Unit 5E: Channel, Clock, and Power/Ground Routing

- Course contents
 - Channel routing
 - Clock routing
 - Power/ground routing
- Readings
 - Chapters 9.3 and 9.4

channel routing

switchbox routing

Order of Routing Regions and L-Channels

- (a) No conflicts in case of routing in the order of 1, 2, and3.
- (b) No ordering is possible to avoid conflicts.
- (C) The situation of (b) can be resolved by using Lchannels.
- (d) An L-channel can be decomposed into a channel and a switchbox.

Routing Considerations

- Number of terminals (two-terminal vs. multi-terminal nets)
- Net widths (power and ground vs. signal nets)
- Via restrictions (stacked vs. conventional vias)
- Boundary types (regular vs. irregular)
- Number of layers (two vs. three, more layers?)
- Net types (critical vs. non-critical nets)

- Grid-based model:
 - A grid is super-imposed on the routing region.
 - Wires follow paths along the grid lines.
 - Pitch: distance between two grid lines.
- Gridless model:
 - Any model that does not follow this "gridded" approach.

Models for Multi-Layer Routing

- Unreserved layer model: Any net segment is allowed to be placed in any layer.
- **Reserved layer model:** Certain type of segments are restricted to particular layer(s).
 - Two-layer: HV (horizontal-Vertical), VH
 - Three-layer: HVH, VHV

3 types of 3-layer models

Terminology for Channel Routing

- Local density at column *i*, *d*(*i*): total # of nets that crosses column *i*.
- Channel density: maximum local density
 - # of horizontal tracks required \geq channel density.

Channel Routing Problem

- Assignments of horizontal segments of nets to tracks.
- Assignments of vertical segments to connect.
 - horizontal segments of the same net in different tracks, and
 - the terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated.
 - Horizontal constraints between two nets: the horizontal span of two nets overlaps each other.
 - Vertical constraints between two nets: there exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to another net.
- **Objective: Channel height is minimized** (i.e., channel area is minimized).

Horizontal Constraint Graph (HCG)

- HCG G = (V, E) is **undirected** graph where
 - $V = \{ v_i | v_j \text{ represents a net } n_j \}$
 - $E = \{(v_i, v_j) | a \text{ horizontal constraint exists between } n_i \text{ and } n_j \}.$
- For graph G: vertices ⇔ nets; edge (*i*, *j*) ⇔ net *i* overlaps net *j*.

Vertical Constraint Graph (VCG)

- VCG G = (V, E) is **directed** graph where
 - $V = \{ v_i | v_i \text{ represents a net } n_i \}$
 - $E = \{(v_i, v_j) | a \text{ vertical constraint exists between } n_i \text{ and } n_j\}.$
- For graph G: vertices ⇔ nets; edge i → j ⇔ net i must be above net j.

2-L Channel Routing: Basic Left-Edge Algorithm

- Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- HV-layer model is used.
- Doglegs are not allowed.
- Treat each net as an interval.
- Intervals are sorted according to their left-end *x*-coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum # of tracks (if no vertical constraint).

Basic Left-Edge Algorithm

```
Algorithm: Basic_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I_1, \ldots, I_n;
I_{i} = [s_{i}, e_{i}]: interval j with left-end x-coordinate s_{i} and right-end e_{i};
track[j]: track to which net j is assigned.
1 begin
2 U \leftarrow \{I_1, I_2, ..., I_n\};
3 t ← 0;
4 while (U \neq \emptyset) do
5 t \leftarrow t + 1;
6 watermark \leftarrow 0:
7 while (there is an I_i \in U s.t. s_i > watermark) do
8
       Pick the interval I_i \in U with s_i > watermark,
       nearest watermark;
9 track[j] \leftarrow t,
10 watermark \leftarrow e_i;
11 U \leftarrow U - \{I_j\};
12 end
```

Basic Left-Edge Example

- $U = \{I_1, I_2, \dots, I_6\}; I_1 = [1, 3], I_2 = [2, 6], I_3 = [4, 8], I_4 = [5, 10], I_5 = [7, 11], I_6 = [9, 12].$
- *t* =1:
 - Route I_1 : watermark = 3;
 - Route I_3 : watermark = 8;
 - Route I_6 : watermark = 12;
- *t* = 2:
 - Route I_2 : watermark = 6;
 - Route I_5 : watermark = 11;
- *t* = 3: Route *I*₄

Basic Left-Edge Algorithm

- If there is no vertical constraint, the basic left-edge algorithm is optimal.
- If there is any vertical constraint, the algorithm no longer guarantees optimal solution.

