Unit 5B: Floorplanning

- Course contents
 - Floorplan basics
 - Normalized Polish expression for slicing flooprlans
 - B*-trees for non-slicing floorplans
- Readings
 - Chapters 8 and 5.6

PowerPC 604

Floorplanning

- Partitioning leads to
 - Blocks with well-defined areas and shapes (rigid/hard blocks).
 - Blocks with approximate areas and no particular shapes (flexible/soft blocks).
 - A netlist specifying connections between the blocks.
- Objectives
 - Find locations for all blocks.
 - Consider shapes of soft block and pin locations of all the blocks.

Early Layout Decision Example

Early Layout Decision Methodology

- An integrated circuit is essentially a two-dimensional medium; taking this aspect into account in early stages of the design helps in creating designs of good quality.
- Floorplanning gives early feedback: thinking of layout at early stages may suggest valuable architectural modifications; floorplanning also aids in estimating delay due to wiring.
- Floorplanning fits very well in a *top-down* design strategy, the *step-wise refinement* strategy also propagated in software design.
- Floorplanning assumes, however, *flexibility* in layout design, the existence of cells that can adapt their shapes and terminal locations to the environment.

Floorplanning Problem

- Inputs to the floorplanning problem:
 - A set of blocks, hard or soft.
 - Pin locations of hard blocks.
 - A netlist.
- Objectives: minimize area, reduce wirelength for (critical) nets, maximize routability (minimize congestion), determine shapes of soft blocks, etc.

A non-optimal floorplan

Floorplan Design

- Modules: x
- Area: A=xy
- Aspect ratio: $r \le y/x \le s$

• Rotation:

• Module connectivity

• Leaf cell

(block/module): a cell at the lowest level of the hierarchy; it does not contain any other cell.

• Composite cell

(block/module): a cell that is composed of either leaf cells or composite cells. The entire IC is the highestlevel composite cell.

Slicing Floorplan + Slicing Tree

- A composite cell's subcells are obtained by a horizontal or vertical *bisection* of the composite cell.
- Slicing floorplans can be represented by a **slicing tree**.
- In a slicing tree, all cells (except for the top-level cell) have a *parent*, and all composite cells have *children*.
- A slicing floorplan is also called a floorplan of order 2.

different from the definitions in the text!!

Skewed Slicing Tree

- **Rectangular dissection:** Subdivision of a given rectangle by a finite # of horizontal and vertical line segments into a finite # of non-overlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

Slicing Floorplan Design by Simulated Annealing

- Related work
 - Wong & Liu, "A new algorithm for floorplan design," DAC-86.
 - Considers slicing floorplans.
 - Wong & Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
 - Also considers L-shaped modules.
 - Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31--71, Kluwer Academic Publishers, 1988.
- Ingredients to simulated annealing
 - solution space?
 - neighborhood structure?
 - cost function?
 - annealing schedule?

Solution Representation

- An expression $E = e_1 e_2 \dots e_{2n-1}$, where $e_i \in \{1, 2, \dots, n, H, V\}$, $1 \le i \le 2n-1$, is a **Polish expression** of length 2n-1 iff
 - every operand *j*, $1 \le j \le n$, appears exactly once in *E*;
 - 2. (the balloting property) for every subexpression $E_i = e_1 \dots e_i$, $1 \le i \le 2n-1$, # operands > # operators. $1 \ 6 \ H \ 3 \ 5 \ V \ 2 \ H \ V \ 7 \ 4 \ H \ V$

of operands = $4 \quad \dots = 7$ # of operators = $2 \quad \dots = 5$

- Polish expression \leftrightarrow Postorder traversal.
- *ijH*: rectangle *i* on bottom of *j*; *ijV*: rectangle *i* on the left of *j*.

Redundant Representations

• **Question:** How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression E = e₁ e₂ ... e_{2n-1} is called normalized iff E has no consecutive operators of the same type (H or V).
- Given a **normalized** Polish expression, we can construct a **unique** rectangular slicing structure.

