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Unit 3: Logic Synthesis

․Course contents
⎯ Synthesis overview
⎯ RTL synthesis
⎯ Logic optimization 
⎯ Technology mapping
⎯ Timing optimization
⎯ Synthesis for low power
⎯ * Retiming

․Readings
⎯ Chapter 11

*: optional
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Levels of Design

module EXP(in, s1, s2, o1, o2, o3);
input in, s1, s2;
output o1, o2, o3;
reg o1, o2, o3;
always @ (in or s1 or s2)
  if( s1 ) o1 = in;
  else o1 = o2;

always @ ( s1 or s2 or o1) begin
  o3 = s1 & s2;
  if( s2 ) o2 = o1;
end

M
U
X0

1
in

s2

s1

L
A
T
C
H

QD

E

o3

o1

o2

Flowcharts, Algorithms
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BEHAVIORAL
DOMAIN

PHYSICAL
DOMAIN

Register transfer

Boolean expression

Switch functionTransistors

Logic gates, Flip-flops

Registers, ALUs, MUXs

Processors, Memories, Buses

Transistor layout

Cells

Chips, Modules

Boards, MCMs

Circuit synthesis

Logic synthesis

Register transfer level  synthesis

System synthesis
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Synthesis

․Translate HDL descriptions into logic gate 
networks (structural domain) in a particular library

․Advantages
⎯ Reduce time to generate netlists
⎯ Easier to retarget designs from one technology to 

another
⎯ Reduce debugging effort

․Requirement
⎯ Robust HDL synthesizers
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HDL Synthesis

Synthesis = Domain Translation + Optimization

Domain 
translation

Optimization
(area, timing, power...)

--VHDL //Verilog
if(A=‘1’) then if(A==1)
Y<=C + D; Y=C + D;

elseif (B=‘1’) then else if(B==1)
Y<=C or D; Y=C | D;

else Y<=C; else Y=C;
endif

+

RTL 
synthesisBehavioral domain

Structural domain
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Domain Translation

Consistent with data 
manipulation functions

Consistent with special semantics

x = y op z

optimization
(area, timing …)

Combinational
Circuit

Generation

Special Element
Inferences

3-address
Code

Initial 
Structural

Netlist

Input HDL
Description
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Optimization

․Technology-independent optimization: logic 
optimization
⎯ Work on Boolean expression equivalent
⎯ Estimate size based on # of literals
⎯ Use simple delay models

․Technology-dependent optimization: technology 
mapping/library binding
⎯ Map Boolean expressions into a particular cell library
⎯ May perform some optimizations in addition to simple mapping
⎯ Use more accurate delay models based on cell structures
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Two-Level Logic Optimization

․Two-level logic representations
⎯ Sum-of-product form
⎯ Product-of-sum form

․Two-level logic optimization
⎯ Key technique in logic optimization
⎯ Many efficient algorithms to find a near minimal representation 

in a practical amount of time
⎯ In commercial use for several years
⎯ Minimization criteria: number of product terms

․Example: F = XYZ + XYZ + XYZ + XYZ+XYYZ

F = XY + YZ
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Multi-Level Logic Optimization

․Translate a combinational circuit to meet performance 
or area constraints
⎯ Two-level minimization
⎯ Common factors or kernel extraction
⎯ Common expression resubsitution

․In commercial use for several years
․Example:

f1 = abcd + abce +abcd + abcd +
ac + cdf + abcde + abcdf

f2 = bdg + bdfg + bdg + bdeg

f1 = c (a + x) + acx
f2 = gx
x = d (b + f) + d (b + e)
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Technology Mapping

․Goal: translation of a technology independent 
representation (e.g. Boolean networks) of a circuit into 
a circuit in a given technology (e.g. standard cells) with 
optimal cost

․Optimization criteria:
⎯ Minimum area
⎯ Minimum delay
⎯ Meeting specified timing constraints
⎯ Meeting specified timing constraints with minimum area

․Usage:
⎯ Technology mapping after technology independent logic 

optimization
⎯ Technology translation
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Standard Cells for Design Implementation
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Timing Optimization

․There is always a trade-off between area and delay
․Optimize timing to meet delay spec. with minimum area

output meets
delay spec

Area

Delay

start with
area-optimized

delay spec
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming
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Typical Domain Translation Flow

․Translate original HDL code into 3-address format
․Conduct special element inferences before 

combinational circuit generation
․Conduct special element inferences process by 

process (local view)

3-address
Code

Combinational
Circuit

Generation

Special Element
Inferences

Initial 
Structure

Netlist
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Combinational Circuit Generation

․Functional unit allocation
⎯ Straightforward mapping with 3-address code

․Interconnection binding
⎯ Using control/data flow analysis
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Functional Unit Allocation

․3-address code
⎯ x = y op z in general form
⎯ Function unit op with inputs y and z and output x

x=c+d+e;
if(a==b) x= e-f;
y=x;

t=c+d;
x=t+e;
s = (a==b);
if(s) x= e-f;

y=x;
==

c st+
d

+
t

x

a
b

s

e

-
e
f

x

yx

0

1

x
x

x

M
U
X

Implicit multiplexer

3-address code
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Interconnection Binding

․Need the dependency information among 
functional units
⎯ Using control/data flow analysis
⎯ A traditional technique used in compiler design for a 

variety of code optimizations
⎯ Statically analyze and compute the set of assignments 

reaching a particular point in a program
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Control/Data Flow Analysis
․Terminology

⎯ A definition of a variable x
An assignment assigns a value to the variable x

⎯ d1 can reach d4 but cannot reach d3
d1 is killed by d2 before reaching d3

․A definition can only be affected by those definitions being 
able to reach it

․Use a set of data flow equations to compute which 
assignments can reach a target assignment

/*d1*/  x = a;
          if(s) begin
/*d2*/   x = b;
/*d3*/   y = x + a;
          end
/*d4*/  y = x;

s

/*d1*/ x=a;

/*d4*/ y=x;

/*d2*/ x=b;

/*d3*/ y=x+a;
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Combinational Circuit Generation

yd5
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Interconnection binding

Input HDL

Modified 
3-address code
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xx d3
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yx d5
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x

x
xd4

Mux

s

1

0

In[d1]={d4, d5}

In[d2]={d1, d5}

In[d3]={*d1, d5}

In[d4]={*d2, *d3, d5}

In[d5]={*d4, d5}

computed by control/
data flow analysis

always @ (x or a or b or c or d or s)
begin
/*d1*/   x = a + b;
/*d2*/   if ( s ) x = c – d;
/*d3*/   else x = x;
/*d4*/   y = x;
end

always @ (x or a or b or c or d or s)
begin
/*d1*/   x = a + b;
/*d2*/   if ( s ) x = c – d;
/*d3*/   else x = x;
/*d4*/   x = s mux x;
/*d5*/   y = x;
end
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming
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Special Element Inferences

․Given a HDL code at RTL, three special elements 
need to be inferred to keep the special semantics
⎯ Latch (D-type) inference
⎯ Flip-Flop (D-type) inference
⎯ Tri-state buffer inference

․Some simple rules are used in typical approaches

reg Q;
always@(D or en)

if(en) Q = D;
else    Q = 1’bz;

reg Q;
always@(D or en)

if(en) Q = D;

reg Q;
always@(posedge clk)

Q = D;
Tri-state buffer 
inferred!!

