
Unit 4 1Chang, Huang, Li, Lin, Liu

Unit 4: Formal Verification

․Course contents
⎯ Logic synthesis basics
⎯ Binary-decision diagram (BDD)
⎯ Verification
⎯ Logic optimization 
⎯ Technology mapping

․Readings
⎯ Chapter 11



Unit 4 2Chang, Huang, Li, Lin, Liu

Logic Synthesis & Verification
․Logic synthesis programs transform Boolean 

expressions or register-transfer level (RTL) description 
(in Verilog/VHDL/C) into logic gate networks (netlist) in a 
particular library. 
⎯ Three different tasks

two-level combinational synthesis
multilevel combinational synthesis
sequential synthesis

⎯ Optimization goals: minimize area, delay, and power, etc

․Verification: Checks the equivalence of a specification 
and an implementation.      



Unit 4 3Chang, Huang, Li, Lin, Liu

Logic Synthesis & Verification
․Technology-independent optimization

⎯ Works on Boolean expression equivalent.
⎯ Estimates size based on # of literals.
⎯ Uses don't-cares, common factor extraction (factorization), etc. 

to optimize logic.
⎯ Uses simple delay models.

․Technology-dependent optimization: technology 
mapping/library binding
⎯ Maps Boolean expressions into a particular cell library. 
⎯ May perform some optimizations in addition to simple mapping.
⎯ Uses more accurate delay models based on cell structures.



Unit 4 4Chang, Huang, Li, Lin, Liu

Boolean Functions

․B = {0,1}, Y = {0,1,D}
․A Boolean function f: Bm → Yn

⎯ f = x1 x2 + x1 x3 + x2 x3 + x1 x2 + x2 x3 + x1 x3

․Input variables: x1, x2, …
․The value of the output partitions Bm into three sets

⎯ the on-set
⎯ the off-set
⎯ the dc-set (don’t-care set)



Unit 4 5Chang, Huang, Li, Lin, Liu

Minterms and Cubes

․A minterm is a product of all input variables or their 
negations. 
⎯ A minterm corresponds to a single point in Bn.

․A cube is a product of the input variables or their 
negations. 
⎯ The fewer the number of variables in the product, the 

bigger the space covered by the cube.



Unit 4 6Chang, Huang, Li, Lin, Liu

Implicant and Cover

․An implicant is a cube whose points are either in the 
on-set or the dc-set.

․A prime implicant is an implicant that is not included in 
any other implicant.

․A set of prime implicants that together cover all points 
in the on-set (and some or all points of the dc-set) is 
called a prime cover.

․A prime cover is irredundant when none of its prime 
implicants can be removed from the cover.

․An irredundant prime cover is minimal when the cover 
has the minimal number of prime implicants.



Unit 4 7Chang, Huang, Li, Lin, Liu

Cover Examples
․f = x1 x3 + x2 x3 + x1 x2

․f = x1 x2 + x2 x3 + x1 x3



Unit 4 8Chang, Huang, Li, Lin, Liu

Canonical Forms

․A canonical form of a Boolean function is a unique
representation of the function. 
⎯ It can be used for verification purposes.

․The truth table or the sum of minterms are canonical 
forms
⎯ They grow exponentially with the number of input variables.

․A prime irredundant cover is not a canonical form. 
․Reduced ordered binary decision diagram (ROBDD): 

a canonical form that is interesting from a practical point 
of view.



Unit 4 9Chang, Huang, Li, Lin, Liu

Logic Synthesis in Practice

․Specify the logic-level behavioral description of the 
circuit in some hardware-description language.

․Extract from this description the Boolean expressions 
related to the logic and represent them in some suitable 
internal form.

․Manipulate these expressions to obtain an optimized 
representation (two-level or multilevel).

․Perform technology mapping, a mapping from the 
abstract optimized representation to a netlist of cells 
from a library.



