Unit 5B: Floorplanning

- Course contents
- Floorplan basics
- Normalized Polish expression for slicing flooprlans
- B*-trees for non-slicing floorplans
- Readings
- Chapters 8 and 5.6

PowerPC 604

Pentium 4

Floorplanning

- Partitioning leads to
- Blocks with well-defined areas and shapes (rigid/hard blocks).
- Blocks with approximate areas and no particular shapes (flexible/soft blocks).
- A netlist specifying connections between the blocks.
- Objectives
- Find locations for all blocks.
- Consider shapes of soft block and pin locations of all the blocks.

Early Layout Decision Example

Early Layout Decision Methodology

- An integrated circuit is essentially a two-dimensional medium; taking this aspect into account in early stages of the design helps in creating designs of good quality.
- Floorplanning gives early feedback: thinking of layout at early stages may suggest valuable architectural modifications; floorplanning also aids in estimating delay due to wiring.
- Floorplanning fits very well in a top-down design strategy, the step-wise refinement strategy also propagated in software design.
- Floorplanning assumes, however, flexibility in layout design, the existence of cells that can adapt their shapes and terminal locations to the environment.

Floorplanning Problem

- Inputs to the floorplanning problem:
- A set of blocks, hard or soft.
- Pin locations of hard blocks.
- A netlist.
- Objectives: minimize area, reduce wirelength for (critical) nets, maximize routability (minimize congestion), determine shapes of soft blocks, etc.

Floorplan Design

- Modules: $\quad \begin{array}{r}x \\ \\ \end{array}$
- Area: $A=x y$
- Aspect ratio: $r<=v / x<=s$
- Rotation:

- Module connectivity

Floorplanning Concepts

- Leaf cell
(block/module): a cell at the lowest level of the hierarchy; it does not contain any other cell.
- Composite cell
(block/module): a cell that is composed of either leaf cells or composite cells. The entire IC is the highestlevel composite cell.

Slicing Floorplan + Slicing Tree

- A composite cell's subcells are obtained by a horizontal or vertical bisection of the composite cell.
- Slicing floorplans can be represented by a slicing tree.
- In a slicing tree, all cells (except for the top-level cell) have a parent, and all composite cells have children.
- A slicing floorplan is also called a floorplan of order 2.

H: horizontal cut
V: vertical cut different from the definitions in the text!!

Skewed Slicing Tree

- Rectangular dissection: Subdivision of a given rectangle by a finite \# of horizontal and vertical line segments into a finite \# of nonoverlapping rectangles.
- Slicing structure: a rectangular dissection that can be obtained by repetitively subdividing rectangles horizontally or vertically.
- Slicing tree: A binary tree, where each internal node represents a vertical cut line or horizontal cut line, and each leaf a basic rectangle.
- Skewed slicing tree: One in which no node and its right child are the same.

	3	
1	4	5
2	6	7

Non-slicing floorplan

Slicing floorplan A slicing tree (skewed)

Another slicing tree (non-skewed)

Slicing Floorplan Design by Simulated Annealing

- Related work
- Wong \& Liu, "A new algorithm for floorplan design," DAC-86.
- Considers slicing floorplans.
- Wong \& Liu, "Floorplan design for rectangular and L-shaped modules," ICCAD'87.
- Also considers L-shaped modules.
- Wong, Leong, Liu, Simulated Annealing for VLSI Design, pp. 31--71, Kluwer Academic Publishers, 1988.
- Ingredients to simulated annealing
- solution space?
- neighborhood structure?
- cost function?
- annealing schedule?

Solution Representation

- An expression $E=e_{1} e_{2} \ldots e_{2 n-1}$, where $e_{i} \in\{1,2, \ldots, n, H, V\}$, $1 \leq i \leq 2 n-1$, is a Polish expression of length $2 n-1$ iff

1. every operand $j, 1 \leq j \leq n$, appears exactly once in E;
2. (the balloting property) for every subexpression $E_{i}=e_{1} \ldots e_{i}$, $1 \leq i \leq 2 n-1$, \# operands > \# operators.

- Polish expression \leftrightarrow Postorder traversal.
- ijH: rectangle i on bottom of j; $i j V$: rectangle i on the left of j.

7	5	4
6		
1	2	3

Redundant Representations

- Question: How to eliminate ambiguous representation?