Latch inferred!! Flip-flop inferred!!
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Preliminaries

․Sequential section
⎯ Edge triggered always statement

․Combinational section
⎯ All signals whose values are used in the always statement are 

included in the sensitivity list

reg Q;
always@(in or en)
if(en) Q=in;

reg Q;
always@(posedge clk)

Q = D;

Combinational section
Conduct latch inference

Sequential section
Conduct flip-flop inference
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Terminology (1/2)

․Conditional assignment
․Selector: S
․Input: D
․Output: Q

if (S) 
Q = D;

Selector

Conditional
assignment

Input
Output
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Terminology (2/2)

․A variable Q has a branch for a value of selector s
⎯ The variable Q is assigned a value in a path going through     

the branch

s

Q=a

Q=b

s

Q=a

Q=b;
if(s) Q=a;

Q has a branch for the 
false value of the selector s

if(s) Q=a;

Q has no branch for the 
false value of the selector s
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Rules of Latch Inference (1/2)

․Condition 1: There is no branch associated with the 
output of a conditional assignment for a value of the 
selector
⎯ Output depends on its previous value implicitly

if(s)

Q=a;

Q depends on its
previous value 
at this branch

always@(s or a)
if(s) Q=a;

Q=Q;
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Rules of Latch Inference (2/2)

․Condition 2: The output value of a conditional 
assignment depends on its previous value explicitly

always@(s or z or y or a)
begin
z = y;
if(s) y=a;
else y=z;

end

y depends on its
previous value
at this branch via
the assignment z=y;

if(s)
z=y;

y=a; y=z;
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Typical Latch Inference

․Conditional assignments are not completely specified
⎯ Check if the else-clause exists
⎯ Check if all case items exist

․Outputs conditionally assigned in an if-statement are 
not assigned before entering or after leaving the if-
statement

always@(D or S)
if(S) Q = D;

always@(S or A or B)
begin
Q = A;
if(S) Q = B;
end

Do not infer 
latch for Q

Infer latch
for Q
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Typical Coding Style Limitation (1/2)

en

a x
L
A
T
C
H

QD

E

always@(a or en)
if(en) x=a;

always@(a or en)
if(en) x=a;
else x=x;

Latch description

M
U
X0

1

en

x

a

Wrong 
circuit!
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Typical Coding Style Limitation (2/2)

․Process by process
⎯ No consideration on the dependencies across processes
⎯ No warrantee on the consistency of memory semantics

module EXP(in, s1, s2, o1, o2, o3);
input in, s1, s2;
output o1,o2,o3;
reg o1, o2, o3;
always@(in or s1 or o2)
/*d1*/ if(s1) o1=in;
/*d2*/ else o1=o2;
always@( s1 or s2 or o1) begin
/*d3*/ o3=s1&s2;
/*d4*/ if(s2) o2=o1;
end
endmodule

Infer a latch for o2

M
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1
in

s2

s1

L
A
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C
H

QD
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o
3

o
1

o
2

Asynchronous
feedback loop

o1 depends on its
value via o2 at d4
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Terminology

․Clocked statement: edge-triggered always statement
⎯ Simple clocked statement

e.g., always @ (posedge clock)
⎯ Complex clocked statement

e.g., always @ (posedge clock or posedge reset)

․Flip-flop inference must be conducted only when 
synthesizing the clocked statements
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Infer FF for Simple Clocked Statements (1/2)

․Infer a flip-flop for each variable being assigned in 
the simple clocked statement

input a, b, s, clk;
output y, w;
reg x, w, y, z;
always @ (posedge clk)
begin
/* d1 */ x = a;
/* d2 */ if ( s )   y = x;
/* d3 */ else     y = z;
/* d4 */ z = b;
/* d5 */ w = 1'b1;
end

a
MUX

X

y
z

w

b
y

w
s

1

0

1

used after defined
connected to input of x

used before defined
connected to output of z
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Infer FF for Simple Clocked Statements (2/2)

․Two post-processes
⎯ Propagating constants 
⎯ Removing the flip-flops without fanouts

a

MUX

X

y
z

w

b
y

w
s

1

0

1

a

MUX y
zb

y

w
s

1

0

1
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Infer FF for Complex Clocked Statements

․The edge-triggered signal not used in the following 
operations is chosen as the clock signal

․The usage of asynchronous control pins requires the 
following syntactic template
⎯ An if-statement immediately follows the always statement
⎯ Each variable in the event list except the clock signal must be a 

selective signal of the if-statements
⎯ Assignments in the blocks B1 and B2 must be constant 

assignments (e.g., x=1, etc.)

always @ (posedge clock or posedge reset or negedge set)

if(reset) begin B1 end
else if ( !set) begin B2 end
else begin B3 end
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Typical Coding Style Limitation

0
clk

D

R

Q
always @ (posedge clk or posedge R)
if(R) Q = 0;
else Q = D;

always @ (posedge clk or posedge R)
begin
Q = D;
if(R) Q = 0;
end

Non-synthesizable
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Typical Tri-State Buffer Inference (1/2)

․If a data object Q is assigned a high impedance value 
‘Z’ in a multi-way branch statement (if, case, ?:)
⎯ Associated Q with a tri-state buffer

․If Q associated with a tri-state buffer has also a 
memory attribute (latch, flip-flop)
⎯ Have the Hi-Z propagation problem

Real hardware cannot propagate Hi-Z value
⎯ Require two memory elements for the control and the data 

inputs of tri-state buffer

reg Q;
always @ (En or D)
if(En) Q = D;
else Q = 1'bz;

QD

En reg Q;
always @ (posedge clk)
if(En) Q = D;
else Q = 1'bz;

QD

En
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Typical Tri-State Buffer Inference (2/2)

․It may suffer from mismatches between synthesis and 
simulation 
⎯ Process by process 
⎯ May incur the Hi-Z propagation problem

QBD

En

QA

reg QA, QB;
always @ (En or D)
if(En) QA = D;
else QA = 1'bz;

always @ (posedge clk)
QB = QA;

assignment can pass Hi-Z 
to QB in simulation

cannot propagate Hi-Z
in real hardware
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Comments on Special Element Inference

․Typical synthesizers
⎯ Use ad hoc methods to solve latch inference, flip-flop 

inference and tri-state buffer inference
⎯ Incur extra limitations on coding style
⎯ Do not consider the dependencies across processes
⎯ Suffer from synthesis/simulation mismatches

․A lot of efforts can be done to enhance the synthesis 
capabilities
⎯ It may require more computation time
⎯ Users’ acceptance is another problem
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming



