s

⎯ Decision points are at PIs, thus the number of backtracking might
be fewer

Unit 6 139Chang, Huang, Li, Lin, Liu

Search Space of PODEM

․Complete Search Space

⎯ A binary tree with 2n leaf nodes, where n is the number of PI’s

․Fast Test Generation

⎯ Need to find a path leading to a SUCCESS terminal quickly

0 1

c

d

0

d

1

d

0 1

b0 1

c

d

0

d

1
c

d

0

d

1

0 1

F F F F

b

c

d

a

S S F F

Unit 6 140Chang, Huang, Li, Lin, Liu

Objective() and Backtrace()
․PODEM

⎯ Also aims at establishing a sensitization path based on fault
activation and propagation like D-algorithm

⎯ Instead of justifying the signal values required for sensitizing the
selected path, objectives are setup to
guide the decision process at PI’s

․Objective
⎯ is a signal-value pair (w, vw)

․Backtrace
⎯ Backtrace maps a desired objective into a PI assignment that is

likely to contribute to the achievement of the objective
⎯ Is a process that traverses the circuit back from the objective

signal to PI’s
⎯ The result is a PI signal-value pair (x, vx)
⎯ No signal value is actually assigned during backtrace !往輸入端追蹤

Unit 6 141Chang, Huang, Li, Lin, Liu

Objective Routine

․Objective Routine Involves
⎯ The selection of a D-frontier, G
⎯ The selection of an unspecified input gate of G

Objective() {
/* The target fault is w s-a-v */
/* Let variable obj be a signal-value pair */
if (the value of w is x) obj = (w, v’);
else {

select a gate (G) from the D-frontier;
select an input (j) of G with value x;
c = controlling value of G;
obj = (j, c’);

}
return (obj);

}

fault activation

fault propagation

Unit 6 142Chang, Huang, Li, Lin, Liu

Backtrace Routine

․Backtrace Routine
⎯ Involves finding an all-x path from objective site to a PI, I.e.,

every signal in this path has value x

Backtrace(w, vw) {
/* Maps objective into a PI assignment */
G = w; /* objective node */
v = vw; /* objective value */
while (G is a gate output) { /* not reached PI yet */

inv = inversion of G;
select an input (j) of G with value x;
G = j; /* new objective node */
v = v♁inv; /* new objective value */

}
/* G is a PI */ return (G, v);

}

Unit 6 143Chang, Huang, Li, Lin, Liu

Example: Backtrace

A
B

FC D

E
x

x

x

x
x x

A
B

FC D

E
0

1

1

x
x x

A
B

FC D

E
0

1

1

0
1 1

=>

=>

The first time of backtracing

The second time of backtracing

Objective to achieved: (F, 1)
PI assignments:

(1) A = 0 fail
(2) B = 1 succeed

A
B

FC D

E
0

1

1

x
x x

Unit 6 144Chang, Huang, Li, Lin, Liu

PI Assignment in PODEM

0 1

0 1

0

b

c

d

a

S

Assume that: PI’s: { a, b, c, d }
Current Assignments: { a=0 }
Decision: b=0 objective fails
Reverse decision: b=1
Decision: c=0 objective fails
Reverse decision: c=1
Decision: d=0

failure

failureFailure means fault effect cannot be
propagated to any PO under current
PI assignments 0

Unit 6 145Chang, Huang, Li, Lin, Liu

Example: PODEM (1/3)

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

0

1

1

0

1 Select D-frontier G2 and
set objective to (k,1)

e = 0 by backtrace
Break the sensitization
across G2
Backtrack !

Unit 6 146Chang, Huang, Li, Lin, Liu

Example: PODEM (2/3)

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1 Select D-frontier G3 and
set objective to (e,1)

No backtrace is needed
Success at G3

G3

G4

1
0

1

Unit 6 147Chang, Huang, Li, Lin, Liu

Example: PODEM (3/3)

n

d

e

f
f'

e'

d'
h

i

j

k

l

m

ga
b
c

1

0

D’
G1

D0
1
1

G2

1

D’

0

1

1

D

Select D-frontier G4 and
set objective to (f,1)

No backtrace is needed
Success at G4 and G2
D appears at one PO
A test is found !!

G3

G4

1
0

1
D’

Unit 6 Chang, Huang, Li, Lin, Liu

PODEM: Value Computation

Objective PI assignment Implications D-frontier Comments
a=0 a=0 h=1 g
b=1 b=1 g
c=1 c=1 g=D i,k,m
d=1 d=1 d’=0

i=D’ k,m,n
k=1 e=0 e’=1

j=0
k=1
n=1 m no solutions ! backtrack

e=1 e’=0 reverse PI assignment
j=1
k=D’ m,n

l=1 f=1 f’=0
l=1
m=D’
n=D

n

d

e

f
f'

e'

d' h

i

j

k

l

m

gabc

1
0

D’

D0
1
1

1

D’

1

D

0

1

0

1
D’

1

Assignments need to be
reversed during backtracking

Decision Tree in PODEM

Unit 6 Chang, Huang, Li, Lin, Liu

a

b

c

d

e

0

0

1

1

1

f

1

fail

success

• Decision node: the PI selected through backtrace for value assignment
• Branch: the value assignment to the selected PI

Unit 6 150Chang, Huang, Li, Lin, Liu

Terminating Conditions

․ D-algorithm
⎯ Success:

(1) Fault effect at an output (D-frontier may not be empty)
(2) J-frontier is empty

⎯ Failure:
(1) D-frontier is empty (all possible paths are false)
(2) J-frontier is not empty

