Unit 5C: Placement

- Course contents:
- Placement metrics
- Constructive placement: cluster growth, min cut
- Iterative placement: force-directed method, simulated annealing, genetic algorithm
- Readings
- Chapter 7.1--7.4
- Chapter 5.8

Placement

- Placement is the problem of automatically assigning correct positions on the chip to predesigned cells, such that some cost function is optimized.
- Inputs: A set of fixed cells/modules, a netlist.
- Goal: Find the best position for each cell/module on the chip according to appropriate cost functions.
- Considerations: routability/channel density, wirelength, cut size, performance, thermal issues, I/O pads.

Placement Objectives and Constraints

- What does a placement algorithm try to optimize?
- the total area
- the total wire length
- the number of horizontal/vertical wire segments crossing a line
- Constraints:
- the placement should be routable (no cell overlaps; no density overflow).
- timing constraints are met (some wires should always be shorter than a given length).

Density $=2$ (2 tracks required)

Shorter wiretength, 3 tracks required.

VLSI Placement: Building Blocks

- Different design styles create different placement problems.
- E.g., building-block, standard-cell, gate-array placement
- Building block: The cells to be placed have arbitrary shapes.

Building block

VLSI Placement: Standard Cells

- Standard cells are designed in such a way that power and clock connections run horizontally through the cell and other I/O leaves the cell from the top or bottom sides.
- The cells are placed in rows.
- Sometimes feedthrough cells are added to ease wiring.

Consequences of Fabrication Method

- Full-custom fabrication (building block):
- Free selection of aspect ratio (quotient of height and width).
- Height of wiring channels can be adapted to necessity.
- Semi-custom fabrication (gate array, standard cell):
- Placement has to deal with fixed carrier dimensions.
- Placement should be able to deal with fixed channel capacities.

Relation with Routing

- Ideally, placement and routing should be performed simultaneously as they depend on each other's results. This is, however, too complicated.
- P\&R: placement and routing
- In practice placement is done prior to routing. The placement algorithm estimates the wire length of a net using some metric.

Estimation of Wirelength

- Semi-perimeter method: Half the perimeter of the bounding rectangle that encloses all the pins of the net to be connected. Most widely used approximation!
- Squared Euclidean distance: Squares of all pairwise terminal distances in a net using a quadratic cost function

$$
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i j}\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right]
$$

- Steiner-tree approximation: Computationally expensive.
- Minimum spanning tree: Good approximation to Steiner trees.
- Complete graph: Since \#edges in a complete graph is $\left(\frac{n(n-1)}{2}\right)=$ $\frac{n}{2} \times \#$ of tree edges $(n-1)$, wirelength $\approx \frac{2}{n} \sum_{(i, j) \in \text { net }} \operatorname{dist}(i, j)$.

Estimation of Wirelength (cont'd)

semi-perimeter len $=11$

complete gruph len $* 2 / n=17.5$

Steiner tree len $=12$

Spunning tree len $=13$

Placement Algorithms

- The placement problem is NP-complete
- Popular placement algorithms:
- Constructive algorithms: once the position of a cell is fixed, it is not modified anymore.
- Cluster growth, min cut, etc.
- Iterative algorithms: intermediate placements are modified in an attempt to improve the cost function.
- Force-directed method, etc
- Nondeterministic approaches: simulated annealing, genetic algorithm, etc.
- Most approaches combine multiple elements:
- Constructive algorithms are used to obtain an initial placement.
- The initial placement is followed by an iterative improvement phase.
- The results can further be improved by simulated annealing.

Bottom-Up Placement: Clustering

- Starts with a single cell and finds more cells that share nets with it.

Placement by Cluster Growth

- Greedy method: Selects unplaced components and places them in available slots.
- SELECT: Choose the unplaced component that is most strongly connected to all of the placed components (or most strongly connected to any single placed component).
- PLACE: Place the selected component at a slot such that a certain "cost" of the partial placement is minimized.

Cluster Growth Example

- \# of other terminals connected: $c_{a}=3, c_{b}=1, c_{c}=1, c_{d}=1$, $c_{e}=4, c_{f}=3$, and $c_{g}=3 \Rightarrow e$ has the most connectivity.
- Place e in the center, slot 4. a, b, g are connected to e, and $\vec{c}_{a e}=2, \hat{c}_{b e}=\hat{c}_{e g}=1 \Rightarrow$ Place a next to e (say, slot 3). Continue until all cells are placed.
- Further improve the placement by swapping the gates.

