Unit 5A: Circuit Partitioning

e Course contents:

— Kernighang-Lin partitioning heuristic

— Fiduccia-Mattheyses heuristic

— Simulated annealing based partitioning algorithm
e Readings

— Chapter 7.5

(4¥] graph representation
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Unit 3: Partitioning

e Course contents:
— Kernighagn & Lin heuristic
— Fiduccia-Mattheyses heuristic
— Simulated annealing based method
— Network-flow based method
— Multilevel circuit partitioning

¢ Readings

=D
— S&Y: Chapter 2
— Sherwani: Chapter 5 g
=
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Basic Definitions

e Cell: a logic block used to build larger circuits.

e Pin: a wire (metal or polysilicon) to which another
external wire can be connected.

e Nets: a collection of pins which must be electronically
connected.

e Netlist: a list of all nets in a circuit.
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Basic Definitions (cont’'d)

e Manhattan distance: If two points (pins) are located at
coordinates (X, ¥;) and (Xx,, y,), the Manhattan distance
between them Is given by d,, = [X;-X,| + |Y;1-Y,|.

¢ Rectilinear spanning tree: a spanning tree that
connects Iits pins using Manhattan paths.

e Steiner tree: a tree that connects its pins, and
additional points (Steiner points) are permitted to used
for the connections.
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Partitioning

system design

'

s Decomposition of a complex system into smaller subsystems.

¢ Each subsystein can be designed independently speeding up
the design process.

» Decomposition scheme has to minimize the interconnections
among the subsystems.

s Decomposition is carried out hierarchically until each
subsystem 1s of managable size.
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Levels of Partitioning

e The levels of partitioning: system, board, chip.
e Hierarchical partitioning: higher costs for higher levels.

system
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Circult Partitioning

¢ ODbjective: Partition a circuit into parts such that every
component is within a prescribed range and the # of
connections among the components is minimized.
— More constraints are possible for some applications.

e Cutset? Cut size? Size of a component?

(4] graph representation
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Problem Definition: Partitioning

e k-way partitioning: Given a graph G(V, E), where each
vertex v € V has a size s(v) and each edge e € E has a
weight w(e), the problem is to divide the set V into k disjoint
subsets V,, V,, ..., V,, such that an objective function is
optimized, subject to certain constraints.

e Bounded size constraint: The size of the I-th subset is
bounded by B, ( >_uev; 5{v} < B;).
— Is the partition balanced?

e Min-cut cost between two subsets:
Minimize ZVQZ(U,V)ANUW(V)W(G), where p(u) is the partition # of
node u.

e The 2-way, balanced partitioning problem is NP-complete,
even In its simple form with identical vertex sizes and unit
edge weights.
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Kernighan-Lin Algorithm

e Kernighan and Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell System Technical Journal,
vol. 49, no. 2, Feb. 1970.

e An iterative, 2-way, balanced partitioning (bi-sectioning)
heuristic.
¢ Till the cut size keeps decreasing

— Vertex pairs which give the largest decrease or the
smallest increase in cut size are exchanged.

— These vertices are then locked (and thus are prohibited
from participating in any further exchanges).

— This process continues until all the vertices are locked.

— Find the set with the largest partial sum for swapping.
— Unlock all vertices.

Unit 5A Chang, Huang, Li, Lin, Liu 9



Kernighan-Lin Algorithm: A Simple Example

* Each edge has a unit weight.

Step # Vertex pair Cost reduction Cut cost

0 - 0 5
1 {d, g} 3 2
2 {c, } 1 1
3 {b, h} -2 3
4 {a, e} -2 5

e Questions: How to compute cost reduction? What pairs
to be swapped?
— Consider the change of internal & external connections.

Unit 5A Chang, Huang, Li, Lin, Liu 10



Properties

e Two sets A and B such that |JAL=n=|Bland An B = .

e External costofae AIE, =" c,,.

* Internal costofa e A: |, = 2o C.y-

e D-value of a vertex a: D, = E, - |, (cost reduction for moving a).
e Cost reduction (gain) for swapping a and b: g,, = D, + D, - 2c,.

e |fa € Aand b e B are interchanged, then the new D-values, D’,
are aiven hv

Dl = Dz~ 2cza— 2¢zp, Vo € A— {a}
D, = Dy+ 2cy— 2cya, ¥y € B— {b}.