․ PODEM
⎯ Success:

Fault effect seen at an output
⎯ Failure:

Every PI assignment leads to failure, in which D-frontier is
empty while fault has been activated

Unit 6 151Chang, Huang, Li, Lin, Liu

PODEM: Recursive Algorithm
PODEM () /* using depth-first-search */

begin
If(error at PO) return(SUCCESS);

If(test not possible) return(FAILURE);

(k, vk) = Objective(); /* choose a line to be justified */

(j, vj) = Backtrace(k, vk); /* choose the PI to be assigned */

Imply (j, vj); /* make a decision */

If (PODEM()==SUCCESS) return (SUCCESS);

Imply (j, vj’); /* reverse decision */

If (PODEM()==SUCCESS) return(SUCCESS);

Imply (j, x);

Return (FAILURE);

end

What PI to assign ?

j=vj j=vj’

Recursive-call Recursive-call
If necessary

Unit 6 152Chang, Huang, Li, Lin, Liu

Overview of PODEM

․PODEM

⎯ examines all possible input patterns implicitly but
exhaustively (branch-and-bound) for finding a test

⎯ It is complete like D-algorithm (I.e., will find one if a test
exists)

․Other Key Features
⎯ No J-frontier, since there are no values that require

justification
⎯ No consistency check, as conflicts can never occur
⎯ No backward implication, because values are propagated

only forward
⎯ Backtracking is implicitly done by simulation rather than by

an explicit and time-consuming save/restore process
⎯ Experimental results show that PODEM is generally faster

than the D-algorithm

Unit 6 Chang, Huang, Li, Lin, Liu

The Selection Strategy in PODEM

․In Objective() and Backtrace()
⎯ Selections are done arbitrarily in original PODEM
⎯ The algorithm will be more efficient if certain guidance used in

the selections of objective node and backtrace path
․Selection Principle

⎯ Principle 1: Among several unsolved problems
Attack the hardest one

Ex: to justify a ‘1’ at an AND-gate output
⎯ Principle 2: Among several solutions for solving a problem

Try the easiest one
Ex: to justify a ‘1’ at OR-gate output

1

1

Unit 6 Chang, Huang, Li, Lin, Liu

Controllability As Guidance
․Controllability of a signal w

⎯ CY1(w): the probability that line w has value 1.
⎯ CY0(w): the probability that line w has value 0.
⎯ Example:

f = ab
Assume CY1(a)=CY0(a)=CY1(b)=CY0(b)=0.5
CY1(f)=CY1(a)xCY1(b)=0.25,
CY0(f)=CY0(a)+CY0(b)-CY0(a)xCY0(b)=0.75

․Example of Smart Backtracing
⎯ Objective (c, 1) choose path c a for backtracing
⎯ Objective (c, 0) choose path c a for backtracing

CY1(a) = 0.33
CY0(a) = 0.67 a c

bCY1(b) = 0.5
CY0(b) = 0.5

Unit 6 155Chang, Huang, Li, Lin, Liu

Testability Analysis

․Applications
⎯ To give an early warning about the testing problems that lie

ahead
⎯ To provide guidance in ATPG

․Complexity
⎯ Should be simpler than ATPG and fault simulation, I.e., need

to be linear or almost linear in terms of circuit size

․Topology analysis
⎯ Only the structure of the circuit is analyzed
⎯ No test vectors are involved
⎯ Only approximate, reconvergent fanouts cause inaccuracy

SCOAP
(Sandia Controllability/Observability Analysis Program)

Unit 6 156Chang, Huang, Li, Lin, Liu

․Computes six numbers for each node N
⎯ CC0(N) and CC1(N)

Combinational 0 and 1 controllability of a node N
⎯ SC0(N) and SC1(N)

Sequential 0 and 1 controllability of a node N
⎯ CO(N)

Combinational observability
⎯ SO(N)

Sequential observability

Unit 6 157Chang, Huang, Li, Lin, Liu

General Characteristic of Controllability and
Observability

Controllability calculation: sweeping the circuit from PI to PO
Observability calculation: sweeping the circuit from PO to PI

Boundary conditions:
(1) For PI’s: CC0 = CC1 = 1 and SC0 = SC1 = 0
(2) For PO’s: CO = SO = 0

Unit 6 158Chang, Huang, Li, Lin, Liu

Controllability Measures
⎯ CC0(N) and CC1(N)

The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

⎯ SC0(N) and SC1(N)

The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

x1

x2
Y

CC0(Y) = min [CC0(x1) , CC0(x2)] + 1
CC1(Y) = CC1(x1) + CC1(x2) + 1
SC0(Y) = min [SC0(x1) , SC0(x2)]
SC1(Y) = SC1(x1) + SC1(x2)

Unit 6 159Chang, Huang, Li, Lin, Liu

Controllability Measure (con’t)

⎯ CC0(N) and CC1(N)

The number of combinational nodes that must be
assigned values to justify a 0 or 1 at node N

⎯ SC0(N) and SC1(N)

The number of sequential nodes that must be assigned
values to justify a 0 or 1 at node N

x1
x2 Y
x3

CC0(Y) = CC0(x1) + CC0(x2) + CC0(x3) + 1
CC1(Y) = min [CC1(x1), CC1(x2), CC1(x3)] + 1
SC0(Y) = SC0(x1) + SC0(x2) + SC0(x3)
SC1(Y) = min [SC1(x1) , SC1(x2) , SC1(x3)]

Unit 6 160Chang, Huang, Li, Lin, Liu

Observability Measure

– CO(N) and SO(N)

• The observability of a node N is a function of the
output observability and of the cost of holding all
other inputs at non-controlling values

x1
x2 Y
x3

CO(x1) = CO(Y) + CC0(x2) + CC0(x3) + 1
SO(x1) = SO(Y) + SC0(x2) + SC0(x3)

Unit 6 Chang, Huang, Li, Lin, Liu

PODEM: Example 2 (1/3)

Initial objective=(G5,1).
G5 is an AND gate Choose the hardest-1

Current objective=(G1,1).
G1 is an AND gate Choose the hardest-1

Arbitrarily, Current objective=(A,1). A is a PI Implication G3=0.