38Chang, Huang, Li, Lin, Liu
Unit 3

Two-Level Logic Optimization

Basic idea: Boolean law  x+x’=1 allows for 
grouping  x1x2+x1 x’2= x1

Approaches to simplify logic functions:
․Karnaugh maps [Kar53]
․Quine-McCluskey [McC56]
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3-Variable Karnaugh Maps

․Example

A     B    C F

0     0    0

0     1    1

0     1    0

0     0    1

1     0    0

1     0    1

1     1    0

1     1    1

0

0

0

0

1

1

1

1

A
BC 0 1

00

01

11

10

0

0

1

1

1

0

0

1

ABC=001,F=0

ABC=110,F=1
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Implicant

․IMPLICANT:
any single 1 or any
group of 1’s combined
together on a map
of the function F
⎯ ab’c’,  abc

․PRIME IMPLICANT:
an implicant that
cannot be combined
with another terms
to eliminate a variable
⎯ a’b’c, a’cd, ac’

ab
cd 00 01 11 10

00

01

11

10

1 1

1

1

1

1

1 1

F
a'cd'

a'b'c'd'

a'b'c

ac'

ab'c'

abc'

prime
implicant

(prime implicant)

(prime implicant)
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Minimum Form

․A sum-of-products expression containing a non-prime 
implicant cannot be minimum
⎯ Could be simplified by combining the nonprime term with 

additional minterm

․To find the minimum sum-of-products
⎯ Find a minimum number of prime implicants which cover all of 

the 1’s
⎯ Not every prime implicant is needed
⎯ If prime implicants are selected in the wrong order, a 

nonminimum solution may result
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Essential Prime Implicant

․If a minterm is covered by only one prime implicant, 
that prime implicant is ESSENTIAL and must be 
included in the minimum sum-of-products

ab

cd
00 01 11 10

00

01

11

10

1

11

1 1

1

1

1

a'c'

a'b'd'

Note: 1's in red color are covered by 
only one prime implicant. All other 
1's are covered by at least two prime 

implicantsacd
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Classical Logic Minimization

․Theorem:[Quine,McCluskey] There exists a minimum 
cover for F that is prime
⎯ Need to look just at primes (reduces the search space)

․Classical methods: two-step process
1. Generation of all prime implicants
2. Extraction of a minimum cover (covering problem) 
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Primary Implicant Generation (1/5)

ab
cd 00 01 11 10

00

01

11

10

0

1

0

1

10

X

0

0

1

1

1

0

X

1

X

a

d

b

c
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Primary Implicant Generation (2/5)
Implication Table

Column I

0000

0100
1000

0101
0110
1001

0111
1101

1111

1010

zero “1”

one “1”

two “1”

three “1”

four “1”
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Primary Implicant Generation (3/5)
Implication Table

Column I

0000  |

0100  |
1000  |

0101  |
0110  |
1001  |

0111  |
1101  |

1111  |

1010  |

Column II

0-00
-000

010-
01-0
100-
10-0

01-1
-101
011-
1-01

-111
11-1
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Primary Implicant Generation (4/5)
Implication Table

Column I

0000  |

0100  |
1000  |

0101  |
0110  |
1001  |

0111  |
1101  |

1111  |

1010  |

Column II

0-00  *
-000  *

010-  |
01-0  |
100-  *
10-0  *

01-1  |
-101  |
011-  |
1-01  *

-111  |
11-1  |

Column III

01--  *

-1-1  *
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Primary Implicant Generation (5/5)

ab
cd 00 01 11 10

00

01

11

10

0

1

0

1

10

X

0

0

1

1

1

0

X

1

X

a

d

b

c

Prime Implicants:
 0-00 = a'c'd'
100- = ab'c'
1-01 = ac'd
-1-1  =   bd

   -000 =  b'c'd'
  10-0 =  ab'd'
 01--  =    a'b
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Column Covering (1/4)
4         5         6         8         9        10     13

0,4 (0-00)

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

5,7,13,15 (-1-1)

rows = prime implicants
columns = ON-set elements
place an "X" if ON-set element
is covered by the prime implicant
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Column Covering (2/4)
4         5         6         8         9        10     13

0,4 (0-00)

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

5,7,13,15 (-1-1)

If column has a single X, then the
implicant associated with the row
is essential. It must appear in
minimum cover
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Column Covering (3/4)

4         5         6         8         9        10     13

0,4 (0-00)

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

5,7,13,15 (-1-1)

Eliminate all columns covered by
essential primes
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Column Covering (4/4)
  4          5        6        8        9         10       13

0,4 (0-00)

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

5,7,13,15 (-1-1)

Find minimum set of rows that
cover the remaining columns
f = ab'd' + ac'd + a'b
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Petrick’s Method
- Solve the satisfiability problem of the following function
P = (P1+P6)(P6+P7)P6(P2+P3+P4)(P3+P5)P4(P5+P7)=1

4         5         6         8         9        10     13

0,4 (0-00)

0,8 (-000)

8,9 (100-)

8,10 (10-0)

9,13 (1-01)

4,5,6,7 (01- -)

5,7,13,15 (-1-1) 

P1

P2

P3

P4

P5

P6

P7

• Each term represents a corresponding column
• Each column must be chosen at least once
• All columns must be covered
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Brute Force Technique

․Brute force technique: Consider all possible elements

․Complete branching tree has 2|P| leaves!!
⎯ Need to prune it

․Complexity reduction
⎯ Essential primes can be included right away

If there is a row with a singleton “1” for the column
⎯ Keep track of best solution seen so far

Classic branch and bound

P1
in out

P2 P2

in out in out

P3 P3 P3 P3

in out in out
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Branch and Bound Algorithm

r

a b

x y w z

r

a b

x y w z

5 4 9 8

Bound = 4

Killed subtree

(a) (b)
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Heuristic Optimization

․Generation of all prime implicants is impractical
⎯ The number of prime implicants for functions with n variables is in 

the order of 3n/n

․Finding an exact minimum cover is NP-hard
⎯ Cannot be finished in polynomial time

․Heuristic method: avoid generation of all prime implicants
․Procedure

⎯ A minterm of ON(f) is selected, and expanded until it becomes a 
prime implicant

⎯ The prime implicant is put in the final cover, and all minterms 
covered by this prime implicant are removed

⎯ Iterated until all minterms of the ON(f) are covered

․“ESPRESSO” developed by UC Berkeley
⎯ The kernel of synthesis tools
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ESPRESSO - Illustrated

REDUCE

EXPAND

IRREDUNDANT



58Chang, Huang, Li, Lin, Liu
Unit 3

Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming
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Multi-Level Logic

․Multi-level logic:
⎯ A set of logic equations with no cyclic dependencies

․Example: Z = (AB + C)(D + E + FG) + H
⎯ 4-level, 6 gates, 13 gate inputs

A B

C D E

F G

H

Z

Z=(AB + C) (D + E + FG) + H

Level 4

Level 3

Level 2

Level 1

2

2

2

3

2

2
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Boolean Network

․Directed acyclic graph (DAG)
․Each source node is a primary input
․Each sink node is a primary output
․Each internal node represents an equation
․Arcs represent variable dependencies