Unit 4 10Chang, Huang, Li, Lin, Liu

Binary-Decision Diagram (BDD) Principles
․Restriction resulting in the positive and negative

cofactors of a Boolean function:

⎯ f = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3

fx1 = x2 x3 + x2 x3 + x2 x3

fx1 = x2 x3 + x2 x3 + x2 x3

․Shannon expansion (already known to Boole) states:

․A complete expansion can be obtained by successively 
applying Shannon expansion on all variables of a 
function until either of the constant functions ’0’ or ’1’ are 
reached.



Unit 4 11Chang, Huang, Li, Lin, Liu

Example Ordered Binary-Decision Diagram (OBDD)

․The complete Shannon expansion can be visualized as 
a tree (solid lines correspond to the positive cofactors 
and dashed lines to negative cofactors).

f = x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3 + x1 x2 x3



Unit 4 12Chang, Huang, Li, Lin, Liu

Creating A Reduced OBDD (ROBDD)

․An OBDD is a directed tree G(V,E).
․Each vertex v ∈ V is characterized by an associated 

variable φ(v), a high subtree η(v) (high(v)) and a low
subtree λ(v) (low(v)).

․Procedure to reduce an OBDD:
⎯ Merge all identical leaf vertices and appropriately redirect 

their incoming edges;
⎯ Proceed from bottom to top, process all vertices: if two 

vertices u and v are found for which φ(u) = φ(v), η(u) =
η(v), and λ(u) = λ(v), merge u and v and redirect 
incoming edges;

⎯ For vertices v for which η(v) = λ(v), remove v and redirect 
its incoming edges to η(v).



Unit 4 13Chang, Huang, Li, Lin, Liu

Reduction Example



Unit 4 14Chang, Huang, Li, Lin, Liu

ROBDD Properties
․The ROBDD is a canonical representation, given a 

fixed ordering of the variables.
․The ROBDD is a compact representation for many 

Boolean functions used in practice.
․Variable ordering can greatly affect the size of an 

ROBDD.
⎯ E.g., the parity function of k bits: 

x2

2 1 2

1

k

j j

j

f x x−

=

= ⊕∏



Unit 4 15Chang, Huang, Li, Lin, Liu

A BDD Package
․A BDD package refers to a software program that can 

manipulate ROBDDs. It has the following properties:
⎯ Interaction with BDDs takes place through an abstract 

data type (functionality is independent from the internal 
representation used).

⎯ It supports the conversion of some external 
representation of a Boolean function to the internal 
ROBDD representation.

⎯ It can store multiple Boolean functions, sharing all 
vertices that can be shared.

⎯ It can create new functions by combining existing ones 
(e.g., h = f  • g).

⎯ It can convert the internal representation back to an 
external one.



Unit 4 16Chang, Huang, Li, Lin, Liu

BDD Data Structures

․A unique table
(implemented by a hash 
table) that stores all 
triples already processed.

․A triple (φ,η,λ) uniquely 
identifies an ROBDD 
vertex.



Unit 4 17Chang, Huang, Li, Lin, Liu

Building an ROBDD

․The procedure directly 
builds the compact 
ROBDD structure.

․A simple symbolic 
computation system is 
assumed for the derivation 
of the cofactors.

․π(i) gives the ith variable 
from the top



Unit 4 18Chang, Huang, Li, Lin, Liu

robdd_build Example



Unit 4 19Chang, Huang, Li, Lin, Liu

ROBDD Manipulation

․Separate algorithms could be designed for each 
separate operator on ROBDDs, such as AND, NOR, etc.

․However, the universal if-then-else operator ‘ite’ is 
sufficient. z = ite(f,g,h), z equals g when f is true and 
equals h otherwise:

․Examples:

․The ite operator is well-suited for a recursive algorithm 
based on ROBDDs (φ(v) = x):



Unit 4 20Chang, Huang, Li, Lin, Liu

The ite Algorithm



Unit 4 21Chang, Huang, Li, Lin, Liu

Comments on the ite Algorithm

․The algorithm processes the variables in the order 
used in the BDD package. 
⎯ π(i) gives the ith variable from the top; π -1(x) gives the 

index position of variable x from the top.
․Computation of the restrictions: suppose that F is the 

root vertex of the function for which Fx should be 
computed:

․The calculation of is done in an analogous way.
․The time complexity of the algorithm is O(|F|*|G|*|H|).