A
B

C
G6

CY1=0.25

CY1=0.656

G5

G7

G1

G2

G3

G4

1/01

0

PODEM: Example 2 (2/3)

Unit 6 Chang, Huang, Li, Lin, Liu

The initial objective satisfied? No! Current objective=(G5,1).
G5 is an AND gate Choose the hardest-1 Current objective=(G1,1).
G1 is an AND gate Choose the hardest-1

Arbitrarily, Current objective=(B,1). B is a PI Implication G1=1, G6=0.

A
B

C
G6

CY1=0.25

CY1=0.656

G5

G7

G1

G2

G3

G4

1/01

0
0

1

1

0

Unit 6 Chang, Huang, Li, Lin, Liu

PODEM: Example 2 (3/3)

The initial objective satisfied? No! Current objective=(G5,1).
The value of G1 is known Current objective=(G4,0).
The value of G3 is known Current objective=(G2,0).
A, B is known Current objective=(C,0).
C is a PI Implication G2=0, G4=0, G5=D, G7=D.

A
B

C
G6

CY1=0.25

CY1=0.656

G5

G7

G1

G2

G3

G4

1/0=D1

0

1
1

0

D

No backtracking !!

0
0

0

1

If The Backtracing Is Not Guided (1/3)

Unit 6 Chang, Huang, Li, Lin, Liu

Initial objective=(G5,1).
Choose path G5-G4-G2-A A=0.
Implication for A=0 G1=0, G5=0 Backtracking to A=1.
Implication for A=1 G3=0.

A
B

C
G6

G5

G7

G1

G2

G3

G4

1

0

1/0

If The Backtracing Is Not Guided (2/3)

Unit 6 Chang, Huang, Li, Lin, Liu

The initial objective satisfied? No! Current objective=(G5,1).
Choose path G5-G4-G2-B B=0.
Implication for B=0 G1=0, G5=0 Backtracking to B=1.
Implication for B=1 G1=1, G6=0.

A
B

C
G6

G5

G7

G1

G2

G3

G4

1

0

1

1

0

1/0

If The Backtracing Is Not Guided (3/3)

Unit 6 Chang, Huang, Li, Lin, Liu

The initial objective satisfied? No! Current objective=(G5,1).
Choose path G5-G4-G2-C C=0.
Implication for C=0 G2=0, G4=0, G5=D, G7=D.

0

A
B

C
G6

G5

G7

G1

G2

G3

G4

1
1

1

0

1/0=D

D

A

B

C

F

S

F

0 1

10

0

0
0

0

1

Two times of backtracking !!

Unit 6 167Chang, Huang, Li, Lin, Liu

Outline of ATPG
(Automatic Test Pattern Generation)

․Test Generation (TG) Methods
⎯ Based on Truth Table
⎯ Based on Boolean Equation
⎯ Based on Structural Analysis
⎯ D-algorithm [Roth 1967]
⎯ 9-Valued D-algorithm [Cha 1978]
⎯ PODEM [Goel 1981]
⎯ FAN [Fujiwara 1983]

Unit 6 168Chang, Huang, Li, Lin, Liu

FAN (Fanout Oriented) Algorithm

․FAN
⎯ Introduces two major extensions to PODEM’s backtracing

algorithm

․1st extension
⎯ Rather than stopping at PI’s, backtracing in FAN may stop at

an internal lines

․2nd extension
⎯ FAN uses multiple backtrace procedure, which attempts to

satisfy a set of objectives simultaneously

Unit 6 169Chang, Huang, Li, Lin, Liu

Headlines and Bound Lines

․Bound line
⎯ A line reachable from at least one stem

․Free line
⎯ A line that is NOT bound line

․Head line
⎯ A free line that directly feeds a bound line

Bound lines

Head lines K

L

HE
MF

A
JB

C

Unit 6 170Chang, Huang, Li, Lin, Liu

Decision Tree (PODEM v.s. FAN)

Bound lines

Head lines

A

B

C

H

J

E
F

K

L

M

A

B

CS

S

1

1

10

0

All makes J = 0

Assume that:
Objective is (J, 0)

J is a head line
Backtrace stops at J
Avoid unnecessary search

J

S

0 1

PODEM FAN

Unit 6 171Chang, Huang, Li, Lin, Liu

Why Stops at Head Lines ?

․Head lines are mutually independent
⎯ Hence, for each given value combination at head lines, there

always exists an input combination to realize it.

․FAN has two-steps
⎯ Step 1: PODEM using headlines as pseudo-PI’s
⎯ Step 2: Generate real input pattern to realize the value

combination at head lines.

Unit 6 172Chang, Huang, Li, Lin, Liu

Why Multiple Backtrace ?