Top-down Placement: Min Cut

- Starts with the whole circuit and ends with small circuits.
- Recursive bipartitioning of a circuit (e.g., K\&L) leads to a min-cut placement.

Min-Cut Placement

- Breuer, "A class of min-cut placement algorithms," DAC-77.
- Quadrature: suitable for circuits with high density in the center.
- Bisection: good for standard-cell placement.
- Slice/Bisection: good for cells with high interconnection on the periphery.

Algorithm for Min-Cut Placement

Algorithm: Min_Cut_Placement(N, n, C)

/* N : the layout surface */
/* n : \# of cells to be placed */
/* n_{0} : \# of cells in a slot */
/* C : the connectivity matrix */
1 begin
2 if $\left(n \leq n_{0}\right)$ then PlaceCells (N, n, C)
3 else
$4 \quad\left(N_{1}, N_{2}\right) \leftarrow$ CutSurface(N);
$5 \quad\left(n_{1}, C_{1}\right),\left(n_{2}, C_{2}\right) \leftarrow \operatorname{Partition}(n, C)$;
6 Call Min_Cut_Placement $\left(N_{1}, n_{1}, C_{1}\right)$;
7 Call Min_Cut_Placement $\left(N_{2}, \mathrm{n}_{2}, \mathrm{C}_{2}\right)$;
8 end

Quadrature Placement Example

- Apply the K-L heuristic to partition + Quadrature Placement: Cost $C_{1}=4, C_{2 L}=C_{2 R}=2$, etc.

Min-Cut Placement with Terminal Propagation

- Dunlop \& Kernighan, "A procedure for placement of standard-cell VLSI circuits," IEEE TCAD, Jan. 1985.
- Drawback of the original min-cut placement: Does not consider the positions of terminal pins that enter a region.
- What happens if we swap $\{1,3,6,9\}$ and $\{2,4,5,7\}$ in the previous example?

Terminal Propagation

- We should use the fact that s is in L_{1} !

- When not to use p to bias partitioning? Net s has cells in many groups?

Terminal Propagation Example

- Partitioning must be done breadth-first, not depth-first.

General Procedure for Iterative Improvement

```
Algorithm: Iterative_Improvement()
1 begin
2 s \leftarrowinitial_configuration();
3 c\leftarrowcost(s);
4 while (not stop()) do
5 s' \leftarrowperturb(s);
6}\quadc\leftarrow\operatorname{cost}(\mp@subsup{s}{}{\prime})
7 if (accept(c, c'))
8 then }s\leftarrows\mathrm{ ;
9 end
```


Placement by the Force-Directed Method

- Hanan \& Kurtzberg, "Placement techniques," in Design Automation of Digital Systems, Breuer, Ed, 1972.
- Quinn, Jr. \& Breuer, "A force directed component placement procedure for printed circuit boards," IEEE Trans. Circuits and Systems, June 1979.
- Reduce the placement problem to solving a set of simultaneous linear equations to determine equilibrium locations for cells.
- Analogy to Hooke's law: $F=k d, F$: force, k : spring constant, d : distance.
- Goal: Map cells to the layout surface.

Finding the Zero-Force Target Location

- Cell i connects to several cells j 's at distances $d_{i j}$'s by wires of weights $w_{i j}$'s. Total force: $F_{i}=\sum_{j} w_{i j} d_{i j}$
- The zero-force target location ($\widehat{x_{i}}, \widehat{y_{i}}$) can be determined by equating the x - and y-components of the forces to zero:

$$
\begin{aligned}
& \sum_{j} w_{i j} \cdot\left(x_{j}-\widehat{x_{i}}\right)=0 \Rightarrow \widehat{x_{i}}=\frac{\sum_{j} w_{i j} x_{j}}{\sum_{j} w_{i j}} \\
& \sum_{j} w_{i j} \cdot\left(y_{j}-\widehat{y_{i}}\right)=0 \Rightarrow \widehat{y_{i}}=\frac{\sum_{j} w_{i j} y_{j}}{\sum_{j} w_{i j}}
\end{aligned}
$$

- In the example, $\hat{x_{i}}=\frac{8 \times 0+10 \times 2+3 \times 0+3 \times 2}{8+10+3+3}=1.083$ and $\hat{y_{i}}=1.50$.

Force-Directed Placement

- Can be constructive or iterative:
- Start with an initial placement.
- Select a "most profitable" cell p (e.g., maximum F, critical cells) and place it in its zero-force location.
- "Fix" placement if the zero-location has been occupied by another cell q.
- Popular options to fix:
- Ripple move: place p in the occupied location, compute a new zero-force location for q, \ldots
- Chain move: place p in the occupied location, move q to an adjacent location, ...
- Move p to a free location close to q.