Fx = η(F) if π -1(φ(F)) = i



Unit 4 22Chang, Huang, Li, Lin, Liu

ROBDD Example: Computing G from G

G = ite(G, 0, 1)



Unit 4 23Chang, Huang, Li, Lin, Liu

ROBDD Example: Computing H from F, G, G

H = F ⊕ G
= ite(F, G, G)

G



Unit 4 24Chang, Huang, Li, Lin, Liu

Composition

․The composite problem is
⎯ the ROBDDs of two functions f and g are known
⎯ the output of g is connected to an input of f
⎯ compute the ROBDD of the composed function h, 

where
h = f(x1, …, xi-1, g, xi+1, …,xn).

․Using Shannon expansion, one finds that

․Now, the restrictions have to be calculated by 
dedicated algorithms.



Unit 4 25Chang, Huang, Li, Lin, Liu

Positive Cofactor



Unit 4 26Chang, Huang, Li, Lin, Liu

Positive Cofactor Example: Computing Fx3



Unit 4 27Chang, Huang, Li, Lin, Liu

Variable Ordering

․Reorder adjacent variables only has a local effect on 
the ROBDD.



Unit 4 28Chang, Huang, Li, Lin, Liu

Variable Ordering (cont’d)

․Finding the ordering that minimizes the ROBDD size for 
some function is intractable.
⎯ The optimal ordering may change as ROBDDs are being 

manipulated.
․So, an ROBDD package will try to reorder the variables 

at distinct moments. 
⎯ It could move one variable to the top and back to the 

bottom and remember the best position. It could then 
repeat the procedure for the other variables.

․Another ‘‘invisible’’ feature of an ROBDD package is 
garbage collection.



Unit 4 29Chang, Huang, Li, Lin, Liu

The Verification Problem

․The issue is to compare a specification f  to an 
implementation g.

․They can both be represented by ROBDDs (F  resp. G).
․In case of a fully specified function, verification is trivial 

(pointer comparison) because of the strong canonicity
of the ROBDD data structure.
⎯ Strong canonicity: the representations to identical 

functions are the same.
․If there is a dc-set, use two functions f  and d. The 

implementation g is correct when
is a tautology (the expression evaluates to ’1’).



Unit 4 30Chang, Huang, Li, Lin, Liu

ROBDDs and Satisfiability

․A Boolean function is satisfiable if an assignment to its 
variables exists for which the function becomes ‘1’

․Any Boolean function whose ROBDD is unequal to ‘0’ is 
satisfiable.

․Suppose that choosing a Boolean variable xi to be ‘1’
costs ci. Then, the minimum-cost satisfiability
problem asks to minimize:  

where µ(xi) = 1 when xi = ‘1’ and µ(xi) = 0 when xi = ‘0’.
․Solving minimum-cost satisfiability amounts to 

computing the shortest path in an ROBDD, which can 
be solved in linear time.
⎯ Weights: w(v, η (v)) = ci, w(v, λ (v)) = 0, variable xi = φ(v).



Unit 4 31Chang, Huang, Li, Lin, Liu

Applications to Combinatorial Optimization
․Zero-one integer linear programming can be 

formulated as a minimum-cost satisfiability problem.
․Consider the (standard form) constraint: x1 + x2 + x3 +

x4 = 3.
․It can be written as:

⎯ The first 6 sums in the product: at least 3 of the 4 
variables are 1.

⎯ The last sum: at least one of the variables is 0.
․Many combinatorial optimization problems can also be 

directly formulated in terms of the satisfiability problem.