․Drawback of Single Backtrace
⎯ A PI assignment satisfying one objective may preclude

achieving another one, and this leads to backtracking

․Multiple Backtrace
⎯ Starts from a set of objectives (Current_objectives)
⎯ Maps these multiple objectives into a head-line assignment k=vk

that is likely to
Contribute to the achievement of a subset of the objectives
Or show that some subset of the original objectives cannot
be simultaneously achieved

1

0
0

1

Multiple objectives
May have conflicting
Requirements at a stem

Unit 6 173Chang, Huang, Li, Lin, Liu

Example: Multiple Backtrace

H

GE1
EA

B E2

A2

A1

C

0

1

1

1

1
1

1

0

Consistent stem

conflicting stem 1I

0
J

Current_objectives Processed entry Stem_objectives Head_objectives

(I,1)
(J,0)
(G,0)
(H,1)
(A1,1)
(E1,1)
(E2,1)
(C,1)

(E,1)
(A2,0)

(I,1), (J,0)
(J,0), (G,0)
(G,0), (H,1)
(H,1), (A1,1), (E1,1)
(A1,1), (E1,1), (E2,1), (C,1)
(E1,1), (E2,1), (C,1)
(E2,1), (C,1)
(C,1)
Empty restart from (E,1)
(E,1)
(A2,0)
empty

A
A,E
A,E
A,E
A
A
A
A

C
C
C
C
C

References For ATPG

Unit 6 Chang, Huang, Li, Lin, Liu

[1] Sellers et al., "Analyzing errors with the Boolean difference", IEEE Trans. Computers, pp.
676-683, 1968.

[2] J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a Method", IBM Journal of
Research and Development, pp. 278-291, July, 1966.

[2'] J. P. Roth et al., "Programmed Algorithms to Compute Tests to Detect and Distinguish
Between Failures in Logic Circuits", IEEE Trans. Electronic Computers, pp. 567-579, Oct.
1967.

[3] C. W. Cha et al, "9-V Algorithm for Test Pattern Generation of Combinational Digital
Circuits", IEEE TC, pp. 193-200, March, 1978.

[4] P. Goel, "An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic
Circuits", IEEE Trans. Computers, pp. 215-222, March, 1981.

[5] H. Fujiwara and T. Shimono, "On the Acceleration of Test Generation Algorithms", IEEE
TC, pp. 1137-1144, Dec. 1983.

[6] M. H. Schulz et al., "SOCRATES: A Highly Efficient Automatic Test Pattern Generation
System", IEEE Trans. on CAD, pp. 126-137, 1988.

[6'] M. H. Schulz and E. Auth, "Improved Deterministic Test Pattern Generation with
Applications to Redundancy Identification", IEEE Trans CAD, pp. 811-816, 1989.

Unit 6 175Chang, Huang, Li, Lin, Liu

Outline

․Introduction
․Fault Modeling
․Fault Simulation
․Test Generation
․Design For Testability

Unit 6 176Chang, Huang, Li, Lin, Liu

Why DFT ?

․Direct Testing is Way Too Difficult !
⎯ Large number of FFs
⎯ Embedded memory blocks
⎯ Embedded analog blocks

• Design For Testability is inevitable
• Like death and tax

Unit 6 177Chang, Huang, Li, Lin, Liu

Design For Testability

․Definition
⎯ Design For Testability (DFT) refers to those design

techniques that make test generation and testing cost-
effective

․DFT Methods
⎯ Ad-hoc methods
⎯ Scan, full and partial
⎯ Built-In Self-Test (BIST)
⎯ Boundary scan

․Cost of DFT
⎯ Pin count, area, performance, design-time, test-time

Unit 6 178Chang, Huang, Li, Lin, Liu

Important Factors

․Controllability
⎯ Measure the ease of controlling a line

․Observability
⎯ Measure the ease of observing a line at PO

․Predictability
⎯ Measure the ease of predicting output values

․DFT deals with ways of improving
⎯ Controllability
⎯ Observability
⎯ Predictability

Unit 6 179Chang, Huang, Li, Lin, Liu

Test Point Insertion
․Employ test points to enhance

⎯ Controllability
⎯ Observability

․CP: Control Points
⎯ Primary inputs used to enhance controllability

․OP: Observability Points
⎯ Primary outputs used to enhance observability

0
POAdd 0-CP

Add OP
1

Add 1-CP

Unit 6 180Chang, Huang, Li, Lin, Liu

0/1 Injection Circuitry

․Normal operation
When CP_enable = 0

․Inject 0
⎯ Set CP_enable = 1 and CP = 0

․Inject 1
⎯ Set CP_enable = 1 and CP = 1

C1 C2MUX
0

1

Inserted circuit for controlling line w

w

CP

CP_enable

Unit 6 181Chang, Huang, Li, Lin, Liu

Control Point Selection

․Impact
⎯ The controllability of the fanout-cone of the added point is

improved

․Common selections
⎯ Control, address, and data buses
⎯ Enable / Hold inputs
⎯ Enable and read/write inputs to memory
⎯ Clock and preset/clear signals of flip-flops
⎯ Data select inputs to multiplexers and demultiplexers

Unit 6 182Chang, Huang, Li, Lin, Liu

Example: Use CP to Fix DFT Rule Violation

․DFT rule violations
⎯ The set/clear signal of a flip-flop is generated by other logic,

instead of directly controlled by an input pin
⎯ Gated clock signals

․Violation Fix
⎯ Add a control point to the set/clear signal or clock signals

Q

logic

clear

DQ

logic

clear

D

CK
Violation

fix CK

CLEAR

Unit 6 183Chang, Huang, Li, Lin, Liu

Example: Fixing Gated Clock

․Gated Clocks
⎯ Advantage: power dissipation of a logic design can thus reduced
⎯ Drawback: the design’s testability is also reduced

