Unit 5F: Layout Compaction

- Course contents
- Design rules
- Symbolic layout
- Constraint-graph compaction
- Readings: Chapter 6

Design Rules

- Design rules: restrictions on the mask patterns to increase the probability of successful fabrication.
- Patterns and design rules are often expressed in λ rules.
- Most common design rules:
- minimum-width rules (valid for a mask pattern of a specific layer): (a).
- minimum-separation rules (between mask patterns of the same layer or different layers): (b), (c).
- minimum-overlap rules (mask patterns in different layers): (e).

CMOS Inverter Layout Example

Symbolic layout

p/n diffusion
WIM polysilicon
contact cut
metal
Geometric layout

Symbolic Layout

- Geometric (mask) layout: coordinates of the layout patterns (rectangles) are absolute (or in multiples of λ).
- Symbolic (topological) layout: only relations between layout elements (below, left to, etc) are known.
- Single symbols are used to represent elements located in several layers, e.g. transistors, contact cuts.
- The length, width or layer of a wire or other layout element might be left unspecified.
- Mask layers not directly related to the functionality of the circuit do not need to be specified, e.g. n-well, p-well.
- The symbolic layout can work with a technology file that contains all design rule information for the target technology to produce the geometric layout.

Compaction and Its Applications

- A compaction program or compactor generates layout at the mask level. It attempts to make the layout as dense as possible.
- Applications of compaction:
- Area minimization: remove redundant space in layout at the mask level.
- Layout compilation: generate mask-level layout from symbolic layout.
- Redesign: automatically remove design-rule violations.
- Rescaling: convert mask-level layout from one technology to another.

Aspects of Compaction

- Dimension:
- 1-dimensional (1D) compaction: layout elements only are moved or shrunk in one dimension (x or y direction).
- Is often performed first in the x-dimension and then in the y dimension (or vice versa).
- 2-dimensional (2D) compaction: layout elements are moved and shrunk simultaneously in two dimensions.
- Complexity:
- 1D compaction can be done in polynomial time.
- 2D compaction is NP-hard.

1D Compaction: X Followed By Y

- Each square is $2 \lambda * 2 \lambda$, minimum separation is 1λ.
- Initially, the layout is $11 \lambda * 11 \lambda$.
- After compacting along the x direction, then the y direction, we have the layout size of 8λ * 11λ.

1D Compaction: Y Followed By X

- Each square is $2 \lambda * 2 \lambda$, minimum separation is 1λ.
- Initially, the layout is $11 \lambda * 11 \lambda$.
- After compacting along the y direction, then the x direction, we have the layout size of 11λ * 8λ.

2D Compaction

- Each square is 2λ * 2λ, minimum separation is 1λ.
- Initially, the layout is $11 \lambda * 11 \lambda$.
- After 2D compaction, the layout size is only 8λ * 8λ.

- Since 2D compaction is NP-complete, most compactors are based on repeated 1D compaction.

Inequalities for Distance Constraints

- Minimum-distance design rules can be expressed as inequalities.

$$
x_{j}-x_{i} \geq d_{i j} .
$$

- For example, if the minimum width is a and the minimum separation is b, then

$$
\begin{aligned}
& x_{2}-x_{1} \geq a \\
& x_{3}-x_{2} \geq b \\
& x_{3}-x_{6} \geq b
\end{aligned}
$$

The Constraint Graph

- The inequalities can be used to construct a constraint graph $G(V, E)$:
- There is a vertex v_{i} for each variable x_{i}.
- For each inequality $x_{j}-x_{i} \geq d_{i j}$ there is an edge $\left(v_{i}, v_{j}\right)$ with weight $d_{i j}$.
- There is an extra source vertex, v_{0}; it is located at $x=0$; all other vertices are at its right.
- If all the inequalities express minimum-distance constraints, the graph is acyclic (DAG).
- The longest path in a constraint graph determines the layout dimension.

constraint graph

Maximum-Distance Constraints

- Sometimes the distance of layout elements is bounded by a maximum, e.g., when the user wants a maximum wire width, maintains a wire connecting to a via, etc.
- A maximum distance constraint gives an inequality of the form:

$$
x_{j}-x_{i} \leq c_{i j} \text { or } x_{i}-x_{j} \geq-c_{i j}
$$

- Consequence for the constraint graph: backward edge
- $\left(v_{j}, v_{i}\right)$ with weight $d_{j i}=-c_{i j}$; the graph is not acyclic anymore.
- The longest path in a constraint graph determines the layout dimension.