A B
o before  after AC
A E
_E.IH + {'-Iﬂ' +2£‘Iﬂ
Gﬂiﬂ sl - 'Dr.'l_ C'ﬂb h E-.m
Gaiftyy: Dy— Cop TGE Gk —ZGy

Ietermal cost vs. External cosy updaning D—values
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Kernighan-Lin Algorithm: A Weighted Example

4

a b codoef

a| 001 2 3 2 4
Bl O 1 4 2 1
d |z 10321
|3 4 3 0 4 3
e|2 2 2 4 0 2
flea 211320

costs cssocicted with a

Initicel cut cost = (34244144241 I+( 34241 = 22

¢ |[teration 1:

Ia2=142=3;
Ih=141=2
le=241=3;
I4g=443=T7,
la=442=56;
Iy =34+2=35

Unit 5A

Ea=34+244=29;
Epn=44241=T7,
Fe=34+241=6;
E;s=34+443=10;
EBa=24242=6;
Er=44141=6,

Chang, Huang, Li, Lin, Liu

Do=FE;—I,=9—-3=6
Dy=Ep— I =7—-2=5
.Df::Ec—Iczﬁ_B':B'
Dy=E;—1;=10—-7=3
.DEZEE—I.E:ﬁ_ﬁ:D
DfZEf—IfZEI—E:l
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Weighted Example (cont'd)

* |teration 1:
Ip=142=3, Ea=3+244=9; PDo=FBag—la=8—-3=0
I, = 1-+1=272; E§b===4-4-Z!-F 1=7; Dpy=FBp—Ifp=7-2=5
Iy — 443 =7 Bg= 344432 =10; Di=B;-I34=10—-7=3
I.E=4+2=ﬁ; E.g=2+2+2=5; Do =Fp—JToa=06—-6=10
If=3-|-2=5; Ef=4-|-l-|-1=ﬁ, Df=Ej|:—ff= —b=1
® g,y = Dy + D, - 2¢,,.
God = Da+ﬂd—2cad=ﬁ+3—2}i3=3
Gae = O64+0-2x2=2
Gaf = 6+1-2x4=-1
Spd = 5+3-2x4=0
Ghe — E4+D-2x2=1
Shf = E4+1—-2x%1=4 (maeztmum)
Bnd = 34+43-2%x3=0
e = 34+0-2x2=-1
G = 3+1-2x1=2

e Swap b and f! (41 =4)

Unit 5A
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Weighted Example (cont'd)

S
N e-

® D,=D,+2¢Cy,-2C

xqp VX e€A—{p}(swappandq,peA, (e B)

D = Da+2cp—20,;=6+2%x1-2x4=0
D, = De+2cp—2c,s=3+2x1-2x1=3
D‘:i = Dy4+2cy —2c5=3+2%x3-2x4=1
D), = De+2cy;—2c5=04+2x2-2x2=0

* g, =D +D-2c,,.

Had

Bae
G

Bee

DL+ D —2c,q=04+1-2x3=-5
DL+ D, —2c,=04+0-2x2=—-4
D4+ D) —2c,g=34+1-2%x3=-2
DL+ Dl — 2c0e =34+ 0—-2%2=—1 (mazimum)

e Swapcande! (¢ =-1)

Unit 5A
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Weighted Example (cont'd)

Unit 5A

Dl’X:
Dl = Dl 42cae—2cae=04+2x2—-2%x2=0
D] = Di+2cie—2c4,=14+2x4-2x3=3

gy, = D"y + D, - 2¢,,.
Gad = D+ Di—2c,q=0+4+3-2%x3=-3(g3=-3)

Note that this step is redundant (3 ,;—1 & = 0).
summary: §1 = gpy =4, g2 =gee = —1, g3 = g4q = —3.

Largest partial sum max¥%_ =4 (k=1)= Swapbandf.

Chang, Huang, Li, Lin, Liu
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Weighted Example (cont'd)

a b cdef
al0 I 2 3 2 4
b O 1 4 2 1
cl2 I 0 3 2 I
d|3 4 3 0 4 3
e|l2 2 2 4 0 2
fl4 {13 240

Initicl cut cost = ({+342)+({1+3+2)+({+34+2) = {8 (22—4]
e [teration 2: Repeat what we did at Iteration 1 (Initial cost
= 22-4 =18).
e Summary: 91 =g9ce = -1, g0 =ggp = =3, g3 =9gsa = 4
e | argest partial sum = max Zé;lﬁr} = 0 (k=3) = Stop!