․Testability Fix

Violation
fix

QD

CK_enable

CK

MUX

CK
CP_enable

QD

Gated
CK

CK

CK_enable

Unit 6 184Chang, Huang, Li, Lin, Liu

Example: Fixing Tri-State Bus Contention

․Bus Contention
⎯ A stuck-at-fault at the tri-state enable line may cause

bus contention – multiple active drivers connect to the
bus simultaneously

․Fix
⎯ Add CP’s to turn off tri-state devices during testing

Enable line stuck-at-1 x

0 0

1 1

Unpredicted voltage on bus may
cause fault to go unnoticed

Enable line active

Unit 6 185Chang, Huang, Li, Lin, Liu

Observation Point Selection

․Impact
⎯ The observability of the transitive fanins of the added point is

improved

․Common choice
⎯ Stem lines having high fanout
⎯ Global feedback paths
⎯ Redundant signal lines
⎯ Output of logic devices having many inputs

MUX, XOR trees
⎯ Output from state devices
⎯ Address, control and data buses

Unit 6 186Chang, Huang, Li, Lin, Liu

Problems of CP & OP

․Large number of I/O pins
⎯ Add MUX’s to reduce the number of I/O pins
⎯ Serially shift CP values by shift-registers

․Larger test time

X Z

X’ Z’Shift-register R1

control Observe

Shift-register R2

Unit 6 187Chang, Huang, Li, Lin, Liu

What Is Scan ?

․Objective
⎯ To provide controllability and observability at internal

state variables for testing
․Method

⎯ Add test mode control signal(s) to circuit
⎯ Connect flip-flops to form shift registers in test mode
⎯ Make inputs/outputs of the flip-flops in the shift register

controllable and observable
․Types

⎯ Internal scan
Full scan, Partial scan, Random access

⎯ Boundary scan

Unit 6 188Chang, Huang, Li, Lin, Liu

The Scan Concept

Combinational
Logic

FF

FF

FF

Mode Switch
(normal or test)

Scan In

Scan Out

Unit 6 189Chang, Huang, Li, Lin, Liu

A Logic Design Before Scan Insertion

D Q

input
pins

clock

output
pins

D Q D Q

Combinational Logic

Sequential ATPG is extremely difficult:
due to the lack of controllability and observability at flip-flops.

Example: A 3-stage Counter

Unit 6 190Chang, Huang, Li, Lin, Liu

11

D Q

input
pins

clock

output
pins

11

D Q
11

D Q

Combinational LogicCombinational Logic

q1 q2
q3

× g stuck-at-0

q1
q2
q3

It takes 8 clock cycles to set the flip-flops to be (1, 1, 1),
for detecting the target fault g stuck-at-0 fault

(220 cycles for a 20-stage counter !)

Unit 6 191Chang, Huang, Li, Lin, Liu

A Logic Design After Scan Insertion

11
D Q

input
pins

clock

output
pins

11
D Q

11
D Q

Combinational Logic

scan-input scan-output

M
U

X

M
U

X

M
U

X

scan-enable

× g stuck-at-0

q1
q2
q3

q1 q2
q3

Scan Chain provides an easy access to flip-flops
Pattern Generation is much easier !!

Procedure Of Applying Test Patterns

Unit 6 192Chang, Huang, Li, Lin, Liu

․Notation
⎯ Test vectors T = < ti

I, ti
F > i= 1, 2, …

⎯ Output Response R = < ri
O, ri

F > i= 1, 2, …
․Test Application

⎯ (1) i = 1;
⎯ (2) Scan-in t1

F /* scan-in the first state vector for PPI’s */
⎯ (3) Apply ti

I /* apply current input vector at PI’s */
⎯ (4) Observe ri

O /* observe current output response at PO’s */
⎯ (5) Parallelly load register /* load-in the next vector at PPO’s */

(I.e., set Mode to ‘Normal’)
⎯ (6) Scan-out ri

F while scanning-in ti+1
F /* overlap scan-in and scan-out */

⎯ (7) i = i+1; Goto step (3)

PI’s

PPI’s PPO’s

PO’s
Comb.
portion

Unit 6 193Chang, Huang, Li, Lin, Liu

Testing Scan Chain ?

․Common practice
⎯ Scan chain is often first tested before testing core logic by

pumping-in and pumping-out random vectors
․Procedure

⎯ (1) i = 0;
⎯ (2) Scan-in 1st random vector to flip-flops
⎯ (3) Scan-out (i)th random vector while scanning-in (i+1)th

vector for flip-flops.
The (i)th scan-out vector should be identical to (i)th vector
scanned in earlier, otherwise scan-chain is mal-functioning

⎯ (4) If necessary i = i+1, goto step (3)

Unit 6 194Chang, Huang, Li, Lin, Liu

MUXed Scan Flip-Flop
⎯ Only D-type master-slave flip-flops are used
⎯ One extra primary input pin available for test
⎯ All flip-flop clocks controlled from primary inputs

No gated clock allowed
⎯ Clocks must not feed data inputs of flip-flops
⎯ Most popularly supported in standard cell libraries

Normal
Master-
Slave

Flip-flop

D

SC (normal / test)

SI (scan input)

CLK

Unit 6 195Chang, Huang, Li, Lin, Liu

LSSD Scan flip-flop (1977 IBM)

․LSSD: Level Sensitive Scan Design
⎯ Less performance degradation than MUXed scan FF

․Clocking
⎯ Normal operation: non-overlapping CK1=1 CK3=1
⎯ Scan operation: non-overlapping CK2=1 CK3=1

