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Unit 5D: Maze (Area) and Global Routing 

․Course contents
⎯ Routing basics
⎯ Maze (area) routing
⎯ Global routing

․Readings
⎯ Chapters 9.1, 9.2, 9.5

Filling
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Routing
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Routing Constraints
․100% routing completion + area minimization, under a set of 

constraints:
⎯ Placement constraint: usually based on fixed placement
⎯ Number of routing layers
⎯ Geometrical constraints: must satisfy design rules
⎯ Timing constraints (performance-driven routing): must satisfy 

delay constraints
⎯ Crosstalk?
⎯ Process variations?
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Classification of Routing
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Maze Router: Lee Algorithm
․Lee, “An algorithm for path connection and its 

application,” IRE Trans. Electronic Computer, EC-10, 
1961.

․Discussion mainly on single-layer routing
․Strengths

⎯ Guarantee to find connection between 2 terminals if it 
exists.

⎯ Guarantee minimum path.
․Weaknesses

⎯ Requires large memory for dense layout.
⎯ Slow.

․Applications: global routing, detailed routing
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Lee Algorithm
․Find a path from S to T by “wave propagation”.

․Time & space complexity for an M r N grid: O(MN) 
(huge!)

Filling
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Reducing Memory Requirement
․Akers's Observations (1967)

⎯ Adjacent labels for k are either k-1 or k+1.
⎯ Want a labeling scheme such that each label has its preceding 

label different from its succeeding label.
․Way 1: coding sequence 1, 2, 3, 1, 2, 3, …; states: 1, 2, 3, empty, 

blocked (3 bits required)
․Way 2: coding sequence 1, 1, 2, 2, 1, 1, 2, 2, …; states: 1, 2, 

empty, blocked (need only 2 bits)
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Reducing Running Time
․Starting point selection: Choose the point farthest from 

the center of the grid as the starting point.
․Double fan-out: Propagate waves from both the source 

and the target cells.
․Framing: Search inside a rectangle area 10--20% 

larger than the bounding box containing the source and 
target.
⎯ Need to enlarge the rectangle and redo if the search fails.
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Connecting Multi-Terminal Nets
․Step 1: Propagate wave from the source s to the closet 

target.
․Step 2: Mark ALL cells on the path as s.
․Step 3: Propagate wave from ALL s cells to the other 

cells.
․Step 4: Continue until all cells are reached.
․Step 5: Apply heuristics to further reduce the tree cost.
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Routing on a Weighted Grid
․Motivation: finding more desirable paths
․weight(grid cell) = # of unblocked grid cell segments - 1
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A Routing Example on a Weighted Grid

2
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Hadlock's Algorithm
․Hadlock, “A shortest path algorithm for grid graphs,”

Networks, 1977.
․Uses detour number (instead of labeling wavefront in Lee's 

router)
⎯ Detour number, d(P): # of grid cells directed away from its 

target on path P.
⎯ MD(S, T): the Manhattan distance between S and T.
⎯ Path length of P, l(P): l(P) = MD(S, T) + 2 d(P).
⎯ MD(S, T) fixed! ⇒ Minimize d(P) to find the shortest path.
⎯ For any cell labeled i, label its adjacent unblocked cells away 

from T i+1; label i otherwise.
․Time and space complexities: O(MN), but substantially 

reduces the # of searched cells.
․Finds the shortest path between S and T.
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Hadlock's Algorithm (cont'd)
․d(P): # of grid cells directed away from its target on path P.
․MD(S, T): the Manhattan distance between S and T.
․Path length of P, l(P): l(P) = MD(S, T) + 2d(P).
․MD(S, T) fixed! ⇒ Minimize d(P) to find the shortest path.
․For any cell labeled i, label its adjacent unblocked cells 

away from T i+1; label i otherwise.
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Soukup's Algorithm
․Soukup, “Fast maze router,” DAC-78.
․Combined breadth-first and depth-first search.

⎯ Depth-first (line) search is first directed toward target T until an 
obstacle or T is reached.

⎯ Breadth-first (Lee-type) search is used to “bubble” around an 
obstacle if an obstacle is reached.

․Time and space complexities: O(MN), but 10--50 times 
faster than Lee's algorithm.

․Find a path between S and T, but may not be the shortest!
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Features of Line-Search Algorithms

․Time and space complexities: O(L), where L is the # of 
line segments generated.
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Mikami-Tabuchi's Algorithm
․Mikami & Tabuchi, “A computer program for optimal 

routing of printed circuit connectors,” IFIP, H47, 1968.
․Every grid point is an escape point.
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Hightower's Algorithm
․Hightower, “A solution to line-routing problem on the 

continuous plane,” DAC-69.
․A single escape point on each line segment.
․If a line parallels to the blocked cells, the escape point 

is placed just past the endpoint of the segment.
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Comparison of Algorithms

․Soukup, Mikami, and Hightower all adopt some sort of 
line-search operations ⇒ cannot guarantee shortest 
paths.
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Multi-layer Routing

․3-D grid:

․Two planar arrays:
⎯ Neglect the weight for inter-layer connection through via.
⎯ Pins are accessible from both layers.
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Net Ordering
․Net ordering greatly affects routing solutions.
․In the example, we should route net b before net a.
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Net Ordering (cont'd)
․Order the nets in the ascending order of the # of pins within their 

bounding boxes.
․Order the nets in the ascending (or descending??) order of their

lengths.
․Order the nets based on their timing criticality.