Unit 5A Chang, Huang, Li, Lin, Liu 16



Kernighan-Lin Algorithm

Algorithm: Kernighan-Lin(G)

Input: G =(V, E), |V] =2n.

Output: Balanced bi-partition A and B with “small” cut cost.

1 begin

2 Bipartition G into A and B such that |V,| = |Vg|, V, N Vg =,
and V, u Vg =V.

3 repeat

4 ComputeD, Vv elV.

5 fori=1ltondo

6 Find a pair of unlocked vertices v, € V, and v,; € Vg whose

exchange makes the largest decrease or smallest increase in cut
COSt;

7 Mark v_, and v,; as locked, store the gain g , and compute the new
D,, for all unlocked v i_kVé

8 Find k, such that G, =
9 if G,> 0then

10 Movev,,, ..., v, from V, to Vgand v, ,, ..., v, from Vg to V,;
11 Unlockv, Vv e V.

12 until G, <0;

13 end

IS maximized;

Unit 5A Chang, Huang, Li, Lin, Liu 17



Time Complexity

e Line 4: Initial computation of D: O(n?)
¢ Line 5: The for-loop: O(n)
e The body of the loop: O(n?).
— Lines 6--7: Step i takes (n-i+1)? time.
e Lines 4--11: Each pass of the repeat loop: O(n3).
e Suppose the repeat loop terminates after r passes.

e The total running time: O(rn3).
— Polynomial-time algorithm?

Unit 5A Chang, Huang, Li, Lin, Liu
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Extensions of K-L Algorithm

1. Unequal sized subsets (assume n, <n,)
1. Partition: |A| =n; and [B| =n,.
2. Add n,-n, dummy vertices to set A. Dummy vertices have no
connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
2. Remove all dummy vertices.
e Unequal sized “vertices”
1. Assume that the smallest “vertex” has unit size.

2. Replace each vertex of size s with s vertices which are fully
connected with edges of infinite weight.

3. Apply the Kernighan-Lin algorithm.
e k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

Unit 5A Chang, Huang, Li, Lin, Liu
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Drawbacks of the Kernighan-Lin Heuristic

e The K-L heuristic handles only unit vertex weights.

— Vertex weights might represent block sizes, different from
blocks to blocks.

— Reducing a vertex with weight w(v) into a clique with w(v)
vertices and edges with a high cost increases the size of
the graph substantially.

e The K-L heuristic handles only exact bisections.

— Need dummy vertices to handle the unbalanced problem.
e The K-L heuristic cannot handle hypergraphs.

— Need to handle multi-terminal nets directly.
e The time complexity of a pass is high, O(n3).

Unit 5A 20
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Coping with Hypergraph

e A hypergraph H=(N, L) consists of a set N of vertices and a set L of
hyperedges, where each hyperedge corresponds to a subset N, of
distinct vertices with |[N;| > 2.

hyper;.;fge'
e Schweikert and Kernighan, “A proper model for the partitioning of
electrical circuits,” 9th Design Automation Workshop, 1972.

e For multi-terminal nets, net cut is a more accurate measurement
for cut cost (i.e., deal with hyperedges).
— {A, B, E}, {C, D, F}is a good partition.
— Should not assian the same weiaht for all edaes.

ret |

A B

nef 2 et 3

cost= |

Unit 5A Chang, Huang, Li, Lin, Liu 21



Net-Cut Model

e | et n(i) = # of cells associated with Net I.

e Edge weight w,, = % for an edge connecting cells x
andy.

;e
met i ;

i

/
A /
[
l
1

!’!Ei‘gil m_-rj’ nef 4
E F

e Easy modification of the K-L heuristic.

D, gain in moving x to B
Dy.' gain in moving yto A

8™ =D + D~ Correction(x, y)

Unit 5A Chang, Huang, Li, Lin, Liu 22



Fiduccia-Mattheyses Heuristic

¢ Fiduccia and Mattheyses, “A linear time heuristic for
Improving network partitions,” DAC-82.
e New features to the K-L heuristic:

— Aims at reducing net-cut costs; the concept of cutsize
IS extended to hypergraphs.

— Only a single vertex is moved across the cut in a single
move.

— Vertices are weighted.

— Can handle “unbalanced” partitions; a balance factor is
Introduced.