F G

Y X

a b d c

x y

fanin of y : a, b
fanout of x : F
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Boolean Network : An Example

x1

y1

y2

y3

y4

y5

x2 z1
x3
x4

z2x5
x6

y1 = f1(x2, x3) = x2’ + x3’
y2 = f2(x4, x5) = x4’ + x5’
y3 = f3(x4, y1) = x4’y1’
y4 = f4(x1, y3) = x1 + y3’
y5 = f5(x6, y2, y3) = x6y2 + x6’y3’
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Multi-Level v.s. Two-Level

․Two-level:
⎯ Often used in control logic 

design
f1 = x1x2 + x1x3 + x1x4

f2 = x1’x2 + x1’x3 + x1x4

⎯ Only x1x4 shared
⎯ Sharing restricted to 

common cube

․Multi-level:
⎯ Datapath or control logic 

design
⎯ Can share x2 + x3 between 

the two expressions
⎯ Can use complex gates

g1 = x2 + x3

g2 = x2x4

f1 = x1y1 + y2

f2 = x1’y1 + y2

(yi is the output of gate gi )
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Multi-Level Logic Optimization

․Technology independent
․Decomposition/Restructuring

⎯ Algebraic
⎯ Functional

․Node optimization
⎯ Two-level logic optimization techniques are used
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Decomposition / Restructuring

․Goal : given initial network, find best network
․Two problems:

⎯ Find good common subfunctions
⎯ How to perform division

․Example:
f1 = abcd + abce + ab’cd’ + ab’c’d’ + a’c + cdf + abc’d’e’ + ab’c’df’
f2 = bdg + b’dfg + b’d’g + bd’eg

minimize (in sum-of-products form):
f1 = bcd + bce + b’d’ + b’f + a’c + abc’d’e’ + ab’c’df’
f2 = bdg + dfg + b’d’g + d’eg

decompose:
f1 = c(a’ + x) + ac’x’ x = d(b + d) + d’(b’ + e)
f2 = gx
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Basic Operations (1/2)

2. extraction
(multiple functions)
f = (az + bz’)cd + e
g = (az + bz’)e’
h = cde

f = xy + e
g = xe’
h = ye
x = az + bz’
y = cd

1. decomposition
(single function)
f = abc + abd + (ac)’d’ + 
b’c’d’

f = xy + (xy)’
x = ab
y = c + d
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Basic Operations (2/2)

5. elimination
f = ga + g’b
g = c + d

f = ac + ad + bc’d’
g = c + d

3. factoring
(series-parallel decomposition)
f = ac + ad + bc + bd + e

f = (a + b)(c + d) + e

4. substitution
(with complement)
g = a + b
f = a + bc + b’c’

f = g(a + c) + g’c’

“Division” plays
a key role !!
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Division

․Division: p is a Boolean divisor of f if q ≠ φ and r exist 
such that  f = pq + r
⎯ p is said to be a factor of f if in addition r = φ :

f = pq
⎯ q is called the quotient
⎯ r is called the remainder
⎯ q and r are not unique

․Weak division: the unique algebraic division such that 
r has as few cubes as possible
⎯ The quotient q resulting from weak division is denoted by f / p

(it is unique)
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Weak Division Algorithm (1/2)

Weak_div(f, p):
U = Set {uj} of cubes in f with literals not in p deleted
V = Set {vj} of cubes in f with literals in p deleted
/* note that ujvj is the j-th cube of f */
V i = {vj ∈ V : uj = pi}
q = ∩V i

r = f - pq
return(q, r)
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Weak Division Algorithm (2/2)

․Example
f = acg + adg + ae + bc + bd + be + a’b
p = ag + b
U = ag + ag +  a  +  b  +  b  +  b  +  b
V =  c  +  d  +  e  +  c  +  d  +  e  +  a’
Vag = c  +  d
Vb =  c  +  d  +  e  +  a’
q = c + d = f/p

common
expressions
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Algebraic Divisor

․Example:
X = (a + b + c)de + f
Y = (b + c + d)g + aef
Z = aeg + bc

․Single-cube divisor: ae
․Multiple-cube divisor: b + c
․Extraction of common sub-expression is a global area 

optimization effort
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Some Definitions about Kernels

․Definition: An expression is cube-free if no cube 
divides the expression evenly
⎯ ab + c is cube-free
⎯ ab + ac = a (b + c) is not cube-free

․Note: a cube-free expression must have more than one 
cube
⎯ abc is not cube-free

․Definition: The primary divisors of an expression f are 
the set of expressions

D(f) = {f/c | c is a cube}
⎯ To find cube-free divisor



72Chang, Huang, Li, Lin, Liu
Unit 3

Kernels

․Definition: The kernels of an expression f are the set of 
expressions

K(f) = {g | g∈ D(f) and g is cube free}
․The kernels of an expression f are K(f) = {f/c}, where

⎯ / denote algebraic polynomial division
⎯ c is a cube
⎯ No cube divide f/c evenly (without any remainder)

․The cube c used to obtain the kernel is the co-kernel
for that kernel
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Co-Kernels

․Definition: A cube c used to obtain the kernel k = f/c is 
called a co-kernel of k. C(f) is used to denote the set of 
co-kernels of f.

․Example
x = adf + aef + bdf + bef + cdf + cef + g

= (a + b + c)(d + e)f + g

Kernel Co-kernel 
a + b + c df, ef 
d + e af, bf, cf 
(a + b + c)(d + e)f + g 1 
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Kernels of Expressions

․Example:
f = x1x2x3 + x1x2x4 + x3’x2

K = {x1x3 + x1x4 + x3’, x3 + x4}
⎯ x1x2 is the co-kernel for the kernel x3 + x4

․Kernels can be used to factor an expression
f = x2(x1(x3 + x4) + x3’)

․Key in finding common divisors between expressions
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Common Divisor

․Theorem (Brayton & McMullen):
f and g have a multiple-cube common divisor if and 
only if the intersection of a kernel of f and a kernel of g
has more than one cube

f1 = x1x2 + x3x4 + x5

f2 = x1x2 + x3’x4 + x5

K(f1) = { x1x2 + x3x4 + x5}
K(f2) = { x1x2 + x3’x4 + x5}
K1 ∩K2 = { x1x2 + x5}

⎯ f1 and f2 have multiple-
cube common divisor

f1 = x1(x2x3 + x2’x4) + x5

f2 = x1(x2x3 + x2’x5) + x4

K(f1) = {x2x3 + x2’x4,
x1(x2x3 + x2’x4) + x5}

K(f2) = {x2x3 + x2’x5,
x1(x2x3 + x2’x5) + x4}

K1 ∩ K2 = {x2x3, x1x2x3}

⎯ f1 and f2 have no multiple-
cube common divisor
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Find Out All Kernels (1/2)

abcd + abce + adfg + aefg + adbe + acdef + beg

a b

d+e
c+e

c d
b+cf ce+g

e f f g

c+d
e d e

b+ef b+df

e f

cd+g d+e

(a)b c d c d e

(a) (a) ac+d+g
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Find Out All Kernels (2/2)

co-kernel kernel 
1 a((bc + fg)(d + e) + de(b + cf))) + beg 
a (bc + fg)(d + e) + de(b + cf) 
ab c(d + e) + de 
abc d + e 
. . 
ac b(d + e) + def 
acd b + ef 
. . 
bc ad + ae 

