## Unit 5D: Maze (Area) and Global Routing

- Course contents
- Routing basics
- Maze (area) routing
- Global routing
- Readings
- Chapters 9.1, 9.2, 9.5


Filling


Retrace

## Routing

placement

- Generates a "loose" route for each net.
- Assigns a list of routing regions to each net without specifying the actual layout of wires.
global routing

detailed routing
- Finds the actual geometric layout of each net within the assigned routing regions.



## Routing Constraints

- 100\% routing completion + area minimization, under a set of constraints:
- Placement constraint: usually based on fixed placement
- Number of routing layers
- Geometrical constraints: must satisfy design rules
- Timing constraints (performance-driven routing): must satisfy delay constraints
- Crosstalk?
- Process variations?



## Classification of Routing



## Maze Router: Lee Algorithm

- Lee, "An algorithm for path connection and its application," IRE Trans. Electronic Computer, EC-10, 1961.
- Discussion mainly on single-layer routing
- Strengths
- Guarantee to find connection between 2 terminals if it exists.
- Guarantee minimum path.
- Weaknesses
- Requires large memory for dense layout.
- Slow.
- Applications: global routing, detailed routing


## Lee Algorithm

- Find a path from $S$ to $T$ by "wave propagation".


Filling


Retrace

- Time \& space complexity for an $M \times N$ grid: $O(M N)$ (huge!)


## Reducing Memory Requirement

- Akers's Observations (1967)
- Adjacent labels for $k$ are either $k-1$ or $k+1$.
- Want a labeling scheme such that each label has its preceding label different from its succeeding label.
- Way 1: coding sequence $1,2,3,1,2,3, \ldots$; states: $1,2,3$, empty, blocked (3 bits required)
- Way 2 : coding sequence $1,1,2,2,1,1,2,2, \ldots$; states: 1,2 , empty, blocked (need only 2 bits)


Sequence: $1,2,3,1,2,3, \ldots$


Sequence: $1,1,2,2,1,1,2,2, \ldots$

## Reducing Running Time

- Starting point selection: Choose the point farthest from the center of the grid as the starting point.
- Double fan-out: Propagate waves from both the source and the target cells.
- Framing: Search inside a rectangle area 10--20\% larger than the bounding box containing the source and target.
- Need to enlarge the rectangle and redo if the search fails.

framing



## Connecting Multi-Terminal Nets

- Step 1: Propagate wave from the source $s$ to the closet target.
- Step 2: Mark ALL cells on the path as s.
- Step 3: Propagate wave from ALL s cells to the other cells.
- Step 4: Continue until all cells are reached.
- Step 5: Apply heuristics to further reduce the tree cost.





## Routing on a Weighted Grid

- Motivation: finding more desirable paths
- weight(grid cell) = \# of unblocked grid cell segments -1

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|}\hline 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 \\ \hline \\ \text { grid cell } \\ \text { Blocked grid } \\ \text { segments }\end{array}\right)$


## A Routing Example on a Weighted Grid

| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  | 2 |
|  |  | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 3 |
|  |  | 1 | 3 | 3 | 3 | 3 | 2 | 5 | 2 |
| 2 | 1 | 7 | 2 | 3 | 3 | 3 | 3 | 2 | 3 |
| 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |

initialize cell weights

|  |  |  |  |  |  | 13 | 13 | $n$ | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  | 6 |
|  |  | 12 | 11 | 9 | 7 | 5 | 3 | 1 | 4 |
|  |  | 15 | 14 | 11 | 8 | 5 | 2 | 5 | 2 |
|  |  | 15 | 16 | 14 | 11 | 8 | 5 | 2 | 5 |
|  |  |  | 19 | 17 | 14 | 11 | 8 | 5 | 8 |

first wave reaches the target

wave propagation

finding other paths

min-cost path found

## Hadlock's Algorithm

- Hadlock, "A shortest path algorithm for grid graphs," Networks, 1977.
- Uses detour number (instead of labeling wavefront in Lee's router)
- Detour number, $d(P)$ : \# of grid cells directed away from its target on path $P$.
- $M D(S, T)$ : the Manhattan distance between $S$ and $T$.
- Path length of $P, I(P): I(P)=M D(S, T)+2 d(P)$.
$-M D(S, T)$ fixed $!\Rightarrow$ Minimize $d(P)$ to find the shortest path.
- For any cell labeled $i$, label its adjacent unblocked cells away from $T i+1$; label $i$ otherwise.
- Time and space complexities: $O(M N)$, but substantially reduces the \# of searched cells.
- Finds the shortest path between $S$ and $T$.