3

Chang, Huang, Li, Lin, Liu

Constrained Left-Edge Algorithm

```
Algorithm: Constrained_Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I_1, ..., I_n;
I_{i}=[s_{i}, e_{i}]: interval j with left-end x-coordinate s_{i} and right-end e_{i};
track[j]: track to which net j is assigned.
1 begin
2 U \leftarrow \{ I_1, I_2, ..., I_n \};
3 t ← 0;
4 while (U \neq \emptyset) do
5 t \leftarrow t + 1;
6 watermark \leftarrow 0;
  while (there is an unconstrained I_i \in U s.t. s_i > 0
7
     watermark) do
    Pick the interval I_i \in U that is unconstrained,
8
       with s_i > watermark, nearest watermark;
9 track[j] \leftarrow t,
10 watermark \leftarrow e_i;
11 U \leftarrow U - \{I_j\};
12 end
```

Unit 5F

14

Constrained Left-Edge Example

- $I_1 = [1, 3], I_2 = [1, 5], I_3 = [6, 8], I_4 = [10, 11], I_5 = [2, 6], I_6 = [7, 9].$
- Track 1: Route I_1 (cannot route I_3); Route I_6 ; Route I_4 .
- Track 2: Route I_2 ; cannot route I_3 .
- Track 3: Route I₅.
- Track 4: Route I₃.

Dogleg Channel Router

- Deutch, "A dogleg channel router," 13rd DAC, 1976.
- Drawback of Left-Edge: cannot handle the cases with constraint cycles.
 - **Doglegs** are used to resolve constraint cycle.

- Drawback of Left-Edge: the entire net is on a single track.
 - Doglegs are used to place parts of a net on different tracks to minimize channel height.
 - Might incur penalty for additional vias.

Unit 5F

Dogleg Channel Router

- Each multi-terminal net is broken into a set of 2terminal nets.
- Two parameters are used to control routing:
 - Range: Determine the # of consecutive 2-terminal subnets of the same net that can be placed on the same track.
 - Routing sequence: Specifies the starting position and the direction of routing along the channel.
- Modified Left-Edge Algorithm is applied to each subnet.

Restricted vs. Unrestricted Doglegging

- Unrestricted doglegging: Allow a dogleg even at a position where there is no pin.
- **Restricted doglegging:** Allow a dogleg only at a position where there is a pin belonging to that net.
- The dogleg channel router does not allow unrestricted doglegging.

Solution exists!

restricted doglegging dogleg splits a net into subnets.

Robust Channel Router

- Yoeli, "A robust channel router," IEEE TCAD, 1991.
- Alternates between top and bottom tracks until the center is reached.
- The working side is called the *current side*.
- Net weights are used to guide the assignment of segments in a track, which
 - favor nets that contribute to the channel density;
 - favor nets with terminals at the current side;
 - penalize nets whose routing at the current side would cause vertical constraint violations.
- Allows unrestricted doglegs by rip-up and re-route.

Robust Channel Router

- Select the set of nets for the current side by solving the maximum weighted independent set problem for interval graphs.
 - NP-complete for general graphs, but can be solved efficiently for interval graphs using dynamic programming.
- Main ideas:
 - The interval for net *i* is denoted by $[x_{i_{min}}, x_{i_{max}}]$; its weight is w_i .
 - Process channel from left to right column; the optimal cost for position c is denoted by total[c];
 - A net *n* with a rightmost terminal at position *c* is taken into the solution if $total[c-1] < w_n + total[x_{n_{min}} 1]$.
- Can apply maze routers to fix local congestion or to postprocess the results. (Why not apply maze routers to channel routing directly??)