They can be obtained in n2 time
where n is number of cubes in this expression.
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Cube-Literal Matrix

․Cube-literal matrix
f = x1x2x3x4x7 + x1x2x3x4x8 + x1x2x3x5 + x1x2x3x6 + x1x2x9

 x1 x2 x3 x4 x5 x6 x7 x8 x9 
x1x2x3x4x7 1 1 1 1 0 0 1 0 0 
x1x2x3x4x8 1 1 1 1 0 0 0 1 0 
x1x2x3x5 1 1 1 0 1 0 0 0 0 
x1x2x3x6 1 1 1 0 0 1 0 0 0 
x1x2x9 1 1 0 0 0 0 0 0 1 
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Cube-Literal Matrix & Rectangles (1/2)

․A rectangle (R, C) of a matrix A is a subset of rows R 
and columns C such that 

Aij = 1∀ i∈R, j ∈ C
⎯ Rows and columns need not be continuous

․A prime rectangle is a rectangle not contained in any 
other rectangle
⎯ A prime rectangle indicates a co-kernel kernel pair
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Cube-Literal Matrix & Rectangles (2/2)

․Example:
R = {{1, 2, 3, 4},{1, 2, 3}}

⎯ co-kernel: x1x2x3

⎯ kernel: x4x7 + x4x8 + x5 + x6

 x1 x2 x3 x4 x5 x6 x7 x8 x9 
x1x2x3x4x7 1 1 1 1 0 0 1 0 0 
x1x2x3x4x8 1 1 1 1 0 0 0 1 0 
x1x2x3x5 1 1 1 0 1 0 0 0 0 
x1x2x3x6 1 1 1 0 0 1 0 0 0 
x1x2x9 1 1 0 0 0 0 0 0 1 
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Rectangles and Logic Synthesis

․Single cube extraction

F = abc + abd + eg
G = abfg
H = bd + ef
({1,2,4},{1,2}) <=> ab
({2,5},{2,4}) <=> bd

F = Xc + XY + eg
G = Xfg
H = Y + ef
X = ab
Y = bd

a b c d e f g 
1 2 3 4 5 6 7

abc    1 1 1 1 0 0 0 0
abd    2 1 1 0 1 0 0 0
eg     3 0 0 0 0 1 0 1
abfg   4 1 1 0 0 0 1 1
bd    5 0 1 0 1 0 0 0
ef     6 0 0 0 0 1 1 0
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming



83Chang, Huang, Li, Lin, Liu
Unit 3

Technology Mapping

․General approach:
⎯ Choose base function set for canonical representation

Ex: 2-input NAND and Inverter
⎯ Represent optimized network using base functions

Subject graph
⎯ Represent library cells using base functions

Pattern graph
⎯ Each pattern associated with a cost which is dependent on the 

optimization criteria

․Goal:
⎯ Finding a minimal cost covering of a subject graph using 

pattern graphs
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Example Pattern Graph (1/3)

inv (1)
nor2 (2)

nand2 (1)

nand3 (3) nor3 (3)

nand4 (4) nor4 (4)
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Example Pattern Graph (2/3)

nand4 (4) nor4 (4)

aoi21 (3) oai21 (3)

oai22 (4)aoi22 (4)
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Example Pattern Graph (3/3)

and2 (3) or2 (3)

xor (5) xnor (5)
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Example Subject Graph

t1 = d + e;
t2 = b + h;
t3 = a t2 + c;
t4 = t1 t3 + f g h;
F = t4’;

f
g
d
e
h
b
a
c

F
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Sample Covers (1/2)

f
g
d
e
h
b
a
c

F
OR2

OR2

AND2

AOI22

NAND2

NAND2
INV

Area = 18
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Sample Covers (2/2)

Area = 15

OAI21

OAI21

NAND3

AND2

NAND2
INV

f
g

d
e
h
b
a
c

F
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DAGON Approach
․Partition a subject graph into trees

⎯ Cut the graph at all multiple fanout points

․Optimally cover each tree using dynamic programming 
approach

․Piece the tree-covers into a cover for the subject graph
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Dynamic Programming for Minimum Area

․Principle of optimality: optimal cover for the tree 
consists of a match at the root plus the optimal cover 
for the sub-tree starting at each input of the match

I1

I3

I2

I4

Match: area = m

root

A(root) = m + A(I1) + A(I2) + A(I3) + A(I4) 
cost of a leaf = 0
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A Library Example

INV 2 a’

NAND2 3 (ab)’

NAND3 4 (abc)’

NAND4 5 (abcd)’

AOI21 4 (ab+c)’

AOI22 5 (ab+cd)’

Library Element Canonical Form
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DAGON in Action

NAND2(3)

INV(2)

NAND2(8)

INV(2)

NAND2(3) INV(5) NAND2(8)
NAND3(4)

NAND2(13)
INV(15)
AOI21(9)

NAND2(16)
NAND3(18)

AOI21(22)
INV(18)

NAND2(21)
NAND3(17)
NAND4(19)
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Features of DAGON

․Pros. of DAGON:
⎯ Strong algorithmic foundation
⎯ Linear time complexity

Efficient approximation to graph-covering problem
⎯ Given locally optimal matches in terms of both area and delay 

cost functions
⎯ Easily “portable” to new technologies

․Cons. Of DAGON:
⎯ With only a local (to the tree) notion of timing

Taking load values into account can improve the results
⎯ Can destroy structures of optimized networks

Not desirable for well-structured circuits
⎯ Inability to handle non-tree library elements (XOR/XNOR)
⎯ Poor inverter allocation
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Inverter Allocation

․Add a pair of inverters for each wire in the subject 
graph

․Add a pattern of a wire that matches two inverters with 
zero cost

․Effect: may further improve the solution

2 INV
1 AIO21

2 NOR2
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming



97Chang, Huang, Li, Lin, Liu
Unit 3

Delay Model at Logic Level

1. unit delay model
⎯ Assign a delay of 1 to each gate

2. unit fanout delay model
⎯ Incorporate an additional delay for each fanout

3. library delay model
⎯ Use delay data in the library to provide more accurate delay value
⎯ May use linear or non-linear (tabular) models
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Linear Delay Model

Delay = Dslope + Dintrinsic + Dtransition + Dwire

B

A
C

D

Ds : Slope delay : delay at input A 
caused by the transition delay at B Dw : Wire delay : time from state 

transition at C to state transition at D

DI : Intrinsic delay : incurred from 
cell input to cell output DT : Transition delay : output pin

loading, output pin drive
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Tabular Delay Model
․Delay values are obtained by a look-up table

