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Unit 5F: Layout Compaction

․Course contents
⎯ Design rules
⎯ Symbolic layout
⎯ Constraint-graph compaction

․Readings: Chapter 6
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Design Rules

․Design rules:
restrictions on the mask 
patterns to increase the 
probability of successful 
fabrication. 

․Patterns and design 
rules are often 
expressed in λ rules. 

․Most common design 
rules:
⎯ minimum-width rules (valid 

for
a mask pattern of a 
specific layer): (a).

⎯ minimum-separation rules 
(between mask patterns of 
the same layer or different 
layers): (b), (c).

⎯ minimum-overlap rules 
(mask patterns in different 
layers): (e).
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CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout
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Symbolic Layout

․Geometric (mask) layout: coordinates of the layout 
patterns (rectangles) are absolute (or in multiples of λ).

․Symbolic (topological) layout: only relations between 
layout elements (below, left to, etc) are known.
⎯ Single symbols are used to represent elements located in 

several layers, e.g. transistors, contact cuts.
⎯ The length, width or layer of a wire or other layout element 

might be left unspecified.
⎯ Mask layers not directly related to the functionality of the circuit 

do not need to be specified, e.g. n-well, p-well.

․The symbolic layout can work with a technology file that 
contains all design rule information for the target 
technology to produce the geometric layout.
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Compaction and Its Applications

․A compaction program or compactor generates layout 
at the mask level. It attempts to make the layout as 
dense as possible.

․Applications of compaction:
⎯ Area minimization: remove redundant space in layout at 

the mask level.
⎯ Layout compilation: generate mask-level layout from 

symbolic layout.
⎯ Redesign: automatically remove design-rule violations.
⎯ Rescaling: convert mask-level layout from one 

technology to another.
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Aspects of Compaction

․Dimension:
⎯ 1-dimensional (1D) compaction: layout elements 

only are moved or shrunk in one dimension (x or y 
direction).

Is often performed first in the x-dimension and then in the y-
dimension (or vice versa).

⎯ 2-dimensional (2D) compaction: layout elements are 
moved and shrunk simultaneously in two dimensions.

․Complexity:
⎯ 1D compaction can be done in polynomial time.
⎯ 2D compaction is NP-hard.
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1D Compaction: X Followed By Y

․Each square is 2 λ * 2 λ, minimum separation is 1 λ.
․Initially, the layout is 11 λ * 11 λ.
․After compacting along the x direction, then the y

direction, we have the layout size of 8 λ * 11 λ.
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1D Compaction: Y Followed By X

․Each square is 2 λ * 2 λ, minimum separation is 1 λ.
․Initially, the layout is 11 λ * 11 λ.
․After compacting along the y direction, then the x

direction, we have the layout size of 11 λ * 8 λ.
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2D Compaction
․Each square is 2 λ * 2 λ, minimum separation is 1 λ.
․Initially, the layout is 11 λ * 11 λ.
․After 2D compaction, the layout size is only 8 λ * 8 λ.

․Since 2D compaction is NP-complete, most compactors 
are based on repeated 1D compaction.
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Inequalities for Distance Constraints

․Minimum-distance 
design rules can be 
expressed as inequalities.

xj – xi ≥ dij.

․For example, if the 
minimum width is a and 
the minimum separation 
is b, then 

x2 – x1 ≥ a
x3 – x2 ≥ b
x3 – x6 ≥ b
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The Constraint Graph
․The inequalities can be used to construct a constraint 

graph G(V, E):
⎯ There is a vertex vi for each variable xi.
⎯ For each inequality xj – xi ≥ dij there is an edge (vi, vj) with weight dij .
⎯ There is an extra source vertex, v0; it is located at x = 0 ; all other 

vertices are at its right.

․If all the inequalities express minimum-distance constraints, 
the graph is acyclic (DAG). 

․The longest path in a constraint graph determines the 
layout dimension.

constraint graph
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Maximum-Distance Constraints
․Sometimes the distance of layout elements is bounded 

by a maximum, e.g., when the user wants a maximum 
wire width, maintains a wire connecting to a via, etc.
⎯ A maximum distance constraint gives an inequality of the form: 

xj – xi ≤ cij or xi – xj ≥ -cij

⎯ Consequence for the constraint graph: backward edge
(vj, vi) with weight dji = -cij; the graph is not acyclic anymore.

․The longest path in a constraint graph determines the 
layout dimension.

d
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Shortest Path for Directed Acyclic Graphs (DAGs)
DAG-Shortest-Paths(G, w, s)
1. topologically sort the vertices of G;
2. Initialize-Single-Source(G, s);
3. for each vertex u taken in topologically sorted order
4.     for each vertex v ∈ Adj[u]
5.              Relax(u, v, w);

․Time complexity: O(V+E) (adjacency-list representation).
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Topological Sort
․ A topological sort of a directed acyclic graph (DAG) G = (V, E) is a 

linear ordering of V s.t. (u, v) ∈ E ⇒ u appears before v.
Topological-Sort(G)
1. call DFS(G) to compute finishing times f[v] for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

․ Time complexity: O(V+E) (adjacency list).
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Depth-First Search (DFS)

․color[u]: white (undiscovered) 
→ gray (discovered) → black 
(explored: out edges are all 
discovered)

․d[u]: discovery time (gray); 
f[u]: finishing time (black); 
π[u]: predecessor.

․Time complexity: O(V+E) 
(adjacency list).

DFS(G)
1. for each vertex u ∈ V[G]
2.    color[u] ← WHITE;
3.    π [u] ←NIL;
4. time ← 0;
5. for each vertex u ∈ V[G]
6.     if color[u] = WHITE
7.        DFS-Visit(u).