— A special data structure is used to select vertices to be
moved across the cut to improve running time.

— Time complexity O(P), where P is the total # of
terminals.

Unit 5A Chang, Huang, Li, Lin, Liu
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F-M Heuristic: Notation

e N(i): # of cellsin Net I; e.g., n(1) = 4.

® s(1): size of Cell i.

¢ p(i): # of pin terminals in Cell I; e.g., p(6)=3.
e C: total # of cells; e.g., C=6.

e N: total # of nets; e.g., N=6.

e P:total # of pins; P=p(1) +... + p(C)=n(1) + ...

net !

L

! !
e 2 3
2 3 4

ngr2| ‘nerj ner 4 net 5 |metd
2 3

5 6

Unit 5A Chang, Huang, Li, Lin, Liu
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e Cutstate of a net:
— Net 1 and Net 3 are cut by the partition.
— Net 2, Net 4, Net 5, and Net 6 are uncut.

e Cutset ={Net 1, Net 3}.
e |A| = size of A = 5(1)+s(5); |B| = s(2)+s(3)+s(4)+s(6).
e Balanced 2-way partition: Given a fractionr,0<r<1,

partition a graph into two sets A and B such that
(Al
— |Al+]B]

— Size of the cutset is minimized.

Unit 5A Chang, Huang, Li, Lin, Liu 25




Input Data Structures

ner !

Cell array Net array
C1 | Nets 1, 2 Net 1 | C1, C2, C3, C4
C2 | Nets 1, 3 Net 2 | C1, C5
C3 | Nets 1, & Net 3| C2, C5

C4 | Nets 1, 5, 6 || Net 4 | 3, €6
C5 | Nets 2, 3 Net 5 | C4, C6
C6 | Nets 4, 5, 6 || Net 6 | C4, C6

e Size of the network: P = 3%, n(i) = 14
e Construction of the two arrays takes O(P) time.

Unit 5A Chang, Huang, Li, Lin, Liu



Basic Ideas: Balance and Movement

¢ Only move a cell at a time, preserving “balance.”
| Al

Al + B
*W = Smaz £ |A] < +W + Smaa,

where W=[A[+|B|; S,,..

¢ g(i): gain in moving cell i to the other set, i.e., size of old cutset -
size of new ciitset.

=max;s(i).

locked  [ocked locked
¥
gfh) is the largest balanced condition holds

e Suppose §; S g(b), g(e), g(d), g(a), g(f), g(c) and the largest partial
sum is g(b)+g(e)+g(d). Then we should move b, e, d = resulting
two sets: {a, c, e, d}, {b, f}.

Unit 5A Chang, Huang, Li, Lin, Liu 21



Cell Gains and Data Structure Manipulation

* -p() < 9() < P )

IIHI\B
[T1 AL % “{
21 |+ o] |-! S
| |

 Guin = —pfi) |
e Two “bucket list” structures, one for set A and one for set B (P, =
max; p(i)).
"+ Prmx
list A g’if;; — — c.«_-uai — 71'# — . C.-_’Hyﬂil—:l_
:an. Cell .
I 2 3 ‘&

e O(1)-time operations: find a cell with Max Gain, remove Cell i from
the structure, insert Cell i into the structure, update g(i) to g(i)+ A,
update the Max Gain pointer.

Unit 5A Chang, Huang, Li, Lin, Liu 28



Net Distribution and Critical Nets

e Distribution of Net i: (A(i), B(1)) = (2, 3).
— (A(1), B(1)) for all i can be computed in O(P) time.

A

B

Net i

Afi): # of cells of ret { on the left =2
Bfi): # of vells of et i on the right = 3

e Critical Nets: A net is critical if it has a cell which Iif moved will

change its cutstate.

— 4 cases: A(l))=0or1,B()=0or 1.

A

-

|
|
|
|
|
|
Afij =1

A

E

-

-

Afi) =0

|
|
|
|
|
Bli) = | Bli) =0

e Gain of a cell depends only on its critical nets.

Unit 5A
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Computing Cell Gains

¢ |nitialization of all cell gains requires O(P) time:
g(1) « 0;
F « the “from block” of Cell i;
T « the “to block” of Cell i;
for each net non Cell i do
if F(n)=1then g(i) « g(i)+1;
If T(n)=0 then g(i) « g(i)-1;

|
F. T
Cell i '

\piy

T Rmy=1 Mj=0 ~1

¢ Will show: Only need O(P) time to maintain all cell
gains in one pass.