## Hadlock's Algorithm (cont'd)

- $d(P)$ : \# of grid cells directed away from its target on path $P$.
- $M D(S, T)$ : the Manhattan distance between $S$ and $T$.
- Path length of $P, I(P): I(P)=M D(S, T)+2 d(P)$.
- $M D(S, T)$ fixed! $\Rightarrow$ Minimize $d(P)$ to find the shortest path.
- For any cell labeled $i$, label its adjacent unblocked cells away from $T i+1$; label $i$ otherwise.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 3 | 3 | 3 | 3 |  | 3 | 3 | 3 |  |  |  |  |
|  |  |  | 3 |  | 2 | 2 | 2 | 2 |  |  | 3 | 3 |  |  |  |  |
|  |  | 3 | 2 |  | 1 | 1 | 1 | 1 |  |  | 3 | (1) |  |  |  |  |
|  |  | 3 | 2 |  | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |
|  |  | 3 | 2 |  | 1 | 1 | 1 | $I$ |  |  |  |  |  |  |  |  |
|  |  | 3 | 2 |  | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |
|  |  | 3 | 2 |  | 1 |  | 1 | 1 |  |  |  |  |  |  |  |  |
|  |  | 3 | 2 |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 3 | 2 |  | 1 | $S$ | S | 0 | 0 | 0 |  |  |  |  |  |  |
|  |  |  | 3 |  | 2 | 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |
|  |  |  |  |  | 3 | 2 | 2 | 2 |  | 2 |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 | 3 | 3 |  | 3 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Soukup's Algorithm

- Soukup, "Fast maze router," DAC-78.
- Combined breadth-first and depth-first search.
- Depth-first (line) search is first directed toward target $T$ until an obstacle or $T$ is reached.
- Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- Time and space complexities: $O(M N)$, but 10--50 times faster than Lee's algorithm.
- Find a path between $S$ and $T$, but may not be the shortest!



## Features of Line-Search Algorithms



- Time and space complexities: $O(L)$, where $L$ is the \# of line segments generated.


## Mikami-Tabuchi's Algorithm

- Mikami \& Tabuchi, "A computer program for optimal routing of printed circuit connectors," IFIP, H47, 1968.
- Every grid point is an escape point.


Trial lines from source
$-—-$ Trial lines from target
$\times$ Base point

O Point of intersection

## Hightower's Algorithm

- Hightower, "A solution to line-routing problem on the continuous plane," DAC-69.
- A single escape point on each line segment.
- If a line parallels to the blocked cells, the escape point is placed just past the endpoint of the segment.



## Comparison of Algorithms

|  | Maze routing |  |  | Line search |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Lee | Soukup | Hadlock | Mikami | Hightower |
| Time | $O(M N)$ | $O(M N)$ | $O(M N)$ | $O(L)$ | $O(L)$ |
| Space | $O(M N)$ | $O(M N)$ | $O(M N)$ | $O(L)$ | $O(L)$ |
| Finds path if one exists? | yes | yes | yes | yes | no |
| Is the path shortest? | yes | no | yes | no | no |
| Works on grids orlines? | grid | grid | grid | line | line |

- Soukup, Mikami, and Hightower all adopt some sort of line-search operations $\Rightarrow$ cannot guarantee shortest paths.


## Multi-layer Routing

-3-D grid:


- Two planar arrays:
- Neglect the weight for inter-layer connection through via.
- Pins are accessible from both layers.

| 3 | 2 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 5 | 7 | 2 | 3 |
| 3 | 2 | 7 | 2 | 3 | 4 |
| 4 | 3 | 2 | 3 | 4 | 5 |
| 5 | 4 | 3 | 4 | 5 | 6 |
| 6 | 5 | 4 | 5 | 6 | 7 |
| 7 | 6 | 5 | 6 | 7 | 8 |
|  |  |  |  |  |  |
| 9 | 8 | 7 | 8 | 9 | 7 |

Ist layer


2ndlayer


## Net Ordering

- Net ordering greatly affects routing solutions.
- In the example, we should route net $b$ before net $a$.

route net $b$ before net $a$


## Net Ordering (cont'd)

- Order the nets in the ascending order of the \# of pins within their bounding boxes.
- Order the nets in the ascending (or descending??) order of their lengths.
- Order the nets based on their timing criticality.


routing ordering: $a(0)->b(1)->d(2)->c(6)$
- A mutually intervening case:

a prevents routing of $b$

b prevents routing of a



## Rip-Up and Re-routing

- Rip-up and re-routing is required if a global or detailed router fails in routing all nets.
- Approaches: the manual approach? the automatic procedure?
- Two steps in rip-up and re-routing

1. Identify bottleneck regions, rip off some already routed nets.
2. Route the blocked connections, and re-route the ripped-up connections.

- Repeat the above steps until all connections are routed or a time limit is exceeded.


## Graph Models for Global Routing: Grid Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
- The occupied cells are represented as filled circles, whereas the others are as clear circles.



## Graph Model: Channel Intersection Graph

- Channels are represented as edges.
- Channel intersections are represented as vertices.
- Edge weight represents channel capacity.
- Extended channel intersection graph: terminals are also represented as vertices.