Algorithm: Force-Directed_Placement

1 begin
2 Compute the connectivity for each cell;
3 Sort the cells in decreasing order of their connectivities into list L;
4 while (IterationCount <Iteration Limit) do
5 Seed \leftarrow next module from L;
6 Declare the position of the seed vacant;
$7 \quad$ while (EndRipple $=$ FALSE) do
8 Compute target location of the seed;
9 case the target location
10 VACANT:
11 Move seed to the target location and lock;
12 EndRipple $\leftarrow T R U E ;$ AbortCount \leftarrow 0;
13 SAME AS PRESENT LOCATION:
EndRipple $\leftarrow T R U E$; AbortCount $\leftarrow 0$;
LOCKED:
Move selected cell to the nearest vacant location;
EndRipple $\leftarrow T$ RUE; AbortCount \leftarrow AbortCount +1 ;
if (AbortCount $>$ AbortLimit) then
Unlock all cell locations;
IterationCount \leftarrow IterationCount +1 ;
OCCUPIED AND NOT LOCKED:
21 Select cell as the target location for next move;

22
23 26 end

Move seed cell to target location and lock the target location; EndRipple \leftarrow FALSE; AbortCount $\leftarrow 0$;

Placement by Simulated Annealing

- Sechen and Sangiovanni-Vincentelli, "The TimberWolf placement and routing package," IEEE J. Solid-State Circuits, Feb. 1985; "TimberWolf 3.2: A new standard cell placement and global routing package," DAC-86.
- TimberWolf: Stage 1
- Modules are moved between different rows as well as within the same row.
- Modules overlaps are allowed.
- When the temperature is reached below a certain value, stage 2 begins.
- TimberWolf: Stage 2
- Remove overlaps.
- Annealing process continues, but only interchanges adjacent modules within the same row.

Solution Space \& Neighborhood Structure

- Solution Space: All possible arrangements of the modules into rows, possibly with overlaps.
- Neighborhood Structure: 3 types of moves
$-M_{1}$: Displace a module to a new location.
- M_{2} : Interchange two modules.
$-M_{3}$: Change the orientation of a module.

Neighborhood Structure

- TimberWolf first tries to select a move between M_{1} and $M_{2}: \operatorname{Prob}\left(M_{1}\right)$ $=0.8, \operatorname{Prob}\left(M_{2}\right)=0.2$.
- If a move of type M_{1} is chosen and it is rejected, then a move of type M_{3} for the same module will be chosen with probability 0.1.
- Restrictions: (1) what row for a module can be displaced? (2) what pairs of modules can be interchanged?
- Key: Range Limiter
- At the beginning, $\left(W_{T}, H_{T}\right)$ is big enough to contain the whole chip.
- Window size shrinks as temperature decreases. Height \& width $\propto \log (T)$.
- Stage 2 begins when window size is so small that no inter-row module interchanges are possible.

Cost Function

- Cost function: $C=C_{1}+C_{2}+C_{3}$.
- C_{1} : total estimated wirelength.
$-C_{1}=\sum_{i \in N e t s}\left(\alpha_{i} w_{i}+\beta_{i} h_{i}\right)$
$-\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}$ are horizontal and vertical weights, respectively. $\left(\alpha_{\mathrm{i}}=1, \beta_{\mathrm{i}}\right.$ $=1 \Rightarrow$ half perimeter of the bounding box of Net i.)
- Critical nets: Increase both α_{i} and β_{i}.
- If vertical wirings are "cheaper" than horizontal wirings, use smaller vertical weights: $\beta_{i}<\alpha_{i}$.
- C_{2} : penalty function for module overlaps.
$-C_{2}=\gamma \sum_{i \neq j} O^{2}{ }_{i j}, \gamma$: penalty weight.
$-O_{i j}$: amount of overlaps in the x-dimension between modules i and j.
- C_{3} : penalty function that controls the row length.
$-C_{2}=\delta \sum_{r \in \text { Rows }}\left|L_{r}-D_{r}\right|$, $\delta:$ penalty weight.
- D_{r} : desired row length.
$-L_{r}$: sum of the widths of the modules in row r.