⎯ Two-dimensional table of delays ( m by n )
with respect to input slope (m) and total output capacitance (n)

⎯ One dimensional table model for output slope (n)
with respect to total output capacitance (n)

⎯ Each value in the table is obtained by real measurement

․Can be more precise than linear delay model
⎯ table size↑ accuracy ↑

․Require more space to store the table

0.0ns

0.4fF

6.0

0.2 0.3 0.4 0.5

0 3 4.5 6 7

0.1 5 8 10.7 13

Total Output Load (fF)

In
pu

t
Tran

sition
 (n

s)

Cell Delay (ps)
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Arrival Time and Required Time

․arrival time : calculated from input to output
․required time : calculated from output to input
․slack = required time - arrival time

node k

A(j) R(j)

node j
D(j,k)

r(j,k)

A(k) R(k)

A(j): arrival time of signal j
R(k): required time or for signal k
S(k): slack of signal k
D(j,k): delay of node j from input k

A(j) = maxk∈FI (j) [A(k) + D(j,k)]
r(j,k) = R(j) - D(j,k)
R(k) = minj∈FO(k) [r(j,k)]
S(k) = R(k) - A(k)
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Delay Graph

․Replace logic gates with delay blocks
․Add start (S) and end (E) blocks
․Indicate signal flow with directed arcs

A

B
C

D
E

1

2

S E
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Longest and Shortest Path

․If we visit vertices in precedence order, the following 
code will need executing only once for each u

Update Successors[u]

V1

V2

Vk

u''

u

u'

1   for each vertex v ∈ Adj[u] do
2        if A[v] < A[u] + ∆[u]   // longest
3             then A[v] ← A[u] + ∆ [u]
4             LP[v] ← u fi
5         if a[v] >a[u] + δ[u]   // shortest
6             then a[v] ← a[u] + δ[u]
7             SP[v] ← u  fi
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Delay Graph and Topological Sort

E
S 5

1 2

6

9 10

7 8

3 4

1 5S 9 2 6 3 7 10 4 8 E



104Chang, Huang, Li, Lin, Liu
Unit 3

Delay Calculation

E
S 5

3

1
2

2
4

6
1

9
1

10
4

7
1

8
5

3
1

4
3

A=3A=0 A=7 A=8

a=7

A=8

a=6a=2a=0

A=7A=3A=0

a=0 a=3 a=4 a=1

A=4

a=1

A=2

a=0

a=5
A=13

longest path delay

4

A=3
node number2

P.S: The longest delay and shortest delay
of each gate are assumed to be the same.

gate delay
shortest path delaya=2
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Timing Optimization Techniques (1/8)

․Fanout optimization
⎯ Buffer insertion
⎯ Split

․Timing-driven restructuring
⎯ Critical path collapsing
⎯ Timing decomposition

․Misc
⎯ De Morgan
⎯ Repower
⎯ Down power

․Most of them will increase area to improve timing
⎯ Have to make a good trade-off between them
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Timing Optimization Techniques (2/8)

․Buffer insertion: divide the fanouts of a gate into 
critical and non-critical parts and drive the non-critical 
fanouts with a buffer

more
critical less

critical

timing is improved
due to less loading
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Timing Optimization Techniques (3/8)

․Split: split the fanouts of a gate into several parts. Each 
part is driven with a copy of the original gate.



108Chang, Huang, Li, Lin, Liu
Unit 3

Timing Optimization Techniques (4/8)

․Critical path collapsing: reduce the depth of logic 
networks

A

B

A

A∪B
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Timing Optimization Techniques (5/8)

․Timing decomposition: restructuring the logic 
networks to minimize the arrival time

f
f f

1.5

3.0

1.5

0.0 0.0 1.0 2.0
0.0 0.01.0 2.0 2.01.00.0 0.0

f = abcd
e = ab
f = ecd

e = ab
g = ce
f = dg

a
b c

d

e

g

d

e

a b

c

a b

c

d

A(f) = 6.5 A(f) = 5.0 A(f) = 4.5

D = 4.5
D = 3

D = 1.5
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Timing Optimization Techniques (6/8)

․De Morgan: replace a gate with its dual, and reverse 
the polarity of inputs and output
⎯ NAND gate is typically faster than NOR gate
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Timing Optimization Techniques (7/8)

․Repower: replace a gate with one of the other gate in 
its logic class with higher driving capability

H
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Timing Optimization Techniques (8/8)

․Down power: reducing gate size of a non-critical fanout
in the critical path

not
critical

critical

H



113Chang, Huang, Li, Lin, Liu
Unit 3

Restructuring Algorithm

While (circuit timing improves ) do
select regions to transform
collapse the selected region
resynthesize for better timing

done

․Which regions to restructure ?
․How to resynthesize to minimize delay ?
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Restructuring Regions

․All nodes with slack within ε of the most critical signal 
belong to the ε-network

․To improve circuit delay, necessary and sufficient to 
improve delay at nodes on cut-set of ε-network

ki

n

l

j

m

h

0 0 0 00 02
a b c d e f g

1 6 5

5

4 1

3
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Find the Cutset

․The weight of each node is    W = Wxt + α * Wxa
⎯ Wxt is potential for speedup
⎯ Wxa is area penalty for duplication of logic
⎯ α is decided by various area/delay tradeoff

․Apply the maxflow-mincut algorithm to generate the 
cutset of the ε-network
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Controlling the Algorithm

․ε: Specify the size of the ε-network
⎯ Large ε might waste area without much reduction in critical 

delay
⎯ Small ε might slow down the algorithm

․d: The depth of the d-critical-fanin-section
⎯ Large d might make large change in the delay
⎯ Large d might increase run time rapidly due to the collapsing 

effort and the large number of divisor

․α: Control the tradeoff between area and speed
⎯ Large α avoids the duplication of logic
⎯ α = 0 implies a speedup irrespective of the increase in area
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming
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Power Dissipation

․Leakage power
⎯ Static dissipation due to leakage current
⎯ Typically a smaller value compared to other power dissipation
⎯ Getting larger and larger in deep-submicron process

․Short-circuit power
⎯ Due to the short-circuit current when both PMOS and NMOS 

are open during transition
⎯ Typically a smaller value compared to dynamic power

․Dynamic power
⎯ Charge and discharge of a load capacitor
⎯ Usually the major part of total

power consumption Vin

VDD

GND

Vout
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Power Dissipation Model

DVCP dd •••= 2

2
1

․Typically, dynamic power is used to represent total 
power dissipation
P:     the power dissipation for a gate
C:    the load capacitance
Vdd:  the supply voltage
D:    the transition density

․To obtain the power dissipation of the circuit, we need
⎯ The node capacitance of each node (obtained from layout)
⎯ The transition density of each node (obtained by computation)
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The Signal Probability

․Definition: The signal probability of a signal x(t), 
denoted by       is defined as :

․ is defined as the probability of a logic signal X(t) 
being equal to 0.