Neighborhood Structure

- Chain: HVHVH ... or VHVHV ... 1 6 H 3 5 V 2 H V 7 4 H V chain
- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
 - M1 (Operand Swap): Swap two adjacent operands.
 - *M2* (**Chain Invert**): Complement some chain (V = H, H = V).
 - M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
 - M1 and M2 moves are OK.
 - Check the M3 moves! Reject "illegal" M3 moves.
- Check *M3* moves: Assume that the *M3* move swaps the operand e_i with the operator e_{i+1} , $1 \le i \le k-1$. Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.
 - $= N_k$: # of operators in the Polish expression $E = e_1 e_2 \dots e_k$, 1 ≤ k ≤ 2*n*-1

Cost Function

- $\phi = A + \lambda W$.
 - A: area of the smallest rectangle
 - W: overall wiring length
 - λ : user-specified parameter

- $W = \sum_{ij} c_{ij} d_{ij}$.
 - c_{ij} : # of connections between blocks *i* and *j*.
 - d_{ij} : center-to-center distance between basic rectangles *i* and *j*.

Area Computation for Hard Blocks

Allow rotation

• Wiring cost?

Center-to-center interconnection length

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most **two paths** of the slicing tree need to be updated for each move.

Incremental Computation of Cost Function (cont'd)

$\mathbf{E} = \mathbf{123H4V56VHV}$

Annealing Schedule

• Initial solution: $12V3V \dots nV$.

1 2 3	n
-------	---

- $T_i = r^i T_0$, i = 1, 2, 3, ...; r = 0.85.
- At each temperature, try kn moves (k = 5-10).
- Terminate the annealing process if
 - # of accepted moves < 5%,
 - temperature is low enough, or
 - run out of time.

Algorithm: Wong-Liu (P, ε, r, k)

```
1 begin
2 E \leftarrow 12V3V4V \dots nV; /* initial solution */
3 Best \leftarrow E; T_0 \leftarrow; M \leftarrow MT \leftarrow uphill \leftarrow 0; N = kn;
                   \Delta_{avg}
4 repeat
5 MT \leftarrow uphi \stackrel{ln(P)}{\longrightarrow} reject \leftarrow 0;
6 repeat
      SelectMove(M);
7
8
      Case M of
       M_1: Select two adjacent operands e_i and e_j; NE \leftarrow \text{Swap}(E, e_i, e_j);
9
       M_2: Select a nonzero length chain C; NE \leftarrow Complement(E, C);
10
11
       M_3: done \leftarrow FALSE;
12
          while not (done) do
13
              Select two adjacent operand e_i and operator e_{i+1};
14
              if (e_{i+1} \neq e_{i+1}) and (2 N_{i+1} < i) then done \leftarrow TRUE;
13'
              Select two adjacent operator e_i and operand e_{i+1};
14'
               if (e_i \neq e_{i+2}) then done \leftarrow TRUE;
          NE \leftarrow Swap(E, e_i, e_{i+1});
15
       MT \leftarrow MT+1; \Delta cost \leftarrow c(-\Delta cost) cost(E);
16
17
       if (\triangle cost \le 0) or (Randol e T)
18
       then
19
           if (\triangle cost > 0) then uphill \leftarrow uphill + 1;
20
           E \leftarrow NE:
21
           if cost(E) < cost(best) then best \leftarrow E;
        else reject \leftarrow reject + 1;
22
      until (uphill > N) or (MT > 2N);
23
      T \leftarrow rT; /* reduce temperature */
24
25 until (reject/MT > 0.95) or (T < \varepsilon) or OutOfTime;
26 end
```

Shape Curve

- Flexible cells imply that cells can have different aspect ratios.
- The relation between the width x and the height y is: xy = A, or y = A/x. The shape function is a hyperbola.
- Very thin cells are not interesting and often not feasible to design. The shape function is a combination of a hyperbola and two straight lines.

– Aspect ratio: r <= y/x <= s.</p>

Shape Curve (cont'd)

- Leaf cells are built from discrete transistors: it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a cell is rigid: it can only be rotated and mirrored during floorplanning or placement.

The shape function of a 2×4 inset cell.

Shape Curve (cont'd)

- In general, a *piecewise linear* function can be used to approximate any shape function.
- The points where the function changes its direction, are called the corner (*break*) *points* of the piecewise linear function.

