
Unit 5F 1Chang, Huang, Li, Lin, Liu

Unit 5F: Layout Compaction

․Course contents
⎯ Design rules
⎯ Symbolic layout
⎯ Constraint-graph compaction

․Readings: Chapter 6

Unit 5F 2Chang, Huang, Li, Lin, Liu

Design Rules

․Design rules:
restrictions on the mask
patterns to increase the
probability of successful
fabrication.

․Patterns and design
rules are often
expressed in λ rules.

․Most common design
rules:
⎯ minimum-width rules (valid

for
a mask pattern of a
specific layer): (a).

⎯ minimum-separation rules
(between mask patterns of
the same layer or different
layers): (b), (c).

⎯ minimum-overlap rules
(mask patterns in different
layers): (e).

Unit 5F 3Chang, Huang, Li, Lin, Liu

CMOS Inverter Layout Example

p/n diffusion
polysilicon
contact cut
metal

Symbolic layout
Geometric layout

Unit 5F 4Chang, Huang, Li, Lin, Liu

Symbolic Layout

․Geometric (mask) layout: coordinates of the layout
patterns (rectangles) are absolute (or in multiples of λ).

․Symbolic (topological) layout: only relations between
layout elements (below, left to, etc) are known.
⎯ Single symbols are used to represent elements located in

several layers, e.g. transistors, contact cuts.
⎯ The length, width or layer of a wire or other layout element

might be left unspecified.
⎯ Mask layers not directly related to the functionality of the circuit

do not need to be specified, e.g. n-well, p-well.

․The symbolic layout can work with a technology file that
contains all design rule information for the target
technology to produce the geometric layout.

Unit 5F 5Chang, Huang, Li, Lin, Liu

Compaction and Its Applications

․A compaction program or compactor generates layout
at the mask level. It attempts to make the layout as
dense as possible.

․Applications of compaction:
⎯ Area minimization: remove redundant space in layout at

the mask level.
⎯ Layout compilation: generate mask-level layout from

symbolic layout.
⎯ Redesign: automatically remove design-rule violations.
⎯ Rescaling: convert mask-level layout from one

technology to another.

Unit 5F 6Chang, Huang, Li, Lin, Liu

Aspects of Compaction

․Dimension:
⎯ 1-dimensional (1D) compaction: layout elements

only are moved or shrunk in one dimension (x or y
direction).

Is often performed first in the x-dimension and then in the y-
dimension (or vice versa).

⎯ 2-dimensional (2D) compaction: layout elements are
moved and shrunk simultaneously in two dimensions.

․Complexity:
⎯ 1D compaction can be done in polynomial time.
⎯ 2D compaction is NP-hard.

Unit 5F 7Chang, Huang, Li, Lin, Liu

1D Compaction: X Followed By Y

․Each square is 2 λ * 2 λ, minimum separation is 1 λ.
․Initially, the layout is 11 λ * 11 λ.
․After compacting along the x direction, then the y

direction, we have the layout size of 8 λ * 11 λ.

Unit 5F 8Chang, Huang, Li, Lin, Liu

1D Compaction: Y Followed By X

․Each square is 2 λ * 2 λ, minimum separation is 1 λ.
․Initially, the layout is 11 λ * 11 λ.
․After compacting along the y direction, then the x

direction, we have the layout size of 11 λ * 8 λ.

Unit 5F 9Chang, Huang, Li, Lin, Liu

2D Compaction
․Each square is 2 λ * 2 λ, minimum separation is 1 λ.
․Initially, the layout is 11 λ * 11 λ.
․After 2D compaction, the layout size is only 8 λ * 8 λ.

․Since 2D compaction is NP-complete, most compactors
are based on repeated 1D compaction.

Unit 5F 10Chang, Huang, Li, Lin, Liu

Inequalities for Distance Constraints

․Minimum-distance
design rules can be
expressed as inequalities.

xj – xi ≥ dij.

․For example, if the
minimum width is a and
the minimum separation
is b, then

x2 – x1 ≥ a
x3 – x2 ≥ b
x3 – x6 ≥ b

Unit 5F 11Chang, Huang, Li, Lin, Liu

The Constraint Graph
․The inequalities can be used to construct a constraint

graph G(V, E):
⎯ There is a vertex vi for each variable xi.
⎯ For each inequality xj – xi ≥ dij there is an edge (vi, vj) with weight dij .
⎯ There is an extra source vertex, v0; it is located at x = 0 ; all other

vertices are at its right.

․If all the inequalities express minimum-distance constraints,
the graph is acyclic (DAG).