․

where T is a variable about time.

xP1

x
1    

1
T

     x(t) dt
+

P lim
T -T / 2

T / 2
≡

→∞
∫

x
0P

x
0

x
1P P= −1
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Transition Density

․Definition: The transition density Dx of a logic signal 
x(t), t∈(-∞ , ∞ ) , is defined as

where fc is the clock rate or frequency of operation.

․Dx is the expected number of transitions happened in a 
clock period. 

․A circuit with clock rate 20MHz and 5 MHz transitions 
per second in a node, transition density of this node is 
5M / 20M = 0.4

xD   lim  n (T)
T cT

x≡
⋅→ ∞ f
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Signal Probability and Transition Density

Clock

Signal a

Signal b

Signal c

Signal d

Pa = 0.5    Da = 1

Pb = 0.5    Db = 0.5

Pc = 0.5    Dc = 0.25

Pd = 0.25  Dd = 0.25
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Signal Probability and Transition Density

j
1 0

J
1 1

j j
1

j
0 1

J
1 1

j j
1

j
1 0

j
0 1

j j
1 0

j
0 1

j j

j j

P P P P

P P P P

P P

D P P

D P

D P

+ = =

+ = =

=

= +

≤ ×

≤ ×

−

−

1

1

1

0

2

2

P.S: Pab is the probability of changing from logic state a to b
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The Calculation of Signal Probability
․BDD-based approach is one of the popular way
․Definition

⎯ p(F) : fraction of variable assignments for which F = 1

․Recursive Formulation
⎯ p(F) = [ p( F[x=1] ) + p( F[x=0] ) ] / 2

․Computation
⎯ Compute bottom-up, starting at leaves
⎯ At each node, average the value of children

․Ex: F = d2’(d1+d0)a1a0 + d2(d1’+d0’)a1a0’
+ d2d1d0a1’a0

p(F) = 7/32 = 0.21875

d2

d1 d1

a1 a1

d0 d0

1 0

a1

a0 a0

7/32
1/43/16

1/41/8

1/4 1/4 1/4

1/2

1/2

: 1

: 0
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The Calculation of Transition Density

․Transition density of cube
⎯ f = ab
⎯ Df = Da Pb + Db Pa - 1/2 Da Db

⎯ DaPb means that output will change when b=1 and a has changes
⎯ 1/2 DaDb is the duplicate part when both a and b changes

․n-input AND :
⎯ a network of 2 -input AND gate in zero delay model 
⎯ 3-input AND gate

Dg = Df Pc + Dc Pf - 1/2 Df Dc

․Inaccuracy of this simple model :
⎯ Temporal relations 
⎯ Spatial relations

a
b

c

f

g
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The Problem of Gate Delay and Inertial Delay

(1) Without considering the Gate Delay and Inertial Delay

(2) Without considering Inertial Delay

(3) Practical condition

2

2,
0,1
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The Problem of Spatial Correlation

P = 0.5

P = 1-0.5 = 0.5

P = 0.5 * 0.5 = 0.25

P = 0.5

P = 1-0.5 = 0.5

P = 0

(a) Without considering Spatial Correlation

(b) Practical condition
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Simulation-Based Computation

․Input-pattern dependent
․Too many input patterns

Logic
Simulator

Logic waveform
of each node
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Logic Minimization for Low Power (1/2)

․Consider an example:

․Different choices of the covers may result in different 
power consumption

ab
c  00        01        11        10

0

1

1

1 1 1

 1 1

 00        01        11        10ab
c

0

1

1

1 1

1

1

1

f = a'b' + ac' + bc f = b'c' + a'c + ab
P = 108.7 µW P = 115.5 µW

(a) (b)

f

a

b

c

c

b

a

f
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Logic Minimization for Low Power (2/2)

․Typically, the objective of logic minimization is to 
minimize
⎯ NPT : the number of product terms of the cover
⎯ NLI : the number of literals in the input parts of the cover
⎯ NLO : the number of literals in the output parts of the cover

․For low power synthesis, the power dissipation has to 
be added into the cost function for best covers

timing

area power

tradeoff !!
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Technology Mapping for Low Power (1/3)
a
b
c

d
e
f

out
G1

G2
G3

(a) Circuit to be mapped

Pt=0.109

Pt=0.109
Pt=0.179 Pt=0.179

Pt=0.179

Gate Type        Area            Intrinsic Cap.       Input Load
INV               928                 0.1029                 0.0514

NAND2          1392                0.1421                 0.0747
NAND3          1856                0.1768                 0.0868
AOI33             3248               0.3526                 0.1063

(b) Characteristics of Library
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Technology Mapping for Low Power (2/3)

a
b
c

d
e
f

out

AOI33

INV
G1

G2
G3

Power Cost: 0.0907
(a) Minimun-Area Mapping

Area Cost: 4176
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Technology Mapping for Low Power (3/3)

a
b
c

d
e
f

out
G1

G2
G3

Power Cost: 0.0803
(b) Minimun-Power Mapping

Area Cost: 5104

WIRE
NAND3

NAND3

NAND2
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Outline

․Synthesis overview
․RTL synthesis

⎯ Combinational circuit generation
⎯ Special element inferences

․Logic optimization
⎯ Two-level logic optimization
⎯ Multi-level logic optimization

․Technology mapping
․Timing optimization
․Synthesis for low power
․Retiming
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Retiming

․Exploit the ability to move registers in a circuit
⎯ To minimize the cycle time
⎯ To minimize the the number of registers for a given cycle time

30 20 40 cycle time = 60

30 20 40 cycle time = 50
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Moving Registers

․Combinational logic not modified

retime g by +1

retime g by -1

g g

(computed in next cycle)

(computed in previous cycle)
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Formulation

․Directed graph:
⎯ Nodes: combinational logic
⎯ Edges: connections (possible latched) between logic

․Weights
⎯ Nodes: combinational logic propagation delay
⎯ Edges: number of registers

․Path delay d(P): sum of node delays along a path
․Path weight w(P): sum of edge weights along a path
․Clock period: Φ(G) = max{d(p) | w(p) = 0}
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Some Definitions

․W(u,v) is defined as the minimum number of registers 
on any path from vertex u to vertex v

․The critical path p is a path from u to v such that 
w(p)=W(u,v)

․D(u,v) is defined as the maximum total propagation 
delay on any critical path from u to v
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Synchronous Circuits

A synchronous circuit must satisfy following rules:
․D1: The propagation delay d(v) is non-negative for 

each vertex v
⎯ Infeasible in real cases

․W1: The register count w(e) is non-negative for each 
edge e
⎯ Infeasible in real cases

․W2: In any directed cycle, there is some edge with 
positive register count
⎯ No combinational loops
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Retiming: Formulation

․Assign an integer-valued labeling r to each vertex

⎯ wr(u,v)=w(u,v)+r(v)-r(u)
⎯ wr(p)=w(p)+r(v)-r(u)

․Corollary: For any cycle p, wr(p)=w(p)
․Legal retiming needs only being checked against 

condition W1: non-negative edge weight
․Corollary: Let G be a synchronous circuit and r be a 

retiming on G. Then the retimed graph Gr satisfies 
condition W2

u v3

+2+1

Wr(u,v) = 3 + 2 – 1 = 4
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Relocating Registers

7 7 7

3 3 3 3

0
0

0 0

00 0 0

1 1 1
1

v
h v

1
v

2
v

3
v

4

v
5

v
6

v
7

7 7 7

3 3 3 3

0
0

0 0

10 0 1

1 0 1
1

v
h v

1
v

2
v

3
v

4

v
5

v
6

v
7

r = -1

r = -1



142Chang, Huang, Li, Lin, Liu
Unit 3

Optimal Retiming (1/3)
․Problem: Given a graph G, find a legal retiming r of G

such that the clock period Φ(Gr) of the retimed circuit Gr
is as small as possible.