DFS-Visit(u)
1. color[u] ← GRAY;
/* white vertex u has just been 

discovered. */
2. d[u] ← time ← time + 1;
3. for each vertex v ∈ Adj[u]

/* Explore edge (u,v). */
4.    if color[v] = WHITE
5.        π [v] ← u;
6.         DFS-Visit(v);
7. color[u] ← BLACK;

/* Blacken u; it is finished. */
8. f[u] ← time ← time +1.
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DFS Example

․ color[u]: white → gray → black.
․Depth-first forest: Gπ = (V, Eπ), Eπ = {(π[v], v) ∈ E | v ∈ V, π[v] ≠

NIL}.
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Relaxation
Initialize-Single-Source(G, s)
1. for each vertex v ∈ V[G]
2.    d[v] ← ∞; 

/* upper bound on the weight of 
a shortest path from s to v */

3.    π[v] ← NIL; /* predecessor of v */
4. d[s] ← 0;

Relax(u, v, w)
1. if d[v] > d[u]+w(u, v)
2.    d[v] ← d[u]+w(u, v);
3.    π[v] ← u;

․d[v] ≤ d[u] + w(u, v) after calling Relax(u, v, w).
․d[v] ≥ δ(s, v) during the relaxation steps; once d[v] achieves its 

lower bound δ(s, v), it never changes.
․Let be a shortest path. If d[u] = δ(s, u) prior to the 

call Relax(u, v, w), then d[v] = δ(s, v) after the call.
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Longest-Path Algorithm for DAGs

․pi: in-degree of vi.
․xi: longest-path 

length from v0 to vi.
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DAG Longest-Path Example 

․Runs in a breadth-first search 
manner.

․pi: in-degree of vi.
․xi: longest-path length from v0

to vi.
․Time complexity: O(V+E).
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Longest-Paths In Cyclic Graphs

․Constraint-graph compaction with maximum-distance 
constraints requires solving the longest-path problem in 
cyclic graphs.

․Two cases are distinguished:
⎯ There are positive cycles: No feasible solution for longest 

paths. We shall detect the cycles.
⎯ All cycles are negative: Polynomial-time algorithms exist.
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The Liao-Wong Algorithm

․Split the edge set E of the constraint graph into two 
subsets:
⎯ Forward edges Ef: related to minimum-distance constraints.
⎯ Backward edges Eb: related to maximum-distance 

constraints.
․The graph G(V, Ef) is acyclic; the longest distance for 

each vertex can be computed with the procedure 
‘‘longest-path’’.

․Repeat :
⎯ Update longest distances by processing the edges from Eb.
⎯ Call ‘‘longest-path’’ for G(V, Ef).

․Worst-case time complexity: O(Eb r Ef).
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Pseudo Code: The Liao-Wong Algorithm
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Example for the Liao-Wong Algorithm
․Two edge sets: forward edges Ef and 

backward edges Eb

․xi: longest-path length from v0 to vi.
․Call ‘‘longest-path’’ for G(V, Ef).
․Update longest distances by 

processing the edges from Eb. 

․Time complexity: O(Eb r Ef).

x1 < x2 - 3

x3 < x4 - 1

x5 = x4 - 4
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The Bellman-Ford Algorithm for Shortest Paths

Bellman-Ford(G,w, s)
1. Initialize-Single-Source(G, s);
2. for i ← 1 to |V[G]|-1
3.   for each edge (u, v) ∈ E[G]
4.        Relax(u, v, w);
5. for each edge (u, v) ∈ E[G] 
6.    if d[v] > d[u] + w(u, v)
7.        return FALSE;
8. return TRUE

․Solves the case where edge weights can be negative.
․Returns FALSE if there exists a cycle reachable from the source;

TRUE otherwise.
․Time complexity: O(VE).
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Example for Bellman-Ford for Shortest Paths
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The Bellman-Ford Algorithm for Longest Paths
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Example of Bellman-Ford for Longest Paths
․Repeated “wave front propagation.”
․S1: the current wave front.
․xi: longest-path length from v0 to vi.
․After k iterations, it computes the 

longest-path values for paths going 
through k-1 intermediate vertices. 

․Time complexity: O(VE).
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Longest and Shortest Paths

․Longest paths become shortest paths and vice versa 
when edge weights are multiplied by –1.

․Situation in DAGs: both the longest and shortest path 
problems can be solved in linear time.

․Situation in cyclic directed graphs:
⎯ All weights are positive: shortest-path problem in P 

(Dijkstra), no feasible solution for the longest-path 
problem.

⎯ All weights are negative: longest-path problem in P 
(Dijkstra), no feasible solution for the shortest-path 
problem.

⎯ No positive cycles: longest-path problem is in P.
⎯ No negative cycles: shortest-path problem is in P.
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Remarks on Constraint-Graph Compaction

․Noncritical layout elements: Every element outside the 
critical paths has freedom on its best position => may 
use this freedom to optimize some cost function.

․Automatic jog insertion: The quality of the layout can 
further be improved by automatic jog insertion.

․Hierarchy: A method to reduce complexity is 
hierarchical compaction, e.g., consider cells only.
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Constraint Generation
․The set of constraints should be irredundant and generated 

efficiently.
․An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj) exist 

and w((vi, vj)) ≤ w((vi, vk)) + w((vk, vj)).
⎯ The minimum-distance constraints for (A, B) and (B, C) make 

that for (A, C) redundant.

․Doenhardt and Lengauer have proposed a method for 
irredundant constraint generation with complexity O(n log n).
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