․The longest path in a constraint graph determines the
layout dimension.

constraint graph

Unit 5F 12Chang, Huang, Li, Lin, Liu

Maximum-Distance Constraints
․Sometimes the distance of layout elements is bounded

by a maximum, e.g., when the user wants a maximum
wire width, maintains a wire connecting to a via, etc.
⎯ A maximum distance constraint gives an inequality of the form:

xj – xi ≤ cij or xi – xj ≥ -cij

⎯ Consequence for the constraint graph: backward edge
(vj, vi) with weight dji = -cij; the graph is not acyclic anymore.

․The longest path in a constraint graph determines the
layout dimension.

d

Unit 5F 13Chang, Huang, Li, Lin, Liu

Shortest Path for Directed Acyclic Graphs (DAGs)
DAG-Shortest-Paths(G, w, s)
1. topologically sort the vertices of G;
2. Initialize-Single-Source(G, s);
3. for each vertex u taken in topologically sorted order
4. for each vertex v ∈ Adj[u]
5. Relax(u, v, w);

․Time complexity: O(V+E) (adjacency-list representation).

Unit 5F 14Chang, Huang, Li, Lin, Liu

Topological Sort
․ A topological sort of a directed acyclic graph (DAG) G = (V, E) is a

linear ordering of V s.t. (u, v) ∈ E ⇒ u appears before v.
Topological-Sort(G)
1. call DFS(G) to compute finishing times f[v] for each vertex v
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

․ Time complexity: O(V+E) (adjacency list).

Unit 5F 15Chang, Huang, Li, Lin, Liu

Depth-First Search (DFS)

․color[u]: white (undiscovered)
→ gray (discovered) → black
(explored: out edges are all
discovered)

․d[u]: discovery time (gray);
f[u]: finishing time (black);
π[u]: predecessor.

․Time complexity: O(V+E)
(adjacency list).

DFS(G)
1. for each vertex u ∈ V[G]
2. color[u] ← WHITE;
3. π [u] ←NIL;
4. time ← 0;
5. for each vertex u ∈ V[G]
6. if color[u] = WHITE
7. DFS-Visit(u).

DFS-Visit(u)
1. color[u] ← GRAY;
/* white vertex u has just been

discovered. */
2. d[u] ← time ← time + 1;
3. for each vertex v ∈ Adj[u]

/* Explore edge (u,v). */
4. if color[v] = WHITE
5. π [v] ← u;
6. DFS-Visit(v);
7. color[u] ← BLACK;

/* Blacken u; it is finished. */
8. f[u] ← time ← time +1.

Unit 5F 16Chang, Huang, Li, Lin, Liu

DFS Example

․ color[u]: white → gray → black.
․Depth-first forest: Gπ = (V, Eπ), Eπ = {(π[v], v) ∈ E | v ∈ V, π[v] ≠

NIL}.

Unit 5F 17Chang, Huang, Li, Lin, Liu

Relaxation
Initialize-Single-Source(G, s)
1. for each vertex v ∈ V[G]
2. d[v] ← ∞;

/* upper bound on the weight of
a shortest path from s to v */

3. π[v] ← NIL; /* predecessor of v */
4. d[s] ← 0;

Relax(u, v, w)
1. if d[v] > d[u]+w(u, v)
2. d[v] ← d[u]+w(u, v);
3. π[v] ← u;

․d[v] ≤ d[u] + w(u, v) after calling Relax(u, v, w).
․d[v] ≥ δ(s, v) during the relaxation steps; once d[v] achieves its

lower bound δ(s, v), it never changes.
․Let be a shortest path. If d[u] = δ(s, u) prior to the

call Relax(u, v, w), then d[v] = δ(s, v) after the call.

Unit 5F 18Chang, Huang, Li, Lin, Liu

Longest-Path Algorithm for DAGs

․pi: in-degree of vi.
․xi: longest-path

length from v0 to vi.

Unit 5F 19Chang, Huang, Li, Lin, Liu

DAG Longest-Path Example

․Runs in a breadth-first search
manner.

․pi: in-degree of vi.
․xi: longest-path length from v0

to vi.
․Time complexity: O(V+E).

Unit 5F 20Chang, Huang, Li, Lin, Liu

Longest-Paths In Cyclic Graphs

․Constraint-graph compaction with maximum-distance
constraints requires solving the longest-path problem in
cyclic graphs.

․Two cases are distinguished:
⎯ There are positive cycles: No feasible solution for longest

paths. We shall detect the cycles.
⎯ All cycles are negative: Polynomial-time algorithms exist.

Unit 5F 21Chang, Huang, Li, Lin, Liu

The Liao-Wong Algorithm

․Split the edge set E of the constraint graph into two
subsets:
⎯ Forward edges Ef: related to minimum-distance constraints.
⎯ Backward edges Eb: related to maximum-distance

constraints.
․The graph G(V, Ef) is acyclic; the longest distance for

each vertex can be computed with the procedure
‘‘longest-path’’.

