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Unit 5A: Circuit Partitioning
․Course contents:

⎯ Kernighang-Lin partitioning heuristic 
⎯ Fiduccia-Mattheyses heuristic
⎯ Simulated annealing based partitioning algorithm

․Readings
⎯ Chapter 7.5
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Unit 3: Partitioning

․Course contents:
⎯ Kernighagn & Lin heuristic
⎯ Fiduccia-Mattheyses heuristic
⎯ Simulated annealing based method
⎯ Network-flow based method
⎯ Multilevel circuit partitioning

․Readings
⎯ S&Y: Chapter 2
⎯ Sherwani: Chapter 5
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Basic Definitions

․Cell: a logic block used to build larger circuits.
․Pin: a wire (metal or polysilicon) to which another 

external wire can be connected.
․Nets: a collection of pins which must be electronically 

connected.
․Netlist: a list of all nets in a circuit.
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Basic Definitions (cont’d)
․Manhattan distance: If two points (pins) are located at 

coordinates (x1, y1) and (x2, y2), the Manhattan distance 
between them is given by d12 = |x1-x2| + |y1-y2|. 

․Rectilinear spanning tree: a spanning tree that 
connects its pins using Manhattan paths.

․Steiner tree: a tree that connects its pins, and 
additional points (Steiner points) are permitted to used 
for the connections.  
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Partitioning



Unit 5A 6Chang, Huang, Li, Lin, Liu

Levels of Partitioning

․The levels of partitioning: system, board, chip.
․Hierarchical partitioning: higher costs for higher levels.
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Circuit Partitioning

․Objective: Partition a circuit into parts such that every 
component is within a prescribed range and the # of 
connections among the components is minimized.
⎯ More constraints are possible for some applications.

․Cutset? Cut size? Size of a component?



Unit 5A 8Chang, Huang, Li, Lin, Liu

Problem Definition: Partitioning

․k-way partitioning: Given a graph G(V, E), where each 
vertex v ∈ V has a size s(v) and each edge e ∈ E has a 
weight w(e), the problem is to divide the set V into k disjoint 
subsets V1, V2, …, Vk, such that an objective function is 
optimized, subject to certain constraints.

․Bounded size constraint: The size of the i-th subset is 
bounded by Bi (                           ).
⎯ Is the partition balanced?

․Min-cut cost between two subsets:
Minimize                             ,  where p(u) is the partition # of 
node u.

․The 2-way, balanced partitioning problem is NP-complete, 
even in its simple form with identical vertex sizes and unit 
edge weights.
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Kernighan-Lin Algorithm

․Kernighan and Lin, “An efficient heuristic procedure for 
partitioning graphs,” The Bell System Technical Journal, 
vol. 49, no. 2, Feb. 1970.

․An iterative, 2-way, balanced partitioning (bi-sectioning) 
heuristic.

․Till the cut size keeps decreasing
⎯ Vertex pairs which give the largest decrease or the 

smallest increase in cut size are exchanged.
⎯ These vertices are then locked (and thus are prohibited 

from participating in any further exchanges).
⎯ This process continues until all the vertices are locked.
⎯ Find the set with the largest partial sum for swapping.
⎯ Unlock all vertices.



Unit 5A 10Chang, Huang, Li, Lin, Liu

Kernighan-Lin Algorithm: A Simple Example
․Each edge has a unit weight.

․Questions: How to compute cost reduction? What pairs 
to be swapped?
⎯ Consider the change of internal & external connections.
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Properties
․Two sets A and B such that |A| = n = |B| and A ∩ B = ∅.
․External cost of a ∈ A: Ea =         cav.
․ Internal cost of a ∈ A: Ia =           cav.
․D-value of a vertex a: Da = Ea - Ia (cost reduction for moving a).
․Cost reduction (gain) for swapping a and b: gab = Da + Db - 2cab.
․ If a ∈ A and b ∈ B are interchanged, then the new D-values, D’, 

are given by

v B∈∑
v A∈∑
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Kernighan-Lin Algorithm: A Weighted Example

․Iteration 1:
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Weighted Example (cont'd)
․Iteration 1:

․gxy = Dx + Dy - 2cxy.