․ A mutually intervening case:
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Rip-Up and Re-routing
․ Rip-up and re-routing is required if a global or detailed 

router fails in routing all nets.
․ Approaches: the manual approach? the automatic 

procedure?
․ Two steps in rip-up and re-routing

1. Identify bottleneck regions, rip off some already routed nets.
2. Route the blocked connections, and re-route the ripped-up 

connections.

․ Repeat the above steps until all connections are 
routed or a time limit is exceeded.
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Graph Models for Global Routing: Grid Graph
․Each cell is represented by a vertex.
․Two vertices are joined by an edge if the corresponding 

cells are adjacent to each other.
․The occupied cells are represented as filled circles, 

whereas the others are as clear circles.
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Graph Model: Channel Intersection Graph
․Channels are represented as edges.
․Channel intersections are represented as vertices.
․Edge weight represents channel capacity.
․Extended channel intersection graph: terminals are 

also represented as vertices.
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Global-Routing Problem
․Given a netlist N={N1, N2, …, Nn }, a routing graph G = 

(V, E), find a Steiner tree Ti for each net Ni, 1 ≤ i ≤ n, 
such that U(ej) ≤ c(ej), ∀ ej ∈ E and                   is 
minimized, where
⎯ c(ej): capacity of edge ej;
⎯ xij=1 if ej is in Ti; xij = 0 otherwise;
⎯ : # of wires that pass through the channel 

corresponding to edge ej;
⎯ L(Ti): total wirelength of Steiner tree Ti.

․For high-performance, the maximum wirelength
(                   ) is minimized (or the longest path between 
two points in Ti is minimized).
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Global Routing in different Design Styles
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Global Routing in Standard Cell
․Objective

⎯ Minimize total channel height.
⎯ Assignment of feedthrough: Placement? Global routing?

․For high performance,
⎯ Minimize the maximum wire length.
⎯ Minimize the maximum path length.
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Global Routing in Gate Array
․Objective

⎯ Guarantee 100% routability.
․For high performance,

⎯ Minimize the maximum wire length.
⎯ Minimize the maximum path length.
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Global Routing in FPGA
․Objective

⎯ Guarantee 100% routability.
⎯ Consider switch-module architectural constraints.

․For performance-driven routing,
⎯ Minimize # of switches used.
⎯ Minimize the maximum wire length.
⎯ Minimize the maximum path length.
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Global-Routing: Maze Routing
․Routing channels may be modelled by a weighted undirected 

graph called channel connectivity graph.
․Node ↔ channel; edge ↔ two adjacent channels; capacity: (width, 

length)
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The Routing-Tree Problem
․Problem: Given a set of pins of a net, interconnect the pins by a 

“routing tree.”

․Minimum Rectilinear Steiner Tree (MRST) Problem: Given n
points in the plane, find a minimum-length tree of rectilinear edges 
which connects the points.

․MRST(P) = MST(P ∪ S), where P and S are the sets of original 
points and Steiner points, respectively.
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Theoretic Results for the MRST Problem
․Hanan's Thm: There exists an MRST with all Steiner points (set S) 

chosen from the intersection points of horizontal and vertical lines 
drawn points of P.
⎯ Hanan, “On Steiner's problem with rectilinear distance,” SIAM 

J. Applied Math., 1966.
․Hwang‘s Theorem: For any point set P, 

⎯ Hwang, “On Steiner minimal tree with rectilinear distance,”
SIAM J. Applied Math., 1976.

․Best existing approximation algorithm: Performance bound 61/48 
by Foessmeier et al.
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A Simple Performance Bound

․ Easy to show that
․ Given any MRST T on point set P with Steiner point 

set S, construct a spanning tree T' on P as follows:
1. Select any point in T as a root.
2. Perform a depth-first traversal on the rooted tree T.
3. Construct T' based on the traversal.

2
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Coping with the MRST Problem
․ Ho, Vijayan, Wong, “New algorithms for the rectilinear 

Steiner problem,”
1. Construct an MRST from an MST.
2. Each edge is straight or L-shaped.
3. Maximize overlaps by dynamic programming.

․ About 8% smaller than Cost(MST).
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Iterated 1-Steiner Heuristic for MRST
․Kahng & Robins, “A new class of Steiner tree heuristics with good 

performance: the iterated 1-Steiner approach,” ICCAD-90..
Algorithm: Iterated_1-Steiner(P)
P: set P of n points.
1 begin
2 S ← ∅;

/* H(P ∪ S): set of Hanan points */ 
/* ∆MST(A, B) = Cost(MST(A)) - Cost(MST(A ∪ B)) */ 

3 while (Cand ← {x ∈ H(P ∪ S)| ∆ MST(P ∪ S, {x}) > 0 } ≠ ∅ ) do
4     Find x ∈ C and which maximizes  ∆ MST(P ∪ S), {x}); 
5     S ← S ∪ {x}; 
6     Remove points in S which have degree ≤ 2 in MST(P ∪ S); 
7 Output MST(P ∪ S); 
8 end

Remove
degree-2 node
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