․Repeat :
⎯ Update longest distances by processing the edges from Eb.
⎯ Call ‘‘longest-path’’ for G(V, Ef).

․Worst-case time complexity: O(Eb r Ef).

Unit 5F 22Chang, Huang, Li, Lin, Liu

Pseudo Code: The Liao-Wong Algorithm

Unit 5F 23Chang, Huang, Li, Lin, Liu

Example for the Liao-Wong Algorithm
․Two edge sets: forward edges Ef and

backward edges Eb

․xi: longest-path length from v0 to vi.
․Call ‘‘longest-path’’ for G(V, Ef).
․Update longest distances by

processing the edges from Eb.

․Time complexity: O(Eb r Ef).

x1 < x2 - 3

x3 < x4 - 1

x5 = x4 - 4

Unit 5F 24Chang, Huang, Li, Lin, Liu

The Bellman-Ford Algorithm for Shortest Paths

Bellman-Ford(G,w, s)
1. Initialize-Single-Source(G, s);
2. for i ← 1 to |V[G]|-1
3. for each edge (u, v) ∈ E[G]
4. Relax(u, v, w);
5. for each edge (u, v) ∈ E[G]
6. if d[v] > d[u] + w(u, v)
7. return FALSE;
8. return TRUE

․Solves the case where edge weights can be negative.
․Returns FALSE if there exists a cycle reachable from the source;

TRUE otherwise.
․Time complexity: O(VE).

Unit 5F 25Chang, Huang, Li, Lin, Liu

Example for Bellman-Ford for Shortest Paths

Unit 5F 26Chang, Huang, Li, Lin, Liu

The Bellman-Ford Algorithm for Longest Paths

Unit 5F 27Chang, Huang, Li, Lin, Liu

Example of Bellman-Ford for Longest Paths
․Repeated “wave front propagation.”
․S1: the current wave front.
․xi: longest-path length from v0 to vi.
․After k iterations, it computes the

longest-path values for paths going
through k-1 intermediate vertices.

․Time complexity: O(VE).

Unit 5F 28Chang, Huang, Li, Lin, Liu

Longest and Shortest Paths

․Longest paths become shortest paths and vice versa
when edge weights are multiplied by –1.

․Situation in DAGs: both the longest and shortest path
problems can be solved in linear time.

․Situation in cyclic directed graphs:
⎯ All weights are positive: shortest-path problem in P

(Dijkstra), no feasible solution for the longest-path
problem.

⎯ All weights are negative: longest-path problem in P
(Dijkstra), no feasible solution for the shortest-path
problem.

⎯ No positive cycles: longest-path problem is in P.
⎯ No negative cycles: shortest-path problem is in P.

Unit 5F 29Chang, Huang, Li, Lin, Liu

Remarks on Constraint-Graph Compaction

․Noncritical layout elements: Every element outside the
critical paths has freedom on its best position => may
use this freedom to optimize some cost function.

․Automatic jog insertion: The quality of the layout can
further be improved by automatic jog insertion.

․Hierarchy: A method to reduce complexity is
hierarchical compaction, e.g., consider cells only.

Unit 5F 30Chang, Huang, Li, Lin, Liu

Constraint Generation
․The set of constraints should be irredundant and generated

efficiently.
․An edge (vi, vj) is redundant if edges (vi, vk) and (vk, vj) exist

and w((vi, vj)) ≤ w((vi, vk)) + w((vk, vj)).
⎯ The minimum-distance constraints for (A, B) and (B, C) make

that for (A, C) redundant.

․Doenhardt and Lengauer have proposed a method for
irredundant constraint generation with complexity O(n log n).

	Design Rules
	CMOS Inverter Layout Example
	Symbolic Layout
	Compaction and Its Applications
	Aspects of Compaction
	1D Compaction: X Followed By Y
	1D Compaction: Y Followed By X
	2D Compaction
	Inequalities for Distance Constraints
	The Constraint Graph
	Maximum-Distance Constraints
	Shortest Path for Directed Acyclic Graphs (DAGs)
	Topological Sort
	Depth-First Search (DFS)
	DFS Example
	Relaxation
	Longest-Path Algorithm for DAGs
	DAG Longest-Path Example
	Longest-Paths In Cyclic Graphs
	The Liao-Wong Algorithm
	Pseudo Code: The Liao-Wong Algorithm
	Example for the Liao-Wong Algorithm
	The Bellman-Ford Algorithm for Shortest Paths
	Example for Bellman-Ford for Shortest Paths
	The Bellman-Ford Algorithm for Longest Paths
	Example of Bellman-Ford for Longest Paths
	Longest and Shortest Paths
	Remarks on Constraint-Graph Compaction
	Constraint Generation