․Swap b and f! 
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Weighted Example (cont'd)

․D’x = Dx + 2 cxp - 2 cxq, ∀ x ∈ A – {p} (swap p and q, p ∈ A, q ∈ B)

․gxy = D’x + D’y - 2cxy.

․Swap c and e! 
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Weighted Example (cont'd)

․D’’x = D’x + 2 cxp - 2 cxq, ∀ x ∈ A – {p}

․gxy = D’’x + D’’y - 2cxy.

․Note that this step is redundant
․Summary:       
․Largest partial sum                              (k = 1) ⇒ Swap b and f.
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Weighted Example (cont'd)

․Iteration 2: Repeat what we did at Iteration 1 (Initial cost  
= 22-4 =18).

․Summary:       
․Largest partial sum =                              (k=3) ⇒ Stop!
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Kernighan-Lin Algorithm
Algorithm: Kernighan-Lin(G)
Input: G = (V, E), |V| = 2n. 
Output: Balanced bi-partition A and B with “small” cut cost.
1 begin
2 Bipartition G into A and B such that |VA| = |VB|, VA ∩ VB = ∅,

and VA ∪ VB = V. 
3 repeat 
4    Compute Dv, ∀ v ∈ V. 
5    for i =1 to n do 
6       Find a pair of unlocked vertices vai ∈ VA and vbi ∈ VB whose       

exchange makes the largest decrease or smallest increase in cut 
cost;

7       Mark vai and vbi as locked, store the gain      , and compute the new 
Dv, for all unlocked v ∈ V;

8    Find k, such that Gk =            is maximized; 
9    if Gk >  0 then
10       Move va1, …, vak from VA to VB and vb1, …, vbk from VB to VA;
11  Unlock v, ∀ v ∈ V. 
12 until Gk ≤ 0; 
13 end
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Time Complexity

․Line 4: Initial computation of D: O(n2)
․Line 5: The for-loop: O(n)
․The body of the loop: O(n2).

⎯ Lines 6--7: Step i takes (n-i+1)2 time.

․Lines 4--11: Each pass of the repeat loop: O(n3).
․Suppose the repeat loop terminates after r passes.
․The total running time: O(rn3).

⎯ Polynomial-time algorithm?
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Extensions of K-L Algorithm

1. Unequal sized subsets (assume n1 < n2)
1. Partition:  |A| = n1 and |B| = n2.
2. Add n2-n1 dummy vertices to set A. Dummy vertices have no 

connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

․ Unequal sized “vertices”
1. Assume that the smallest “vertex” has unit size.
2. Replace each vertex of size s with s vertices which are fully 

connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

․ k-way partition
1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.
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Drawbacks of the Kernighan-Lin Heuristic

․The K-L heuristic handles only unit vertex weights.
⎯ Vertex weights might represent block sizes, different from 

blocks to blocks.
⎯ Reducing a vertex with weight w(v) into a clique with w(v) 

vertices and edges with a high cost increases the size of 
the graph substantially.

․The K-L heuristic handles only exact bisections.
⎯ Need dummy vertices to handle the unbalanced problem.

․The K-L heuristic cannot handle hypergraphs.
⎯ Need to handle multi-terminal nets directly.

․The time complexity of a pass is high, O(n3).
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Coping with Hypergraph
․A hypergraph H=(N, L) consists of a set N of vertices and a set L of 

hyperedges, where each hyperedge corresponds to a subset Ni of 
distinct vertices with |Ni| ≥ 2. 

․Schweikert and Kernighan, “A proper model for the partitioning of 
electrical circuits,” 9th Design Automation Workshop, 1972.

․For multi-terminal nets, net cut is a more accurate measurement 
for cut cost (i.e., deal with hyperedges).
⎯ {A, B, E}, {C, D, F} is a good partition.
⎯ Should not assign the same weight for all edges.
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Net-Cut Model

․Let n(i) = # of cells associated with Net i.
․Edge weight wxy =        for an edge connecting cells x

and y.

․Easy modification of the K-L heuristic.