Unit 5A Chang, Huang, Li, Lin, Liu 30



Updating Cell Gains

e To update the gains, we only need to look at those nets, connected
to the base cell, which are critical before or after the move.

e Base cell: The cell selected for movement from one set to the

other.
F I T N l .
o o Fo a8 0 a 6 6 8 0
borse cell gerin A el getins irchetged!

e Consider only the case where the base cell is in the left partition.
The other case is similar.

Cese Ceese 2
£ ! T E ! T
]
T 1 T L L1
| -ew aew |
d_ﬂ—f“? | |
Eeise cefl == I relf
Cerse 3 | Crase & |
E T £
i e I |
| L 'B N |
' 1
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Updating Cell Gains (cont'd)

|
I

Ceose I | |
|

4
ot

| | & N | BN |
+§ 0+ L B f) —! —!
fockeed
£ ! T
I
Crese 2 | |
L |
| | | |
| | ' | |
| - | I . I
0 / ! +1 +{ | 0 f & o'+ 6 6 7
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Updating Cell Gains (cont'd)

F !T
| o |
Crrse 30 |
| sam
| | |
| | | | |
| i | I —lp |
fi f} ! +{ +1 ! f} f} /I 0 +I! f 7
|
Crrse of: | |
sRa |
| | } I
| |
| | " e I o - |
7 _i| | ~ - ¢ 7
Unit 5A 33
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Algorithm for Updating Cell Gains

Algorithm: Update_Gain

1 begin /* move base cell and update neighbors' gains */

2 F « the Front Block of the base cell;

3 T « the To Block of the base cell;

4 Lock the base cell and complement its block;

5 for each net n on the base cell do

[* check critical nets before the move */

6 if T(n) =0then increment gains of all free cells on n
else if T(n)=1 then decrement gain of the only T cell on n,
ifitis free
[* change F(n) and T(n) to reflect the move */

7  F() <« F(n)-1;, T(n) « T(n)+1;
[* check for critical nets after the move */

8 if F(n)=0 then decrement gains of all free cells on n
else if F(n) =1 then increment gain of the only F cell on n,

if itis free
9 end

Tl =41 E : T F o Thael = F' T F' T
before : : : :
the move ree S sees! ! — !

iy oy BT I a g Y] | a

Flo 1 Finl = 0 | } Foey=1 |

e B - ululn ﬁﬁﬁd
the move ||| |+=== | saes

i1 5 i I -1 -1 ] 0 +:|

Unit 5A Chang, Huang, Li, Lin, Liu
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Complexity of Updating Cell Gains

e Once a net has “locked’ cells at both sides, the net will
remain cut from now on.

® Suppose we move a,, a,, ..., 8, from left to right, and
then move b from right to left = At most only moving a,,
a,, ..., &, and b need updating!

—r

| |
| i |
WY, ukl b i b Iuk E'
A
—

[ —

e To update the cell gains, it takes O(n(i)) work for Net I.
e Total time = n(1)+n(2)+...+n(N) = O(P).

Unit 5A Chang, Huang, Li, Lin, Liu



F-M Heuristic: An Example

C?J,—l A | B
4| 4 : I |cho
i) | [
k|3 |cs.0
cl,-1 |2 '
I
C2, +1 | 5 |cs, +1
P

q K p J

Cell [F | T [ F [T | F F 1T F| T | g(i

cl 0| -1 —1

c2 0| -1 0 0| 41 +1 1| 0 +1
. c3 0| -1 0 0 —1

cq F1I 10 0| -1 ]

ch +1 0| -1 0

ch +1 | 0 +1
e Balanced criterion: r|V| - S_... < |A| <r[V]| + S Letr=0.4 = |A]

18, S

max

(use size criterion if there is a tie).