Normalized Polish Expression

- A Polish expression $E=e_{1} e_{2} \ldots e_{2 n-1}$ is called normalized iff E has no consecutive operators of the same type (H or V).
- Given a normalized Polish expression, we can construct a unique rectangular slicing structure.

A normalized Polish expression

Neighborhood Structure

- Chain: HVHVH ... or VHVHV ...

- Adjacent: 1 and 6 are adjacent operands; 2 and 7 are adjacent operands; 5 and V are adjacent operand and operator.
- 3 types of moves:
- M1 (Operand Swap): Swap two adjacent operands.
- M2 (Chain Invert): Complement some chain ($V=H, H=V$).
- M3 (Operator/Operand Swap): Swap two adjacent operand and operator.

Effects of Perturbation

- Question: The balloting property holds during the moves?
- M1 and M2 moves are OK.
- Check the M3 moves! Reject "illegal" M3 moves.
- Check M3 moves: Assume that the M3 move swaps the operand e_{i} with the operator $e_{i+1}, 1 \leq i \leq k-1$. Then, the swap will not violate the balloting property iff $2 N_{i+1}<i$.
$-N_{k}$: \# of operators in the Polish expression $E=e_{1} e_{2} \ldots e_{k}, 1 \leq k \leq$ $2 n-1$

Cost Function

- $\phi=\mathrm{A}+\lambda W$.
- A: area of the smallest rectangle
- W: overall wiring length
- λ : user-specified parameter

- $W=\sum_{i j} c_{i j} d_{i j}$.
$-c_{i j}$: \# of connections between blocks i and j.
$-d_{i j}$: center-to-center distance between basic rectangles i and j.

Area Computation for Hard Blocks

- Allow rotation

- Wiring cost?
- Center-to-center interconnection length

Incremental Computation of Cost Function

- Each move leads to only a minor modification of the Polish expression.
- At most two paths of the slicing tree need to be updated for each move.

Incremental Computation of Cost Function (cont'd)

$\mathrm{E}=12 \mathrm{H} 34 \mathrm{~V} 56 \mathrm{VHV}$
$\mathrm{E}=12 \mathrm{H} 34 \mathrm{~V} 56 \mathrm{HVH}$

$$
E=123 \mathrm{H} 4 \mathrm{~V} 56 \mathrm{VHV}
$$

Annealing Schedule

- Initial solution: 12 V 3 V ... nV.

- $T_{i}=r^{i} T_{0}, i=1,2,3, \ldots ; r=0.85$.
- At each temperature, try kn moves ($k=5-10$).
- Terminate the annealing process if
- \# of accepted moves < 5\%,
- temperature is low enough, or
- run out of time.

Algorithm: Wong-Liu (P, ε, r, k)

Shape Curve

- Flexible cells imply that cells can have different aspect ratios.
- The relation between the width x and the height y is: $x y=A$, or $y=A l x$. The shape function is a hyperbola.
- Very thin cells are not interesting and often not feasible to design. The shape function is a combination of a hyperbola and two straight lines.
- Aspect ratio: $r<=y / x<=s$.

Shape Curve (cont'd)

- Leaf cells are built from discrete transistors: it is not realistic to assume that the shape function follows the hyperbola continuously.
- In an extreme case, a cell is rigid: it can only be rotated and mirrored during floorplanning or placement.

The shape function of a 2×4 inset cell.

Shape Curve (cont'd)

- In general, a piecewise linear function can be used to approximate any shape function.
- The points where the function changes its direction, are called the corner (break) points of the piecewise linear function.

Addition for Vertical Abutment

- Composition by vertical abutment \Rightarrow the additon of shape functions.

Deriving Shapes of Children

- A choice for the minimal shape of composite cell fixes the shapes of the shapes of its children cells.