Shortest Path for Directed Acyclic Graphs (DAGs)

DAG-Shortest-Paths(G, w, s)

1. topologically sort the vertices of G;
2. Initialize-Single-Source(G, s);
3. for each vertex u taken in topologically sorted order
4. for each vertex $v \in \operatorname{Adj}[u]$
5. Relax (u, v, w);

- Time complexity: $O(V+E)$ (adjacency-list representation).

Topological Sort

- A topological sort of a directed acyclic graph (DAG) $G=(V, E)$ is a linear ordering of V s.t. $(u, v) \in E \Rightarrow u$ appears before v.
Topological-Sort(G)

1. call DFS(G) to compute finishing times $f[v]$ for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

- Time complexity: $O(V+E)$ (adjacency list).

Vertices are arranged from left to right in order of decreasing finishing times.

Depth-First Search (DFS)

```
DFS(G)
1. for each vertex \(u \in V[G]\)
2. color \([u] \leftarrow\) WHITE;
3. \(\pi[u] \leftarrow \mathrm{NIL}\);
4. time \(\leftarrow 0\);
5. for each vertex \(u \in V[G]\)
6. if color \([u]=\) WHITE
7. DFS-Visit(u).
DFS-Visit(u)
1. color \([u] \leftarrow\) GRAY;
    /* white vertex ut has just been
        discovered. */
2. \(d[u] \leftarrow\) time \(\leftarrow\) time +1 ;
3. for each vertex \(v \in A d j[u]\)
        /* Explore edge ( \(u, v\) ). */
4. if color \([v]=\) WHITE
5. \(\pi[v] \leftarrow u\);
6. DFS-Visit( \(v\) );
7. color \([u] \leftarrow\) BLACK;
    /* Blacken \(u\); it is finished. */
8. \(f[u] \leftarrow\) time \(\leftarrow\) time +1 .
```

- color[u]: white (undiscovered) \rightarrow gray (discovered) \rightarrow black (explored: out edges are all discovered)
- $d[u]$: discovery time (gray); flu]: finishing time (black); $\pi[u]$: predecessor.
- Time complexity: $O(V+E)$ (adjacency list).

DFS Example

(i)

(j)

(k)

- color[u]: white \rightarrow gray \rightarrow black.
- Depth-first forest: $G_{\pi}=\left(V, E_{\pi}\right), E_{\pi}=\{(\pi[v], v) \in E \mid v \in V, \pi[v] \neq$ NIL\}.

Relaxation

Initialize-Single-Source($G, ~ s$)

1. for each vertex $v \in V[G]$
2. $d[v] \leftarrow \infty$;
/* upper bound on the weight of a shortest path from s to v */
3. $\pi[\mathrm{v}] \leftarrow \mathrm{NIL}$; /* predecessor of $v * /$
4. $d[s] \leftarrow 0$;

- $d[v] \leq d[u]+w(u, v)$ after calling Relax (u, v, w).
- $d[v] \geq \delta(s, v)$ during the relaxation steps; once $d[v]$ achieves its lower bound $\delta(s, v)$, it never changes.
- Let $s \leadsto u \rightarrow v$ be a shortest path. If $d[u]=\delta(s, u)$ prior to the call Relax (u, v, w), then $d[v]=\delta(s, v)$ after the call.

Longest-Path Algorithm for DAGs

longest-path(G)
(

$$
\text { for }(i \leftarrow 1 ; i \leq n ; i \leftarrow i+1)
$$

$$
p_{i} \leftarrow " \text { in-degree of } v_{i} " ;
$$

$$
Q \leftarrow\left\{v_{0}\right\}
$$

$$
\text { while }(Q \neq \varnothing)\{
$$

$Q \leftarrow Q \backslash\left\{v_{i}\right\} ;$
for each v_{j} "such that" $\left(v_{i}, v_{j}\right) \in E\{$

$$
x_{j} \leftarrow \max \left(x_{j}, x_{i}+d_{i j}\right) ;
$$

$$
p_{j} \leftarrow p_{j}-1
$$

$$
\text { if }\left(p_{j} \leq 0\right)
$$

$$
Q \leftarrow Q \cup\left\{v_{j}\right\}
$$

\}
\}
\}

```
main ()
```

 \{
 for \((i \leftarrow 0 ; i \leq n ; i \leftarrow i+1)\)
 \(x_{i} \leftarrow 0 ;\)
 longest-path(G);
]

DAG Longest-Path Example

- Runs in a breadth-first search manner.
- p_{i} : in-degree of v_{i}.
- x_{i} : longest-path length from v_{0} to v_{i}.
- Time complexity: $O(V+E)$.