Unit 4 32Chang, Huang, Li, Lin, Liu

Set Covering

․Given a set S = {s1, …,sm} and a set K = {K1, …,Kn} 
where each Kj (1 ≤ j ≤ n) is a subset of S, find a subset 
Γ of K such that the union of the elements Γ covers S.

․The cost of a cover is the sum of the costs cj of the 
elements Kj of Γ.

․Multiple cost functions are possible. E.g., cj = 1 or 
cj = |Kj|.

․The problem is NP-complete for most cost functions.



Unit 4 33Chang, Huang, Li, Lin, Liu

Covering Matrix

․A covering problem can be formulated as a satisfiability 
problem by associating variables xj with the sets Kj: (x1
+ x2 + x6) • (x1 + x4 + x5 + x6) • (x2 + x3 + x5) • (x2 + x4 +
x6).

․This type of covering is called unate.
․A binate covering problem has an expression where 

complemented variables are allowed.

• Γ = {K3,K6} is the optimal
solution when cj = |Kj|.

• K3 is redundant in Γ =
{K1,K2,K3}.



Unit 4 34Chang, Huang, Li, Lin, Liu

Example Simplification Rules in Covering

s2 dominates s3
K5 dominates K4

K3 is essential



Unit 4 35Chang, Huang, Li, Lin, Liu

Technology-Independent Logic Optimization

․Two-level: minimize the # of product terms.
⎯

․Multi-level: minimize the #'s of literals, variables.
⎯ E.g., equations are optimized using a smaller number of literals.

․Methods/CAD tools: The Quine-McCluskey method 
(exponential-time exact algorithm),  Espresso (heuristics 
for two-level logic), MIS (heuristics for multi-level logic),  
Synopsys, etc.



Unit 4 36Chang, Huang, Li, Lin, Liu

Two-Level Logic Synthesis

․Any Boolean function can be realized in two levels: 
AND-OR (sum of products), NAND-NAND, etc.

․Direct implementation of two level logic using PLAs
(programmable logic arrays) is not as popular as in the 
nMOS days.

․Classic problems, solved e.g. by the Quine-McCluskey
algorithm.

․Popular cost function: the number of literals in the sum 
of products expression.

․The goal is to find a minimal irredundant prime cover.



Unit 4 37Chang, Huang, Li, Lin, Liu

Optimality in Two-Level Logic Synthesis

A local and a global minimum



Unit 4 38Chang, Huang, Li, Lin, Liu

The Quine-McCluskey Algorithm
․Calculate all prime implicants (of the union of the on-set 

and dc-set).
․Find the minimal cover of all minterms in the on-set by 

prime implicants.
․Construct the covering matrix.
․Simplify the covering matrix by detecting essential 

columns, row and column dominance.
․What is left is the cyclic core of the covering matrix. 

⎯ The covering problem can then be solved by a branch-
and-bound algorithm.

․Other methods do not first enumerate all prime 
implicants; they use an implicit representation by 
means of ROBDDs.



Unit 4 39Chang, Huang, Li, Lin, Liu

The Quine-McCluskey Algorithm
․F(a, b, c, d) = ∑m(2, 3, 7, 9, 11, 13) + ∑d(1, 10, 15)
․Step 1: Group minterms to find prime implicants by applying 

xy + xy ' = x.
․Step 2: Select a minimum set of prime implicants (minimum 

# of literals) to implement the original function.
․Exponential-time exact algorithm, huge amounts of memory!



Unit 4 40Chang, Huang, Li, Lin, Liu

Technology Mapping

․Library-based technology mapping: standard cell 
design.
⎯ Map a function to a limited set of pre-designed cells

․Lookup table-based technology mapping: Lucent, 
Xilinx FPGAs, etc.
⎯ Each lookup table (LUT) can implement a very large number of 

functions (e.g., all functions with 4 inputs and 1 output)

․Multiplexer-based technology mapping: Actel FPGAs, 
etc.
⎯ Logic modules are constructed with multiplexers.