D

CK1

SD

CK2
CK3

Q1 Q2

Unit 6 196Chang, Huang, Li, Lin, Liu

Symbol of LSSD Scan FF

Latch 1

1D
2D

CK1
CK2

QD
SI
C
A

D

CK

Q

Latch 2

Q1 (normal level-sensitive
latch output)

SO

B

Unit 6 197Chang, Huang, Li, Lin, Liu

Scan Rule Violation Example

Q2Q1

D
Flip
Flop

D
Flip
Flop

D1 D2

Rule violation:
Flip-flops cannot form a shift-register

Clock

D
Flip
Flop

D
Flip
Flop

Clock

D1

D2

Q2

All FFs are triggered by the same clock edge
Set or reset signals are not controlled by any internal signals

A workaround

Unit 6 198Chang, Huang, Li, Lin, Liu

Some Problems With Full Scan

․Problems
⎯ Area overhead
⎯ Possible performance degradation
⎯ High test application time
⎯ Power dissipation

․Features of Commercial Tools
⎯ Scan-rule violation check (e.g., DFT rule check)
⎯ Scan insertion (convert a FF to its scan version)
⎯ ATPG (both combinational and sequential)
⎯ Scan chain reordering after layout

Major Commercial Test Tool Companies
Synopsys

Mentor-Graphics
SynTest (華騰科技)

LogicVision

Unit 6 199Chang, Huang, Li, Lin, Liu

Performance Overhead

․The increase of delay along the normal data paths
include:

⎯ Extra gate delay due to the multiplexer
⎯ Extra delay due to the capacitive loading of the scan-wiring

at each flip-flop’s output

․Timing-driven partial scan
⎯ Try to avoid scan flip-flops that belong to the timing critical

paths
⎯ The flip-flop selection algorithm for partial scan can take this

into consideration to reduce the timing impact of scan to the
design

Unit 6 200Chang, Huang, Li, Lin, Liu

Scan-Chain Reordering

⎯ Scan-chain order is often decided at gate-level without
knowing the cell placement

⎯ Scan-chain consumes a lot of routing resources, and could
be minimized by re-ordering the flip-flops in the chain after
layout is done

Scan-Out

Scan-InScan-In

Scan-Out

Scan cell

A better scan-chain orderLayout of a cell-based design

Unit 6 201Chang, Huang, Li, Lin, Liu

Overhead of Scan Design

⎯ No. of CMOS gates = 2000
⎯ Fraction of flip-flops = 0.478
⎯ Fraction of normal routing = 0.471

Scan
implementation

Predicted
overhead

Actual area
overhead

Normalized operating
frequency

None 0 0 1.0

Hierarchical 14.05% 16.93% 0.87

Optimized 14.05% 11.9% 0.91

Unit 6 202Chang, Huang, Li, Lin, Liu

Random Access Scan

․Comparison with Scan-Chain
⎯ More flexible – any FF can be accessed in constant time
⎯ Test time could be reduced
⎯ More hardware and routing overhead

QD
MUX

Test
data

Normal
data

X-enable

Y-enable

1

0

X decoder

Y
de

co
de

r

Y address

X address

FF

FF

Unit 6 203Chang, Huang, Li, Lin, Liu

Parameters

․link_library
⎯ The ASIC vendor library where you design is initially

represented

․target_library
⎯ Usually the same as your link_library, unless you are

translating a design between technologies

․test_default_scan_style
⎯ multiplexed_flip_flop, clocked_scan, aux_clock_lssd
⎯ Note that: the cell library incorporated should support these

scan cells

Unit 6 204Chang, Huang, Li, Lin, Liu

Typical Flat Design Flow

HDL

Set constraints

Set scan style

Run test-ready compile

Check constraints

Check design rules

Set scan configuration

Build scan chains

Adjust
constraints

or
compile
strategy

not met

fix problems

DESIGN COMPILER
DC EXPERT+

Optimize netlist
with scan

Check constraints

adjust
constraints

or try
incremental

compile

Save testable design

Create and format
test patterns

Compacted high fault
coverage test vectors

TEST
COMPILER

Unit 6 205Chang, Huang, Li, Lin, Liu

Synthesizing The Design

․Read in HDL code
dc_shell > read –format verilog design_name.v

․Set target_library
dc_shell > target_library = asic_vendor.db

․Constraint the design
dc_shell > max_area 1000
dc_shell > create_clock clock_port –period 20 -waveform {10,15}

․Declare the test methodology
dc_shell > set_scan_configuration –methodology partial_scan

․Select scan style
dc_shell > test_default_scan_style = multiplexed_flip_flop

․Compilation
dc_shell > compile -scan

Unit 6 206Chang, Huang, Li, Lin, Liu

Synthesizing The Design (con’t)

․Check constraints
dc_shell > report_constraint –all_violators

․Save design
dc_shell > write –format db –out design_test_ready.db

․Check design rules
dc_shell > check_test

Building Scan Chains

Unit 6 207Chang, Huang, Li, Lin, Liu

․Declare Scan Enable Signal
dc_shell > set_scan_signal test_scan_enable –port SE
dc_shell > set_drive 2 SE