Annealing Schedule

- $T_{k}=r_{k} T_{k-1}, k=1,2,3, \ldots$
- r_{k} increases from 0.8 to max value 0.94 and then decreases to 0.8.
- At each temperature, a total \# of $n P$ attempts is made.
- n : \# of modules; P : user specified constant.
- Termination: $T<0.1$.

Placement by the Genetic Algorithm

- Cohoon \& Paris, "Genetic placement," ICCAD-86.
- Genetic algorithm: A search technique that emulates the biological evolution process to find the optimum.
- Generic approaches:
- Start with an initial set of random configurations (population); each individual is a string of symbol (symbol string \leftrightarrow chromosome: a solution to the optimization problem, symbol \leftrightarrow gene).
- During each iteration (generation), the individuals are evaluated using a fitness measurement.
- Two fitter individuals (parents) at a time are selected to generate new solutions (offsprings).
- Genetic operators: crossover, mutation, inversion
- In the example, string $=[$ aghcbidef $]$; fitness value $=1 / \sum_{(i, j) \in E} W_{i j} d_{i j}=$ 1/85.

6	7	8
3	4	5
0	1	2

d	e	f
c	b	i
a	g	h

Genetic Operator: Crossover

- Main genetic operator: Operate on two individuals and generates an offspring.
$-[$ bidef $\mid a g h c]\left(\frac{1}{86}\right)+[b d e f i \mid g c h a]\left(\frac{1}{110}\right) \rightarrow[$ bidefgcha $]\left(\frac{1}{63}\right)$.
- Need to avoid repeated symbols in the solution string!
- Partially mapped crossover for avoiding repeated symbols:
$-[b i d e f \mid g c h a]\left(\frac{1}{86}\right)+[a g h c b \mid i d e f]\left(\frac{1}{85}\right) \rightarrow[b g c h a \mid i d e f]$.
- Copy idef to the offspring; scan [bideflgcha] from the left, and then copy all unrepeated genes.

Two More Crossover Operations

- Cut-and-paste + Chain moves:
- Copy a randomly selected cell e and its four neighbors from parent 1 to parent 2.
- The cells that earlier occupied the neighboring locations in parent 2 are shifted outwards.
- Cut-and-paste + Swapping
- Copy $k \times k$ square modules from parent 1 to parent 2 (k : random \# from a normal distribution with mean 3 and variance 1).
- Swap cells not in both square modules.

Genetic Operators: Mutation \& Inversion

- Mutation: prevents loss of diversity by introducing new solutions.
- Incremental random changes in the offspring generated by the crossover.
- A commonly used mutation: pairwise interchange.
- Inversion: [bid|efgch|a] \rightarrow [bid|hcgfe|a].
- Apply mutation and inversion with probability P_{μ} and P_{i} respectively.

```
Algorithm: Genetic_Placement \(\left(N_{p}, N_{g}, N_{o}, P_{i}, P \mu\right)\)
/* \(N_{p}\) : population size; */
/* \(N_{g}\) : \# of generation; */
/* \(N_{0}\) : \\# of offspring; */
/* Pi : inversion probability; */
/* \(P \mu\) : mutation probability; */
1 begin
2 ConstructPopulation \(\left(N_{g}\right)\); /* randomly generate the initial population */
3 for \(j \leftarrow 1\) to \(N_{p}\)
4 Evaluate Fitness(population \(\left(N_{p}\right)\) );
5 for \(i \leftarrow 1\) to \(N_{g}\)
\(6 \quad\) for \(j \leftarrow 1\) to \(N_{o}\)
\(7 \quad(x, y) \leftarrow\) ChooseParents; /* choose parents with probability \(\propto\) fitness value */
\(8 \quad\) offspring \((j) \leftarrow\) GenerateOffspring \((x, y)\); /* perform crossover to generate offspring */
\(9 \quad\) for \(h \leftarrow 1\) to \(N_{p}\)
10 With probability \(P \mu\), apply Mutation(population(h));
11 for \(h \leftarrow 1\) to \(N_{p}\)
12 With probability \(P_{i}\), apply Inversion(population(h));
13 Evaluate Fitness(offspring(j));
14 population \(\leftarrow \operatorname{Select}\left(p o p u l a t i o n\right.\), offspring, \(N_{p}\) );
15 return the highest scoring configuration in population;
16 end
```


Genetic Placement Experiment: GINIE

- Termination condition: no improvement in the best solution for 10,000 generations.
- Population size: 50. (Each generation: 50 unchanged throughout the process.)
- Each generation creates 12 offsprings.
- Comparisons with simulated annealing:
- Similar quality of solutions and running time.
- Needs more memory.