Unit 4 41Chang, Huang, Li, Lin, Liu

Standard Cell Revisited



Unit 4 42Chang, Huang, Li, Lin, Liu

Pattern Graphs for an Example Library



Unit 4 43Chang, Huang, Li, Lin, Liu

Technology Mapping

․Technology Mapping: The optimization problem of 
finding a minimum cost covering of the subject graph by 
choosing from the collection of pattern graphs for all 
gates in the library.

․A cover is a collection of pattern graphs such that 
every node of the subject graph is contained in one (or 
more) of the pattern graphs.

․The cover is further constrained so that each input 
required by a pattern graph is actually an output of 
some other pattern graph.



Unit 4 44Chang, Huang, Li, Lin, Liu

Trivial Covering

․Mapped into 2-input NANDs and 1-input inverters.
․8 2-input NAND-gates and 7 inverters for an area cost 

of 23.
․Best covering?



Unit 4 45Chang, Huang, Li, Lin, Liu

Optimal Tree Covering by Dynamic Programming

․If the subject directed acyclic graph (DAG) is a tree, 
then a polynomial-time algorithm to find the minimum 
cover exists.
⎯ Based on dynamic programming: optimal substructure? 

overlapping subproblems?
․Given: subject trees (networks to be mapped), library 

cells
․Consider a node n of the subject tree

⎯ Recursive assumption: For all children of n,  a best match 
which implements the node is know.

⎯ Cost of a leaf is 0.
⎯ Consider each pattern tree which matches at n, compute 

cost as the cost of implementing each node which the 
pattern requires as an input plus the cost of the pattern.

⎯ Choose the lowest-cost matching pattern to implement n.



Unit 4 46Chang, Huang, Li, Lin, Liu

Tree-Covering by Dynamic Programming
․ If the subject DAG is not a tree

⎯ Partition the subject graph into forest of trees
⎯ Cover each tree optimally using the dynamic programming.
⎯ Overall solution is only an approximation.

․Optimality
⎯ An optimal sequence of decisions has the property that 

whatever the initial state and decision are, the remaining 
decisions must constitute an optimal decision sequence with 
regard to the state resulting from the first decision.

⎯ The minimum area cover for a tree T can be derived from the 
minimum area covers for every node below the root of T.



Unit 4 47Chang, Huang, Li, Lin, Liu

Best Covering

․A best covering with an area of 15.
․Obtained by the dynamic programming approach.


	Logic Synthesis & Verification
	Logic Synthesis & Verification
	Boolean Functions
	Minterms and Cubes
	Implicant and Cover
	Cover Examples
	Canonical Forms
	Logic Synthesis in Practice
	Binary-Decision Diagram (BDD) Principles
	Example Ordered Binary-Decision Diagram (OBDD)
	Creating A Reduced OBDD (ROBDD)
	Reduction Example
	ROBDD Properties
	A BDD Package
	BDD Data Structures
	Building an ROBDD
	robdd_build Example
	ROBDD Manipulation
	The ite Algorithm
	Comments on the ite Algorithm
	ROBDD Example: Computing G from G
	ROBDD Example: Computing H from F, G, G
	Composition
	Positive Cofactor
	Positive Cofactor Example: Computing Fx3
	Variable Ordering
	Variable Ordering (cont’d)
	The Verification Problem
	ROBDDs and Satisfiability
	Applications to Combinatorial Optimization
	Set Covering
	Covering Matrix
	Example Simplification Rules in Covering
	Technology-Independent Logic Optimization
	Two-Level Logic Synthesis
	Optimality in Two-Level Logic Synthesis
	The Quine-McCluskey Algorithm
	The Quine-McCluskey Algorithm
	Technology Mapping
	Standard Cell Revisited
	Pattern Graphs for an Example Library
	Technology Mapping
	Trivial Covering
	Optimal Tree Covering by Dynamic Programming
	Tree-Covering by Dynamic Programming
	Best Covering