Unit 5A

= 5, r|V|=7.2 = Balanced: 2.2 s 9 <1321
®* maximum gain: ¢, and balanced: 2.2 <9-2 <12.2 = Move c, from A to B

Chang, Huang, Li, Lin, Liu
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F-M Heuristic: An Example (cont'd)

A | B A
| C3+
|
|

3,1 |
4 q-::-;.n 4| 9 | C‘-L—L
1, -1 .3 3 |es.0 clL,o0  |m I &
) 2 I ) | C'G.—l
€.+l 5 |6 +1 2
ol | . -2 £

¢ Changes in net distribution:

Before move Aﬁ:er move
Net | F T F’ T
k 1 1 D Z
m 3 o z 1
g 2 1 1 2
P 1 1 0 2

e Updating cell gains on critical nets (run Algorithm Update Gain):

{Gains due to T{n) {Gain due to F{n) {Gain changes
Y

Cells [ & m q P m | q p | Old New
Cl +1 -1 3]
c3 +1 +1 -1 | +1
cq -1 o -1
cg | —1 -1 0 —2
e —1 1| +1 1

e Maximum gain: c; and balanced! (2.2 < 7-4 <12.2) —» Move c; from
A to B (use size criterion if there is a tie).

Unit 5A Chang, Huang, Li, Lin, Liu 37



Summary of the Example

step | Cell | Max gain | (4] | Balanced? Locked cell A B
O - - 2 - 1, 2, 3 4, 5 b
1 cn F1 7 ves £n 1, 3 2. 4,5 b
7 ¢ F1 3 Ves ¢o, 03 1 2, 3. 4,5 6
3 c1 -1 0 no - - -
3 | eg ~1 8 yes ¢, 63, €6 1, 6 2,3,4,5
4 1 +1 5 ves £1,€2,03, Cf b 1, 2, 3, 4, 5
o CE, -2 g Ves €1, €2,€3, €K, CR 5 b 1.2, 3.4
[ c4 0 > ves all cells 4. 5.6 1, 2, 3

L gr?l — lsgﬁQ — 1:5}?3 — _1:54 — 1:55 — _2:5?5 =0 p— MaX|mum
partial sum G, = +2, k = 2 or 4.

® Since k=4 results in a better balanced = Move c,, C,,
C;, Cg = A={6}, B={1, 2, 3, 4, 5}.

* Repeat the whole process until new G, <O0.

Unit 5A Chang, Huang, Li, Lin, Liu 38



Simulated Annealing

e Kirkpatrick, Gelatt, and Vecchi, “Optimization by
simulated annealing,” Science, May 1983.

¢ Greene and Supowit, “Simulated annealing without
rejected moves,” ICCD-84.

A

s

WA

local optima global optirmum
-

Cost

States

Unit 5A Chang, Huang, Li, Lin, Liu 39



Simulated Annealing Basics

Non-zero probability for “up-hill” moves.

Probability depends on
1. magnitude of the “up-hill” movement
2. total search time

1 AG if AC <0 /= “down — hill" moves * [

Prob(S — §') = ac _
e 7 IFTAC>0 [=*“up— hill movesx* [

Unit 5A

AC = cost(S') - Cost(S)
T. Control parameter (temperature)

Annealing schedule: T=T,, T, T,, ..., where T, =1 T, r
<1

40
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Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S;
3 Get an initial temperature T > 0O;
4 while not yet “frozen” do
5 forl<i<Pdo
6 Pick a random neighbor S' of S;
7 A < cost(S') - cost(S);
/* downhill move */
8 If A<Othen S« S
[* uphill move */ A
9 If A>0then S « S'with probability e 7 ;
10 T « rT; /* reduce temperature */
11 return S
12 end

Unit 5A Chang, Huang, Li, Lin, Liu
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Basic Ingredients for Simulated Annealing

e Analogy:
Physical system Optimization problem
state configuration
energy cost function
ground state optimal solution
quenching iterative improvement
careful annealing | simulated annealing

¢ Basic Ingredients for Simulated Annealing:
— Solution space
— Neighborhood structure
— Cost function
— Annealing schedule

Unit 5A Chang, Huang, Li, Lin, Liu



Partition by Simulated Annealing

e Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated
annealing,” Science, May 1983.

e Solution space: set of all partitions

a
b
c
d

a solution a solution

e Neighborhood structure:

move
— —-

Randomly move one cell to the other side

a solution
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Partition by Simulated Annealing (cont'd)

e Cost function: f=C+AB

— C: the partition cost as used before.

— B: ameasure of how balance the partition is
e Annealing schedule:

— Al aconstant
‘ . B=(I1SIl —1521)°
51 52
— T,=r"T,r=0.9.

— At each temperature, either
1. there are 10 accepted moves/cell on the average, or
2. # of attempts > 100 X total # of cells.

—  The system is “frozen” if very low acceptances at 3 consecutive
temperatures.
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