Sizing Algorithm for Slicing Floorplans

- The shape functions of all leaf cells are given as piecewise linear functions.
- Traverse the slicing tree in order to compute the shape functions of all composite cells (bottom-up composition).
- Choose the desired shape of the top-level cell; as the shape function is piecewise linear, only the break points of the function need to be evaluated, when looking for the minimal area.
- Propagate the consequences of the choice down to the leaf cells (top-down propagation).
- The sizing algorithm runs in polynomial time for slicing floorplans
- NP-complete for non-slicing floorplans

Feasible Implementations

- Shape curves correspond to different kinds of constraints where the shaded areas are feasible regions.

$$
\begin{array}{cc}
x i>=a, y i>=b & x i>=a, y i>=b \\
\text { or } & x i y i>=A
\end{array}
$$

$$
x i>=b, y i>=a
$$

(a) rigid, fixed orientation
(b) rigid, free orientation
(c) flexible, fixed
orientation

(d) flexible, free orientation

Wheel or Spiral Floorplan

- This floorplan is not slicing!
- Wheel is the smallest nonslicing floorplans.
- Limiting floorplans to those that have the slicing property is reasonable: it certainly facilitates floorplanning algorithms.
- Taking the shape of a wheel floorplan and its mirror image as the basis of operators leads to hierarchical descriptions of order 5.

Order-5 Floorplan Examples

General Floorplan Representation: Polar Graphs

- vertex: channel segment
- edge (weight): cell/block/module (dimension).

B*-Tree for Compacted Non-Slicing Floorplans

- Chang et. al., " B *-tree: A new representation for non-slicing floorplans," DAC-2k.

1. Compact modules to left and bottom (O-tree).
2. Construct an ordered binary tree (B^{\star}-tree) (see the paper for more rigid rules!!)

- Left child: the lowest, adjacent block on the right $\left(x_{j}=x_{i}+w_{i}\right)$.
- Right child: the first block above, with the same x-coordinate ($x_{j}=x_{i}$).
- 1-to-1 correspondence between a compacted non-slicing floorplan and its induced B^{\star}-tree.

B*-tree Packing

- x-coordinates can be determined by the tree structure.
- Left child: the lowest, adjacent block on the right $\left(x_{j}=x_{i}+w_{i}\right)$.
- Right child: the first block above, with the same x-coordinate $\left(x_{j}=x_{i}\right)$.
- y-coordinates?

Computing y-coordinates

- Reduce the complexity of computing a y-coordinate to amortized O(1) time.
horizontal contour

Coping with Pre-placed Modules

- If there are modules ahead or lower than b_{i} so that b_{i} cannot be placed at its fixed position (x_{i}^{f}, y_{i}^{f}), exchange b_{i} with the module in $D_{i}=\left\{b_{j} \mid\left(x_{j}, y_{j}\right)<=\left(x_{i}^{f}, y_{i}^{f}\right)\right.$ that is most close to $\left.\left(x_{i}^{f}, y_{i}^{f}\right)\right\}$.
- Incremental area cost update is possible.
- E.g., the positions of $b_{0}, b_{7}, b_{8}, b_{11}, b_{9}, b_{10}$, and b_{1} (before b_{2} in the DFS order of T) remain unchanged after the exchange since they are in front of b_{2} in the DFS order.

b_{6} is a preplaced module

Coping with Rectilinear Modules

- Partition a rectilinear module into rectangular sub-modules.

- Keep location constraints for the sub-modules.
- E.g., Keep the right sub-module as the left child in the B^{\star}-tree.
- Align sub-modules, if necessary.
- Treat the sub-modules of a module as a whole during processing.

An Easy Way to Cope with Soft Modules

- Change the shape of a soft module to align with adjacent modules.
- Process soft modules one by one.

More on Soft Modules

- Step1: Change the shape of the inserted soft module.
- Step2: Change the shapes of other soft modules.

More on Soft Modules

- Step1: Change the shape of the inserted soft module
- Step2: Change the shape of other soft modules

More on Soft Modules

- Step1: Change the shape of the inserted soft module
- Step2: Change the shapes of other soft modules

More on Soft Modules

- Step1: Change the shape of the inserted soft module
- Step2: Change the shape of other soft modules

Perturbations \& Solutions

- Perturbing B^{\star}-trees in simulated annealing
- Op1: Rotate a module.
- Op2: Flip a module.
- Op3: Move a module to another place.
- Op4: Swap two modules.
- ami49: Area $=36.74 \mathrm{~mm}^{2}$; dead space $=3.53 \%$; CPU time $=0.25 \mathrm{~min}$ on SUN Ultra 60 (optimum $=35.445$ mm^{2}).

Rectangular, $\mathrm{L}-$, and T -shaped modules