Addition for Vertical Abutment

 Composition by vertical abutment ⇒ the additon of shape functions.

Deriving Shapes of Children

• A choice for the minimal shape of composite cell fixes the shapes of the shapes of its children cells.

Sizing Algorithm for Slicing Floorplans

- The shape functions of all leaf cells are given as piecewise linear functions.
- Traverse the slicing tree in order to compute the shape functions of all composite cells (bottom-up composition).
- Choose the desired shape of the top-level cell; as the shape function is piecewise linear, only the break points of the function need to be evaluated, when looking for the minimal area.
- Propagate the consequences of the choice down to the leaf cells (top-down propagation).
- The sizing algorithm runs in polynomial time for slicing floorplans
 - NP-complete for non-slicing floorplans

Feasible Implementations

 Shape curves correspond to different kinds of constraints where the shaded areas are feasible regions.

Chang, Huang, Li, Lin, Liu

Wheel or Spiral Floorplan

- This floorplan is not slicing!
- Wheel is the smallest nonslicing floorplans.

- Limiting floorplans to those that have the slicing property is reasonable: it certainly facilitates floorplanning algorithms.
- Taking the shape of a wheel floorplan and its mirror image as the basis of operators leads to hierarchical descriptions of order 5.

Order-5 Floorplan Examples

General Floorplan Representation: Polar Graphs

- vertex: channel segment
- edge (weight): cell/block/module (dimension).

B*-Tree for Compacted Non-Slicing Floorplans

- Chang et. al., "B*-tree: A new representation for non-slicing floorplans," DAC-2k.
 - 1. Compact modules to left and bottom (O-tree).
 - 2. Construct an ordered binary tree (B*-tree) (see the paper for more rigid rules!!)
 - Left child: the lowest, adjacent block on the right $(x_i = x_i + w_i)$.
 - Right child: the first block above, with the same x-coordinate $(x_i = x_i)$.
- 1-to-1 correspondence between a compacted non-slicing floorplan and its induced B*-tree.

B*-tree Packing

- x-coordinates can be determined by the tree structure.
 - Left child: the lowest, adjacent block on the right $(x_i = x_i + w_i)$.
 - Right child: the first block above, with the same x-coordinate $(x_j = x_j)$.
- y-coordinates?

Computing y-coordinates

• Reduce the complexity of computing a y-coordinate to amortized O(1) time.

Coping with Pre-placed Modules

- If there are modules ahead or lower than b_i so that b_i cannot be placed at its fixed position (x_i^f, y_i^f) , exchange b_i with the module in $D_i = \{b_j \mid (x_j, y_j) \le (x_i^f, y_i^f)\}$ that is most close to (x_i^f, y_i^f) .
- Incremental area cost update is possible.
 - E.g., the positions of b_0 , b_7 , b_8 , b_{11} , b_9 , b_{10} , and b_1 (before b_2 in the DFS order of *T*) remain unchanged after the exchange since they are in front of b_2 in the DFS order.

Coping with Rectilinear Modules

• Partition a rectilinear module into rectangular sub-modules.

• Keep location constraints for the sub-modules.

- E.g., Keep the right sub-module as the left child in the B*-tree.

- Align sub-modules, if necessary.
- Treat the sub-modules of a module as a whole during processing.

An Easy Way to Cope with Soft Modules

- Change the shape of a soft module to align with adjacent modules.
- Process soft modules one by one.

More on Soft Modules

- Step1: Change the shape of the inserted soft module.
- Step2: Change the shapes of other soft modules.

- Step1: Change the shape of the inserted soft module
- Step2: Change the shape of other soft modules

- Step1: Change the shape of the inserted soft module
- Step2: Change the shapes of other soft modules

- Step1: Change the shape of the inserted soft module
- Step2: Change the shape of other soft modules

Perturbations & Solutions

- Perturbing B*-trees in simulated annealing
 - Op1: Rotate a module.
 - Op2: Flip a module.
 - Op3: Move a module to another place.
 - Op4: Swap two modules.
- ami49: Area = 36.74 mm²; dead space = 3.53%; CPU time = 0.25 min on SUN Ultra 60 (optimum = 35.445 mm²).