․Set Min. Fault Coverage If Partial Scan
dc_shell > set_min_fault_coverage 95

․No Scan Replacement
dc_shell > set_scan_configuration –replace false

․Build the Scan Chains
dc_shell > insert_scan

․Check the Design Rules Again
dc_shell > check_test

Unit 6 208Chang, Huang, Li, Lin, Liu

Generating Test Patterns

․Generate Test Report
dc_shell > report_test –scan_path

․Write out Scan Design
dc_shell > write –format db –hierarchy –out design.db

․Generate The Test
dc_shell > create_test_patterns –compact_effort high

․Write Out Test Patterns
dc_shell > write_test –out test_vectors –format WGL

․WGL (Waveform Generation Language)
⎯ Is a format supported by Summit Design Software

Unit 6 209Chang, Huang, Li, Lin, Liu

Partial Scan

․Basic idea
⎯ Select a subset of flip-flops for scan
⎯ Lower overhead (area and speed)
⎯ Relaxed design rules

․Cycle-breaking technique
⎯ Cheng & Agrawal, IEEE Trans. On Computers, April 1990
⎯ Select scan flip-flops to simplify sequential ATPG
⎯ Overhead is about 25% off than full scan

․Timing-driven partial scan
⎯ Jou & Cheng, ICCAD, Nov. 1991
⎯ Allow optimization of area, timing, and testability simultaneously

Unit 6 210Chang, Huang, Li, Lin, Liu

Full Scan vs. Partial Scan

scan design

full scan partial scan

every flip-flop is a scan-FF NOT every flip-flop is a scan-FF

test time

hardware overhead

fault coverage

ease-of-use

longer

more

~100%

easier

shorter

less

unpredictable

harder

Unit 6 211Chang, Huang, Li, Lin, Liu

Partial Scan Design

PI PO

1 2

3

4 5 6

PPI PPO

Scan In Scan Out

Scan In

Scan OutScan Flip-Flops: {2, 5}
Non-Scan FFs: {1, 3, 4, 6}

Unit 6 212Chang, Huang, Li, Lin, Liu

Cycle Breaking Algorithm

․Algorithm 1
⎯ Select nodes in a digraph G=(V,E) to cut all cycles of length

greater than one

․Step 1
⎯ Find all the non-trivial SCCs Gi=(Vi, Ei), where 1≦i≦r
⎯ If no non-trivial SCC stop

․Step 2
⎯ (1) Delete a node v using one of the heuristics H1, H2, H3 (to

be discussed later)
⎯ (2) Delete node v from Vi and delete all incoming and

outgoing edges of v
⎯ (3) Let the resulting graph be Gi’=(Vi’, Ei’)

Execute Algorithm 1 recursively with Gi’ as input graph

Unit 6 213Chang, Huang, Li, Lin, Liu

Reducing the Length of Consecutive Self-
Loop Paths

․Definition
⎯ A graph has a consecutive self-loop path of length K if there

exists a directed path of exactly K vertices, each having a
self-loop

․Observation
⎯ Circuits with consecutive self-loop paths, such as counters,

need longer test generation time

․Solution
⎯ Reduce the length of consecutive self-loop paths by

scanning some of the flip-flops with self-loops

Unit 6 214Chang, Huang, Li, Lin, Liu

Trade-Off of Area Overhead v.s. Test
Generation Effort

CPU
Time

Area Overhead

Non-Scan Only Self
Loops Remain

Feedback
Free Circuit

Full-Scan

Area
overhead

Test
Generation
Complexity

BALLAST

Unit 6 215Chang, Huang, Li, Lin, Liu

Conclusions

․Testing
⎯ Conducted after manufacturing
⎯ Must be considered during the design process

․Major Fault Models
⎯ Stuck-At, Bridging, Stuck-Open, Delay Fault, …

․Major Tools Needed
⎯ Design-For-Testability

By Scan Chain Insertion or Built-In Self-Test
⎯ Fault Simulation
⎯ Automatic Test Pattern Generation

․Other Applications in CAD
⎯ ATPG is a way of Boolean Reasoning, applicable to may