- There is a vertex for each interval.
- Vertices corresponding to overlapping intervals are connected by an edge.
- Solving the track assignment problem is equivalent to finding a **minimal vertex coloring** of the graph.

Weight Computation

d(1) = 1d(2) = 2d(3) = 2d(4) = 3 (nets 2, 3, 4)d(5) = 2

- Computation of the weight *w*_i for net *i*:
 - 1. favor nets that contribute to the channel density: add a large B to w_i .
 - 2. favor nets with current side terminals at column x: add d(x) to w_i .
 - 3. penalize nets whose routing at the current side would cause vertical constraint violations: subtract Kd(x) from w_i , $K = 5 \sim 10$.
 - Assume B = 1000 and K = 5 in the 1st iteration (top side):
 - $W_1 = (0) + (1) + (-5 * 2) = -9$
 - Net 1 does not contribute to the channel density
 - One net 1 terminal on the top
 - Routing net 1 causes a vertical constraint from net 2 at column 2 whose density is 2

Weight Computation (cont'd)

- Computation of the weight w_i for net *i*:
 - 1. favor nets that contribute to the channel density: add a large B to w_i .
 - 2. favor nets with current side terminals at column x: add d(x) to w_i .
 - 3. penalize nets whose routing at the current side would cause vertical constraint violations: subtract Kd(x) from w_i , $K = 5 \sim 10$.
 - Assume B = 1000 and K = 5 in the 1st iteration (top side):
 - $W_1 = (0) + (1) + (-5 * 2) = -9$
 - $W_2 = (1000) + (2) + (-5 * 3) = 987$
 - $W_3 = (1000) + (2+2) + (0) = 1004$
 - $W_4 = (1000) + (3) + (-5 * 2) = 993$

Top-Row Net Selection

• $w_1 = -9$, $w_2 = 987$, $w_3 = 1004$, $w_4 = 993$.

• A net *n* with a rightmost terminal at position *c* is taken into the solution if: $total[c-1] < w_n + total[x_{n_{min}} - 1]$.

total[1] = 0	selected_net[1] = 0
total[2] = max(0, 0-9) = 0	selected_net[2] = 0
total[3] = 0	selected_net[3] = 0
$total[4] = max(0, w_2 + total[1]) = 987$	selected_net[4] = 2
total[5] = max(987, 0+1004, 0+993) = 1004	selected_net[5] = 3

• Select nets backwards from right to left and with no horizontal constraints: Only net 3 is selected for the top row. (Net 2 is not selected since it overlaps with net 3.)

Bottom-Row Net Selection

• Nets 4 and 1 are selected for the bottom row.

Maze Routing + Rip-up & Re-route

- 3rd iteration
 - Routing net 2 in the middle row leads to an infeasible solution.
 - Apply maze routing and rip-up and re-route nets 2 and 4 to fix the solution.

Robust Channel Router

robust_router (struct netlist N)

```
set of int row;
struct solution S;
int total[channel_width + 1], selected_net[channel_width -
int top, height, c, r, i;
top \leftarrow 1;
height \leftarrow density(N);
for (r \leftarrow 1; r \le \text{height}; r \leftarrow r + 1) {
   for all "nets i in netlist N"
      w_i \leftarrow \text{compute_weight}(N, \text{top});
   total[0] \leftarrow 0;
   for (c \leftarrow 1; c \leq \text{channel_width}; c \leftarrow c + 1) {
      selected net[c] \leftarrow 0;
      total[c] \leftarrow total[c-1];
      if ("some net n has a top terminal at position c")
         if (\boldsymbol{w}_n + \text{total}[\boldsymbol{x}_{n_{min}} - 1]) > \text{total}[\boldsymbol{c}]) {
            \text{total}[c] \leftarrow w_n + \text{total}[x_{n_{min}} - 1]);
            selected net[c] \leftarrow n,
                                                                                     ł
      if ("some net n has a bottom terminal at position c")
         if (w_n + \text{total}[x_{n_{min}} - 1]) > \text{total}[c]) {
            \text{total}[c] \leftarrow w_n + \text{total}[x_{n_{min}} - 1]);
            selected net[c] \leftarrow n,
         /* if */
   /* for */
```

```
row \leftarrow \emptyset;

c \leftarrow channel_width;

while (c > 0)

if (selected_net[c]) {

n \leftarrow selected_net[c];

row \leftarrow row \cup \{n\};

c \leftarrow x_{n_{min}} - 1;

}

else

c \leftarrow c - 1;

solution \leftarrow solution \cup \{row\};

top \leftarrow !top;

N \leftarrow "N without the nets selected in row"

}/* for */
```