2
( )n i
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Fiduccia-Mattheyses Heuristic
․Fiduccia and Mattheyses, “A linear time heuristic for 

improving network partitions,” DAC-82.
․New features to the K-L heuristic:

⎯ Aims at reducing net-cut costs; the concept of cutsize
is extended to hypergraphs.

⎯ Only a single vertex is moved across the cut in a single 
move.

⎯ Vertices are weighted.
⎯ Can handle “unbalanced” partitions; a balance factor is 

introduced.
⎯ A special data structure is used to select vertices to be 

moved across the cut to improve running time.
⎯ Time complexity O(P), where P is the total # of 

terminals.
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F-M Heuristic: Notation

․n(i): # of cells in Net i; e.g., n(1) = 4.
․s(i): size of Cell i.
․p(i): # of pin terminals in Cell i; e.g., p(6)=3.
․C: total # of cells; e.g., C=6.
․N: total # of nets; e.g., N=6.
․P: total # of pins; P = p(1) + … + p(C) = n(1) + … + n(N).
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Cut

․Cutstate of a net:
⎯ Net 1 and Net 3 are cut by the partition.
⎯ Net 2, Net 4, Net 5, and Net 6 are uncut.

․Cutset = {Net 1, Net 3}.
․|A| = size of A = s(1)+s(5); |B| = s(2)+s(3)+s(4)+s(6).
․Balanced 2-way partition: Given a fraction r, 0 < r < 1, 

partition a graph into two sets A and B such that

⎯ .
⎯ Size of the cutset is minimized.

| |
| | | |

A r
A B

≈
+
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Input Data Structures

․Size of the network:
․Construction of the two arrays takes O(P) time.
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Basic Ideas: Balance and Movement
․ Only move a cell at a time, preserving “balance.”

where W=|A|+|B|; Smax=maxis(i).
․g(i): gain in moving cell i to the other set, i.e., size of old cutset -

size of new cutset. 

․Suppose          g(b), g(e), g(d), g(a), g(f), g(c) and the largest partial 
sum is g(b)+g(e)+g(d). Then we should move b, e, d ⇒ resulting 
two sets: {a, c, e, d}, {b, f}.
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Cell Gains and Data Structure Manipulation
․ -p(i) ≤ g(i) ≤ p(i)

․Two “bucket list” structures, one for set A and one for set B (Pmax = 
maxi p(i)). 

․O(1)-time operations: find a cell with Max Gain, remove Cell i from 
the structure, insert Cell i into the structure, update g(i) to g(i)+ ∆, 
update the Max Gain pointer.
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Net Distribution and Critical Nets
․Distribution of Net i: (A(i), B(i)) = (2, 3).

⎯ (A(i), B(i)) for all i can be computed in O(P) time.

․Critical Nets: A net is critical if it has  a cell which if moved will 
change its cutstate.
⎯ 4 cases: A(i) = 0 or 1, B(i) = 0 or 1.

․Gain of a cell depends only on its critical nets.
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Computing Cell Gains
․Initialization of all cell gains requires O(P) time:

g(i) ← 0;
F ← the “from block” of Cell i;
T ← the “to block” of Cell i;
for each net n on Cell i do

if F(n)=1 then g(i) ← g(i)+1;
if T(n)=0 then g(i) ← g(i)-1;

․Will show: Only need O(P) time to maintain all cell 
gains in one pass.
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Updating Cell Gains
․To update the gains, we only need to look at those nets, connected 

to the base cell, which are critical before or after the move.
․Base cell: The cell selected for movement from one set to the 

other. 