\bigcirc	$p \mathrm{l}$	P2	P3	P4	$P 5$	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
"not initialized"	l	2	l	2	l	0	0	0	0	0
[40]	0	1	1	2	1	1	5	0	0	0
[ı1]	0	0	1	2	0	1	5	0	0	3
[12, 415$\}$	0	0	0	l	0	1	5	6	6	3
[13, 415]	0	0	0	l	0	1	5	6	6	3
[415]	0	0	0	0	0	1	5	6	7	3
[4]	0	0	0	0	0	1	5	6	7	3

Longest-Paths In Cyclic Graphs

- Constraint-graph compaction with maximum-distance constraints requires solving the longest-path problem in cyclic graphs.
- Two cases are distinguished:
- There are positive cycles: No feasible solution for longest paths. We shall detect the cycles.
- All cycles are negative: Polynomial-time algorithms exist.

The Liao-Wong Algorithm

- Split the edge set E of the constraint graph into two subsets:
- Forward edges E_{f} : related to minimum-distance constraints.
- Backward edges E_{b} : related to maximum-distance constraints.
- The graph $G\left(V, E_{f}\right)$ is acyclic; the longest distance for each vertex can be computed with the procedure "longest-path".
- Repeat :
- Update longest distances by processing the edges from E_{b}.
- Call "longest-path" for $G\left(V, E_{f}\right)$.
- Worst-case time complexity: $O\left(E_{b} \times E_{f}\right)$.

Pseudo Code: The Liao-Wong Algorithm

$$
\begin{aligned}
& \text { count } \leftarrow 0 ; \\
& \text { for }(i \leftarrow 1 ; i \leq n ; i \leftarrow i+1) \\
& x_{i} \leftarrow-\infty ; \\
& x_{0} \leftarrow 0 ; \\
& \text { do }\left\{\begin{array}{l}
\text { flag } \leftarrow 0 ; \\
\text { longest-path }\left(G_{f}\right) ; \\
\text { for each }\left(v_{i}, v_{j}\right) \in E_{b} \\
\text { if }\left(x_{j}<x_{i}+d_{i j}\right)\{ \\
x_{j} \leftarrow x_{i}+d_{i j} ; \\
\text { flag } \leftarrow 1 ; \\
\} \\
\text { count } \leftarrow \operatorname{count}+1 ; \\
\text { if (count }>\left|E_{b}\right| \& \& \text { flag) } \\
\text { error("positive cycle") }
\end{array}\right. \\
& \text { \} } \\
& \text { while (flag); }
\end{aligned}
$$

Example for the Liao-Wong Algorithm

- Two edge sets: forward edges E_{f} and backward edges E_{b}
- x_{i} : longest-path length from v_{0} to v_{i}.
- Call "longest-path" for $G\left(V, E_{f}\right)$.
- Update longest distances by processing the edges from E_{b}.
- Time complexity: $O\left(E_{b} \times E_{f}\right)$.

$x 1<x 2-3$	Step	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
	Initialize	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
	Forward 1	1	5	6	7	3
	Backward 1	2	5	6	7	3
	Forward 2	2	5	6	8	4
$x 3<x 4-1$	Backward 2	2	5	7	8	4
	Forward 3	2	5	7	8	4
$x 5=x 4-4$	Backward 3	2	5	7	8	4

The Bellman-Ford Algorithm for Shortest Paths

```
Bellman-Ford(G,w, s)
1. Initialize-Single-Source(G, s);
2. for i}\leftarrow1\mathrm{ to |V[G]|-1
3. for each edge (u,v) \inE[G]
4. Relax(u,v,w);
5. for each edge (u,v) \inE[G]
6. if d[v]>d[u]+w(u,v)
7. return FALSE;
8. return TRUE
```

- Solves the case where edge weights can be negative.
- Returns FALSE if there exists a cycle reachable from the source; TRUE otherwise.
- Time complexity: $O(V E)$.