"apply maze routing to eliminate possible vertical constraint violations"

The Clock Routing Problem (CRP)

- Digital systems
 - Synchronous systems: Highly precised clock achieves communication and timing.
 - Asynchronous systems: Handshake protocol achieves the timing requirements of the system.
- **Clock skew** is defined as the difference in the minimum and the maximum arrival time of the clock.

- **CRP:** Routing clock nets such that
 - 1. clock signals arrive simultaneously
 - 2. clock delay is minimized
 - Other issues: total wirelength, power consumption, etc

Clock Routing Problem

- Given the routing plane and a set of points P = {p₁, p₂, ..., p_n} within the plane and clock entry point p₀ on the boundary of the plane, the Clock Routing Problem (CRP) is to interconnect each p_i ∈ P such that max_{i, j ∈ P} |t(0, i) t(0, j)| and max_{i ∈ P} t(0, i) are both minimized.
- Pathlength-based approaches
 - *H*-tree: Dhar, Franklin, Wang, ICCD-84; Fisher & Kung, 1982. Geometric matching: Cong, Kahng, Robins, DAC-91.
- RC-delay based approaches:
 - 1. Exact zero skew: Tasy, ICCAD-91.
 - 2. Lagrangian relaxation: Chen, Chang, Wong, DAC-96.

H-Tree Based Algorithm

• *H*-tree: Dhar, Franklin, Wang, "Reduction of clock delays in VLSI structure," ICCD-84.

H-tree over 16 points

The Geometric Matching Algorithm

- Cong, Kahng, Robins, "Matching based models for highperformance clock routing," IEEE TCAD, 1993.
- Clock pins are represented as *n* nodes in the clock tree $(n = 2^k)$.
- Each node is a tree itself with clock entry point being node itself.
- The minimum cost matching on *n* points yields *n*/2 segments.
- The clock entry point in each subtree of two nodes is the point on the segment such that length of both sides is same.
- Above steps are repeated for each segment.
- Apply *H*-flipping to further reduce clock skew (and to handle edges intersection).
- Time complexity: $O(n^2 \log n)$.

Elmore Delay: Nonlinear Delay Model

- Parasitic resistance and capacitance start to dominate delay in deep submicron wires.
- Resistor *r_i* must charge all downstream capacitors.
- Elmore delay: Delay can be approximated as sum of sections: resistance × downstream capacitance.

$$\delta = \sum_{i=1}^{n} \left(r_i \sum_{k=i}^{n} c_k \right) = \sum_{i=1}^{n} r(n-i+1)c = \frac{n(n+1)}{2} rc.$$

• Delay grows as **square** of wire length.

Wire Models

 Lumped circuit approximations for distributed RC lines: πmodel (most popular), *T*-model, *L*-model.

• π -model: If no capacitive loads for *C* and *D*,

Example Elmore Delay Computation

- 0.18 μm technology.: unit resistance $\hat{r} = 0.075 \Omega / \mu m$; unit capacitance $\hat{c} = 0.118 fF/\mu m$.
 - Assume $C_C = 2 fF$, $C_D = 4 fF$.
 - $-\delta_{BC} = r_{BC} (c_{BC}/2 + C_{C}) = 0.075 \times 150 (17.7/2 + 2) = 120 \text{ fs}$
 - $-\delta_{BD} = r_{BD} (c_{BD} / 2 + C_D) = 0.075 \times 200 (23.6/2 + 4) = 240 \text{ fs}$
 - $= \delta_{AB} = r_{AB} (c_{AB}/2 + C_B) = 0.075 \times 100 (11.8/2 + 17.7 + 2 + 23.6 + 4) = 400 \text{ fs}$
 - Critical path delay: $\delta_{AB} + \delta_{BD} = 640$ fs.