logic-domain CAD problems

	Outline
	Chip Design & Manufacturing Flow
	Design Verification, Testing and Diagnosis
	Manufacturing Defects
	Faults, Errors and Failures
	Scenario of Manufacturing Test
	Tester: Advantest T6682
	Purpose of Testing
	Testing and Quality
	Fault Coverage
	Defect Level
	Defect Level v.s. Fault Coverage
	DPM v.s. Yield and Coverage
	Why Testing Is Difficult ?
	The Infamous Design/Test Wall
	Old Design & Test Flow
	New Design and Test Flow
	Outline
	Functional v.s. Structural Testing
	Why Fault Model ?
	Fault Modeling
	Fault Modeling (cont’d)
	Fault Types Commonly Used To Guide Test Generation
	Single Stuck-At Fault
	Multiple Stuck-At Faults
	Why Single Stuck-At Fault Model
	Multiple Faults
	Bridging Faults
	Bridging Faults For CMOS Logic
	CMOS Transistor Stuck-On
	CMOS Transistor Stuck-Open (I)
	CMOS Transistor Stuck-Open (II)
	Fault Coverage in a CMOS Chip
	Summary of Stuck-Open Faults
	Memory Faults
	Delay Testing
	Gate-Delay Fault
	Gate-Delay Fault (cont’d)
	Path-Delay Fault
	Why Logical Fault Modeling ?
	Definition Of Fault Detection
	Fault Detection Requirement
	Fault Sensitization
	Detectability
	Undetectable Fault
	Test Set
	Typical Test Generation Flow
	Fault Equivalence
	Fault Equivalence
	Equivalence Fault Collapsing
	Equivalent Fault Group
	Fault Dominance
	Fault Dominance
	Stem v.s. Branch Faults
	Analysis of a Single Gate
	Fault Collapsing
	Dominance Graph
	Fault Collapsing Flow
	Prime Fault
	Why Fault Collapsing ?
	Checkpoint Theorem
	Why Inputs + Branches Are Enough ?
	Fault Collapsing + Checkpoint
	Outline
	Why Fault Simulation ?
	Conceptual Fault Simulation
	Some Basics for Logic Simulation
	Compiled-Code Simulation
	Event-Driven Simulation
	Complexity of Fault Simulation
	Characteristics of Fault Simulation
	Fault Simulation Techniques
	Parallel Fault Simulation
	Example: Parallel Fault Simulation
	Deductive Fault Simulation
	Illustration of Fault List Propagation
	Fault List Propagation Rule
	Example: Deductive Simulation (1)
	Example: Deductive Simulation (2)
	Example: Deductive Simulation (3)
	Example: Deductive Simulation (4)
	Example: Deductive Simulation
	Concurrent Fault Simulation
	Concurrent Fault Simulation
	Example: Concurrent Simulation (1)
	Example: Concurrent Simulation (2)
	Example: Concurrent Simulation (3)
	Example: Concurrent Simulation (4)
	Fault List of AND Gate
	Fault List Propagation
	Parallel-Pattern Single-Fault Simulation
	Example: Parallel Pattern Simulation
	Sensitive Input and Critical Path
	Basics of Critical Path Tracing
	Analysis of Critical Path Tracing
	Example of Critical Path Tracing
	Anomaly of Critical Path Tracing
	Multiple Path Sensitization
	Sequential Fault Simulation
	Sequential Design Model
	Time-Frame-Expansion Model
	Parallel Pattern Simulation for Sequential Circuits?
	Outline
	Outline of ATPG(Automatic Test Pattern Generation)
	General ATPG Flow
	Combinational ATPG
	A Test Pattern
	Test Generation Methods(From Truth Table)
	Test Generation Methods(Using Boolean Equation)
	Boolean Difference
	Chain Rule
	Boolean Difference (con’t)
	Test Gen. By Boolean Difference
	Test Generation By Boolean Difference (con’t)
	Outline of ATPG(Automatic Test Pattern Generation)
	Test Generation Method(From Circuit Structure)
	Common Concepts for Structural TG
	Ex: Decision on Fault Propagation
	Various Graphs
	Ex: Decisions On Line Justification
	Branch-and-Bound Search
	Implications
	Local Implications (Forward)
	Local Implications (Backward)
	Global Implications
	Learning for Global Implication
	Early Detection of Inconsistency
	Ex: D-Algorithm (1/3)
	Ex: D-Algorithm (2/3)
	Ex: D-Algorithm (3/3)
	D-Algorithm: Value Computation
	Decision Tree on D-Frontier
	9-Value D-Algorithm
	Example: 9-Value D-Algorithm
	Final Step of 9-Value D-Algorithm
	Outline of ATPG(Automatic Test Pattern Generation)
	PODEM: Path-Oriented DEcision Making
	Search Space of PODEM
	Objective() and Backtrace()
	Objective Routine
	Backtrace Routine
	Example: Backtrace
	PI Assignment in PODEM
	Example: PODEM (1/3)
	Example: PODEM (2/3)
	Example: PODEM (3/3)
	PODEM: Value Computation
	Decision Tree in PODEM
	Terminating Conditions
	PODEM: Recursive Algorithm
	Overview of PODEM
	The Selection Strategy in PODEM
	Controllability As Guidance
	Testability Analysis
	SCOAP(Sandia Controllability/Observability Analysis Program)
	General Characteristic of Controllability and Observability
	Controllability Measures
	Controllability Measure (con’t)
	Observability Measure
	PODEM: Example 2 (1/3)
	PODEM: Example 2 (2/3)
	PODEM: Example 2 (3/3)
	If The Backtracing Is Not Guided (1/3)
	If The Backtracing Is Not Guided (2/3)
	If The Backtracing Is Not Guided (3/3)
	Outline of ATPG(Automatic Test Pattern Generation)
	FAN (Fanout Oriented) Algorithm
	Headlines and Bound Lines
	Decision Tree (PODEM v.s. FAN)
	Why Stops at Head Lines ?
	Why Multiple Backtrace ?
	Example: Multiple Backtrace
	References For ATPG
	Outline
	Why DFT ?
	Design For Testability
	Important Factors
	Test Point Insertion
	0/1 Injection Circuitry
	Control Point Selection
	Example: Use CP to Fix DFT Rule Violation
	Example: Fixing Gated Clock
	Example: Fixing Tri-State Bus Contention
	Observation Point Selection
	Problems of CP & OP
	What Is Scan ?
	The Scan Concept
	A Logic Design Before Scan Insertion
	Example: A 3-stage Counter
	A Logic Design After Scan Insertion
	Procedure Of Applying Test Patterns
	Testing Scan Chain ?
	MUXed Scan Flip-Flop
	LSSD Scan flip-flop (1977 IBM)
	Symbol of LSSD Scan FF
	Scan Rule Violation Example
	Some Problems With Full Scan
	Performance Overhead
	Scan-Chain Reordering
	Overhead of Scan Design
	Random Access Scan
	Parameters
	Typical Flat Design Flow
	Synthesizing The Design
	Synthesizing The Design (con’t)
	Building Scan Chains
	Generating Test Patterns
	Partial Scan
	Full Scan vs. Partial Scan
	Partial Scan Design
	Cycle Breaking Algorithm
	Reducing the Length of Consecutive Self-Loop Paths
	Trade-Off of Area Overhead v.s. Test Generation Effort
	Conclusions