## Global-Routing Problem

- Given a netlist $\mathrm{N}=\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$, a routing graph $G=$ $(V, E)$, find a Steiner tree $T_{i}$ for each net $N_{i}, 1 \leq i \leq n$, such that $U\left(e_{j}\right) \leq c\left(e_{j}\right), \forall e_{j} \in E$ and $\sum_{i=1}^{n} L\left(T_{i}\right)$ is minimized, where
$-c\left(e_{j}\right)$ : capacity of edge $e_{j}$;
$-x_{i j}=1$ if $e_{j}$ is in $T_{i} ; x_{i j}=0$ otherwise;
$-U\left(e_{j}\right)=\sum_{i=1}^{n} x_{i j}$ : \# of wires that pass through the channel corresponding to edge $e_{j}$;
$-L\left(T_{i}\right)$ : total wirelength of Steiner tree $T_{i}$.
- For high-performance, the maximum wirelength ( $\max _{i=1}^{n} L\left(T_{i}\right)$ ) is minimized (or the longest path between two points in $T_{i}$ is minimized).


## Global Routing in different Design Styles



## Global Routing in Standard Cell

- Objective
- Minimize total channel height.
- Assignment of feedthrough: Placement? Global routing?
- For high performance,
- Minimize the maximum wire length.
- Minimize the maximum path length.



## Global Routing in Gate Array

- Objective
- Guarantee 100\% routability.
- For high performance,
- Minimize the maximum wire length.
- Minimize the maximum path length.


Each channel has a capacity of 2 tracks.

## Global Routing in FPGA

- Objective
- Guarantee 100\% routability.
- Consider switch-module architectural constraints.
- For performance-driven routing,
- Minimize \# of switches used.
- Minimize the maximum wire length.
- Minimize the maximum path length.


Each channel has a capacity of 2 tracks.

## Global-Routing: Maze Routing

- Routing channels may be modelled by a weighted undirected graph called channel connectivity graph.
- Node $\leftrightarrow$ channel; edge $\leftrightarrow$ two adjacent channels; capacity: (width, length)

updated channel graph

route $A-A^{\prime}$ pid 5-6-7

route $B-B^{\prime}$ via 5-6-7

maze routing for nets $A$ and $B$


## The Routing-Tree Problem

- Problem: Given a set of pins of a net, interconnect the pins by a "routing tree."


standard cell

building block
- Minimum Rectilinear Steiner Tree (MRST) Problem: Given $n$ points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- $\operatorname{MRST}(P)=\operatorname{MST}(P \cup S)$, where $P$ and $S$ are the sets of original points and Steiner points, respectively.



## Theoretic Results for the MRST Problem

- Hanan's Thm: There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of $P$.
- Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966.
- Hwang's Theorem: For any point set $P, \frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq \frac{3}{2}$.
- Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Best existing approximation algorithm: Performance bound 61/48 by Foessmeier et al.



Hanan grid

$\operatorname{Cost}(M S T) / \operatorname{Cost}(M R S T)->3 / 2$

## A Simple Performance Bound

- Easy to show that $\frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq 2$
- Given any MRST $T$ on point set $P$ with Steiner point set $S$, construct a spanning tree $T$ on $P$ as follows:

1. Select any point in $T$ as a root.
2. Perform a depth-first traversal on the rooted tree $T$.
3. Construct $T$ based on the traversal.



- depth-first traversal
- every edge is visited twice

$\operatorname{Cost}\left(T^{\prime}\right)<=2 \operatorname{Cost}(T)$


## Coping with the MRST Problem

- Ho, Vijayan, Wong, "New algorithms for the rectilinear Steiner problem,"

1. Construct an MRST from an MST.
2. Each edge is straight or L-shaped.
3. Maximize overlaps by dynamic programming.

- About 8\% smaller than Cost(MST).


Two L-shaped MRST of the given MST


Two possible L-shaped layouts per edge

## Iterated 1-Steiner Heuristic for MRST

- Kahng \& Robins, "A new class of Steiner tree heuristics with good performance: the iterated 1-Steiner approach," ICCAD-90..


## Algorithm: Iterated_1-Steiner(P)

$P$ : set $P$ of $n$ points.
1 begin
$2 S \leftarrow \varnothing$;
/* $H(P \cup S)$ : set of Hanan points */
$l^{*} \Delta \operatorname{MST}(A, B)=\operatorname{Cost}(\operatorname{MST}(A))-\operatorname{Cost}(\operatorname{MST}(A \cup B))$ */
3 while (Cand $\leftarrow\{x \in H(P \cup S) \mid \Delta M S T(P \cup S,\{x\})>0\} \neq \varnothing)$ do
4 Find $x \in C$ and which maximizes $\Delta M S T(P \cup S),\{x\})$;
$5 \quad S \leftarrow S \cup\{x\}$;
6 Remove points in $S$ which have degree $\leq \mathbf{2}$ in $\operatorname{MST}(P \cup S)$;
7 Output MST(P $\cup S$ );
8 end