Delay Calculation for a Clock Tree

- Let *T* be an RC tree with points $P = \{p_1, p_2, ..., p_n\}, c_i$ the capacitance of p_i , r_i the resistance of the edge between p_i and its immediate predecessor.
- The subtree capacitance at node *i* is given as $C_i = c_i + \sum_{j \in S_i} C_j$, where S_i is the set of all the immediate successors of p_i .
- Let $\delta(i, j)$ be the path between p_i and p_j , excluding p_i and including p_j .
- The delay between two nodes *i* and *j* is $t_{ij} = \sum_{j \in \delta(i, j)} r_j C_j$,
- $t_{03} = r_0 (C_1 + C_2 + C_3 + C_4 + C_1^s + C_2^s + C_3^s) + r_2(C_2/2 + C_3 + C_4 + C_2^s + C_3^s) + r_4(C_4/2 + C_3^s).$

clock tree

delay model

Chang, Huang, Li, Lin, Liu

Exact Zero Skew Algorithm

- Tasy, "Exact zero skew algorithm," ICCAD-91.
- To ensure the delay from the tapping point to leaf nodes of subtrees T₁ and T₂ being equal, it requires that

 $r_1 (c_1/2 + C_1) + t_1 = r_2 (c_2/2 + C_2) + t_2.$

• Solving the above equation, we have

$$x = \frac{(t_2 - t_1) + \alpha l \left(C_2 + \frac{\beta l}{2}\right)}{\alpha l (\beta l + C_1 + C_2)},$$

where α and β are the per unit values of resistance and capacitance, *I* the length of the interconnecting wire, $r_1 = \alpha x l$, $c_1 = \beta x l$, $r_2 = \alpha (1 - x) l$, $c_2 = \beta (1 - x) l$.

Zero-Skew Computation

- Balance delays: $r_1(c_1/2 + C_1) + t_1 = r_2(c_2/2 + C_2) + t_2$.
- Compute tapping points $x = \frac{(t_2 t_1) + \alpha l \left(C_2 + \frac{\beta l}{2}\right)}{\alpha l (\beta l + C_1 + C_2)}$, $\chi (\beta): per$

unit values of resistance (capacitance); *I*: length of the wire;

$$r_1 = \beta x l, c_1 = \beta x l; r_2 = \alpha (1 - x) l, c_2 = \beta (1 - x) l.$$

- If $x \notin [0, 1]$, we need **snaking** to find the tapping point.
- Exp: $\alpha = 0.1 \Omega$ /unit, $\beta = 0.2 F$ /unit. (Find tapping points *E* for *A* and *B*, *F* for *C* and *D*, and *G* for *E* and *F*.)

Unit 5E

Chang, Huang, Li, Lin, Liu

Simultaneous Retiming and Clock Skew Scheduling

- Liu, Papaefthymiou, Friedman: Simultaneous retiming and useful clock skew scheduling can further reduce clock period, DAC-99.
- Case 1
 - Zero clock skew: clock period $\phi = 23\tau$.
 - Schedule $e 4\tau$ earlier than *f*: clock period $\phi = 19\tau$.

Retiming and Clock Skew Scheduling

- Case 1
 - Zero clock skew: clock period $\phi = 23\tau$.
 - Schedule $e 4\tau$ earlier than *f*: clock period $\phi = 19\tau$.
- Case 2

Unit 5E

- Zero clock skew: clock period ϕ = 16 τ .
- Schedule $f \mathbf{1}\tau$ earlier than *e*: clock period $\phi = \mathbf{1}5\tau$.
- Case 3: optimal effective clock period? No!! Optimal case?
 - Zero clock skew: clock period $\phi = 18\tau$.
 - Schedule $e 4\tau$ earlier than f: clock period $\phi = 14\tau$.

Power/Ground Routing

- Are usually laid out entirely on metal layers for smaller parasitics.
- Two steps:
 - 1. **Construction of interconnection topology:** non-crossing power, ground trees.
 - 2. **Determination of wire widths:** prevent metal migration, keep voltage (IR) drop small, widen wires for more power-consuming modules and higher density current (1.5 mA per μ *m* width for Al). (So area metric?)