Example for Bellman-Ford for Shortest Paths

relax edges in lexicographic order: $(\mathrm{u}, \mathrm{v}),(\mathrm{u}, \mathrm{x}),(\mathrm{u}, \mathrm{y}), \ldots,(\mathrm{z}, \mathrm{u}),(\mathrm{z}, \mathrm{x})$

(a)

(b)

(c)

(d)

(e)

The Bellman-Ford Algorithm for Longest Paths

$$
\begin{aligned}
& \text { for }(i \leftarrow 1 ; i \leq n ; i \leftarrow i+1) \\
& \quad x_{i} \leftarrow-\infty ; \\
& x_{0} \leftarrow 0 ; \\
& \text { count } \leftarrow 0 ; \\
& S_{1} \leftarrow\left\{v_{0}\right\} ; \\
& S_{2} \leftarrow \not \emptyset ; \\
& \text { while (count } \left.\leq n \& \& S_{1} \neq \emptyset\right)\{ \\
& \text { for each } v_{i} \in S_{1} \\
& \quad \text { for each } v_{j} \text { "such that" }\left(v_{i}, v_{j}\right) \in E \\
& \quad \text { if }\left(x_{j}<x_{i}+d_{i j}\right)\{ \\
& \quad x_{j} \leftarrow x_{i}+d_{i j} ; \\
& \quad S_{2} \leftarrow S_{2} \cup\left\{v_{j}\right\} \\
& \quad\} \\
& \quad S_{1} \leftarrow S_{2} ; \\
& S_{2} \leftarrow \not \emptyset ; \\
& \text { count } \leftarrow \text { count }+1 ; \\
& \text { \} } \\
& \text { if (count }>n) \\
& \text { error("positive cycle"); }
\end{aligned}
$$

Example of Bellman-Ford for Longest Paths

- Repeated "wave front propagation."
- S_{1} : the current wave front.
- x_{i} : longest-path length from v_{0} to v_{i}.
- After k iterations, it computes the longest-path values for paths going through k-1 intermediate vertices.
- Time complexity: $O(V E)$.

S_{1}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
"not initialized"	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$
$\left\{v_{0}\right\}$	1	5	$-\infty$	$-\infty$	$-\infty$
$\left\{v_{1}, v_{2}\right\}$	2	5	6	6	3
$\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$	2	5	6	7	4
$\left\{v_{4}, v_{5}\right\}$	2	5	6	8	4
$\left\{v_{4}\right\}$	2	5	7	8	4
$\left\{v_{3}\right\}$	2	5	7	8	4

Longest and Shortest Paths

- Longest paths become shortest paths and vice versa when edge weights are multiplied by -1 .
- Situation in DAGs: both the longest and shortest path problems can be solved in linear time.
- Situation in cyclic directed graphs:
- All weights are positive: shortest-path problem in P (Dijkstra), no feasible solution for the longest-path problem.
- All weights are negative: longest-path problem in P (Dijkstra), no feasible solution for the shortest-path problem.
- No positive cycles: longest-path problem is in P .
- No negative cycles: shortest-path problem is in P.

Remarks on Constraint-Graph Compaction

- Noncritical layout elements: Every element outside the critical paths has freedom on its best position => may use this freedom to optimize some cost function.
- Automatic jog insertion: The quality of the layout can further be improved by automatic jog insertion.

- Hierarchy: A method to reduce complexity is hierarchical compaction, e.g., consider cells only.

Constraint Generation

- The set of constraints should be irredundant and generated efficiently.
- An edge $\left(v_{\mathrm{i}}, v_{\mathrm{j}}\right)$ is redundant if edges $\left(v_{\mathrm{i}}, v_{\mathrm{k}}\right)$ and $\left(v_{\mathrm{k}}, v_{\mathrm{j}}\right)$ exist and $w\left(\left(v_{\mathrm{i}}, v_{\mathrm{j}}\right)\right) \leq w\left(\left(v_{\mathrm{i}}, v_{\mathrm{k}}\right)\right)+w\left(\left(v_{\mathrm{k}}, v_{\mathrm{j}}\right)\right)$.
- The minimum-distance constraints for (A, B) and (B, C) make that for (A, C) redundant.

- Doenhardt and Lengauer have proposed a method for irredundant constraint generation with complexity $O(n \log n)$.