․Lemma: Let G be a synchronous circuit, and let c be 
any positive real number, the following are equivlent:
1. Φ(G) ≤ c
2. For all vertices u and v, if D(u,v) > c, then W(u,v)≥1

․Lemma:
⎯ A path p is a critical path of Gr ⇔ it is a critical path of G
⎯ Wr (u,v)=W(u,v)+r(v)-r(u)
⎯ Dr (u,v)=D(u,v)

․Corollary: Φ(Gr )=D(u,v) for some u,v
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Optimal Retiming  (2/3)

․Theorem: r is a legal retiming of G such that Φ(Gr ) ≤ c
if and only if
1. r(vh)=0
2. r(u)-r(v) ≤ w(e) for every edge e(u,v)

-- keep the register count non-negative
3. r(u)-r(v) ≤W(u,v)-1 for every vertices u and v such that D(u,v) > c

-- pipeline the long path (register count > 1)

․Solve the integer linear programming problem
⎯ Bellman-Ford method in O(|V |3)

․The set of r's determine new positions of the registers
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Optimal Retiming (3/3)

․Algorithm of optimal retiming:
1. Compute W and D
2. Sort the elements in the range of D
3. Binary search the minimum achievable clock period by applying

Bellman-Ford algorithm to check the satisfication of the Theorem
4. Derive the r(v) from the minimum achievable clock period found 

in Step 3

․Complexity O(|V |3 lg|V |)
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All-Pair Shortest-Paths

․W and D can be computed by solving the all-pair 
shortest-paths problem
⎯ Floyd-Warshall method: O(|V |3)
⎯ Johnson‘s method: O(|V | |E | lg |V |)

․Algorithm WD:
1. Weight each edge e(u,v) with the ordered pair (w(e),-d(u))
2. Solve the all-pair shortest-paths problem

Add two weights by component-wise addition
Compares weights using lexicographic ordering

3. Each shortest-path weight (x,y) between vertices u and v
W(u,v)=x
D(u,v)=d(v)-y
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Examples: W and D Matrixes

7 7 7

3 3 3 3

0
0 0 0

00 0 0

1 1 11vh v1 v2 v3 v4

v5v6v7

W v1

v1

v2

v2

v3

v3 v4

v4

v5

v5 v6

v6

v7

v7

0
0
0
0
0
0
0

0
1

1
1

vh

vh

1
1
1
10

0
0

0
0

0
0

1
1

2

2
2
2
2
2

2
3

3
3
3
3

2
3

1

4

4
4
4

0

2
3

1

0

3
3 2

0

0
0

0

0
0

0

0
00

2
1

1
D v1

v1

v2

v2

v3

v3 v4

v4

v5

v5 v6

v6

v7

v7

0
10
17
24
24
21
14

3
3

20
27

vh

vh

27
24
17
107

3
3

3
7

7
7

6
6

6

30
30
27
20
13

9
9

33
30
23
16

9
12

6

12

33
26
19

10

16
16

13

10

30
23 20

14

17
17

14

24
21

24

10
1710

13
13

10

(source)

(destination)
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Retimed Correlator

7 7 7

3 3 3 3

0
0 0 0

00 0 0

1 1 11vh v1 v2 v3 v4

v5v6v7

7 7 7

3 3 3 3

0
0 1 1

01 0 0

1 0 10

r(v7)=0 r(v6)=-1 r(v5)=-2

r(v4)=-2r(v3)=-2r(v2)=-1r(v1)=-1
r(vh)=0
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Retiming and Resynthesis

․Migrate all registers to the periphery of a sub-network
⎯ Peripheral retiming

․Optimize the sub-network with any combinational 
technique
⎯ Resynthesis

․Replace registers back in the sub-network
⎯ Retiming

․This procedure may further improve the timing across 
the registers
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Examples of Resynthesis

g1

g3

d
f

g2

a

b

c

e

(a)

g1

g3

df

g2

a

b

c

e

(b)

-1

g3

df

g2a
b

c

e

(c)

-1

g3

d
f

g2a
b

c

e

(d)
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Peripheral Retiming

․A peripheral retiming is a retiming such that
⎯ r(v)=0 where v is an I/O pin
⎯ w(u,v)+r(v)-r(u)=0 where e(u,v) in an internal edge

․Move all registers to the peripheral edges
․Leave a purely combinational logic block between two 

set of registers
․Example:

1

o1

i1 i2

c

a b

1

1 2

0

o1

i1 i2

c

a b

2

0 0

1

1
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Conditions for Peripheral Retiming

․No two paths between any input i and any output j have 
different edge weights

․Exist αi and βj , 1≤ i ≤ m, 1≤ j ≤ n such that Wi,j= αi + βj
(m: no. of inputs; n: no. of outputs)

․Wi,j = ∑path ii -> oj w(e) if all paths between input i and 
output j have the same weight

․Complexity O(e ⋅ min(m,n))
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Examples of Peripheral Retiming

․Example 1:
W1,1=2, W2,1=3,

⇒ α1=1, α2=2, β1=1

․Example 2:
W1,1=0,W1,2=0,W2,1=0, W2,2=1 
⇒ no solution

o1

i1 i2

d

a b

0

0 10

0

o2

c

0

e

0

0

0

1

o1

i1 i2

c

a b

1

1 2

0

o1

i1 i2

c

a b

2

0 0

1

1
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Legal Resynthesis Operations (1/2)

․Any that do not create a path with negative weight
․Resynthesis could create pseudo-dependency between 

any input and output
․Example:

out1

out3

out2

a

m
n

p
q

r
s

Peripheral
Retiming
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Legal Resynthesis Operations (2/2)
g1

out1

out3

out2

a

m
n

p
q

r
s

-1

out1

out3

out2

a

m
n

p
q

r
s

-1

g2

negative weight path

Resynthesis
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Effects of Retiming and Resynthesis

․Area optimization:
⎯ No significant improvement
⎯ Limitation on existing combinational optimization techniques
⎯ Some circuits (pipelined datapaths) have inherently no potential

for further optimization using retiming and resynthesis techniques

․Performance optimization of pipelined circuits:
⎯ Significant improvements for pipelined arithmetic circuits
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