․Consider only the case where the base cell is in the left partition. 
The other case is similar.
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Updating Cell Gains (cont'd)
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Updating Cell Gains (cont'd)
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Algorithm for Updating Cell Gains
Algorithm: Update_Gain
1 begin /* move base cell and update neighbors' gains */ 
2 F ← the Front Block of the base cell; 
3 T ← the To Block of the base cell; 
4 Lock the base cell and complement its block;
5 for each net n on the base cell do 

/* check critical nets before the move */
6     if T(n) = 0 then increment gains of all free cells on n

else if T(n)=1 then decrement gain of the only T cell on n,
if it is free
/* change F(n) and T(n) to reflect the move */

7      F(n) ← F(n) - 1; T(n) ← T(n)+1; 
/* check for critical nets after the move */ 

8     if F(n)=0  then decrement gains of all free cells on n
else if F(n) = 1 then increment gain of the only F cell on n,
if it is free

9 end
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Complexity of Updating Cell Gains
․Once a net has “locked’ cells at both sides, the net will  

remain cut from now on.
․Suppose we move a1, a2, …, ak from left to right, and 

then move b from right to left ⇒ At most only moving a1, 
a2, …, ak and b need updating!

․To update the cell gains, it takes O(n(i)) work for Net i.
․Total time = n(1)+n(2)+…+n(N) = O(P).
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F-M Heuristic: An Example

․ Computing cell gains: F(n) = 1 ⇒ g(i) + 1; T(n)=0 ⇒ g(i) – 1

․

․ Balanced criterion: r|V| - Smax ≤ |A| ≤ r|V| + Smax. Let r = 0.4 ⇒ |A| = 9, |V|= 
18, Smax = 5, r|V|=7.2 ⇒ Balanced: 2.2 ≤ 9 ≤ 12.2!

․ maximum gain: c2 and balanced: 2.2 ≤ 9-2 ≤ 12.2 ⇒ Move c2 from A to B
(use size criterion if there is a tie).
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F-M Heuristic: An Example (cont'd)

․Changes in net distribution:

․Updating cell gains on critical nets (run Algorithm Update_Gain):

․Maximum gain: c3 and balanced! (2.2 ≤ 7-4 ≤ 12.2) → Move c3 from 
A to B (use size criterion if there is a tie).
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Summary of the Example

․ ⇒ Maximum 
partial sum Gk = +2, k = 2 or 4.

․Since k=4 results in a better balanced ⇒ Move c1, c2, 
c3, c6 ⇒ A={6}, B={1, 2, 3, 4, 5}.

․Repeat the whole process until new Gk ≤ 0.
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Simulated Annealing

․Kirkpatrick, Gelatt, and Vecchi, “Optimization by 
simulated annealing,” Science, May 1983.

․Greene and Supowit, “Simulated annealing without 
rejected moves,” ICCD-84.
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Simulated Annealing Basics
․ Non-zero probability for “up-hill” moves.
․ Probability depends on

1. magnitude of the “up-hill” movement
2. total search time

․ ∆C = cost(S') - Cost(S)
․ T: Control parameter (temperature)
․ Annealing schedule: T=T0, T1, T2, …, where Ti = ri T0, r

< 1.
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Generic Simulated Annealing Algorithm

1 begin
2 Get an initial solution S; 
3 Get an initial temperature T > 0; 
4 while not yet “frozen” do
5    for 1 ≤ i ≤ P do
6         Pick a random neighbor S' of S;
7         ∆ ← cost(S') - cost(S);

/* downhill move */
8         if ∆ ≤ 0 then S ← S'

/* uphill move */
9         if ∆ > 0 then S ← S' with probability           ;
10 T ← rT;  /* reduce temperature */  
11 return S
12 end
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Basic Ingredients for Simulated Annealing

․Analogy:

․Basic Ingredients for Simulated Annealing:
⎯ Solution space
⎯ Neighborhood structure
⎯ Cost function
⎯ Annealing schedule
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Partition by Simulated Annealing
․Kirkpatrick, Gelatt, and Vecchi, “Optimization by simulated 

annealing,” Science, May 1983.
․Solution space: set of all partitions

․Neighborhood structure:
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Partition by Simulated Annealing (cont'd)
․ Cost function: f = C + λ B

⎯ C: the partition cost as used before.
⎯ B: a measure of how balance the partition is
⎯ λ: a constant

․ Annealing schedule:
⎯ Tn = r n T0, r = 0.9.
⎯ At each temperature, either
1. there are 10 accepted moves/cell on the average, or
2. # of attempts ≥ 100 r total # of cells.
⎯ The system is “frozen” if very low acceptances at 3 consecutive 

temperatures.
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