Unit 3: Logic Synthesis

- Course contents
 - Synthesis overview
 - RTL synthesis
 - Logic optimization
 - Technology mapping
 - Timing optimization
 - Synthesis for low power
 - * Retiming
- Readings
 - Chapter 11

1

Levels of Design

- Translate HDL descriptions into logic gate networks (structural domain) in a particular library
- Advantages
 - Reduce time to generate netlists
 - Easier to retarget designs from one technology to another
 - Reduce debugging effort
- Requirement
 - Robust HDL synthesizers

HDL Synthesis

Synthesis = Domain Translation + Optimization

Structural domain

Domain Translation

- Technology-independent optimization: logic optimization
 - Work on Boolean expression equivalent
 - Estimate size based on # of literals
 - Use simple delay models
- Technology-dependent optimization: technology mapping/library binding
 - Map Boolean expressions into a particular cell library
 - May perform some optimizations in addition to simple mapping
 - Use more accurate delay models based on cell structures

Two-Level Logic Optimization

- Two-level logic representations
 - Sum-of-product form
 - Product-of-sum form
- Two-level logic optimization
 - Key technique in logic optimization
 - Many efficient algorithms to find a near minimal representation in a practical amount of time
 - In commercial use for several years
 - Minimization criteria: number of product terms
- Example: $F = XYZ + X\overline{Y}\overline{Z} + X\overline{Y}Z + \overline{X}YZ + XY\overline{Y}Z$

Multi-Level Logic Optimization

- Translate a combinational circuit to meet performance or area constraints
 - Two-level minimization
 - Common factors or kernel extraction
 - Common expression resubsitution
- In commercial use for several years
- Example:

 $f1 = abcd + abce + abcd + abcd + f1 = c (\overline{a} + x) + a\overline{cx}$ $\overline{ac} + cdf + abcd\overline{de} + abcd\overline{f} \qquad \qquad f1 = c (\overline{a} + x) + a\overline{cx}$ $f2 = bdg + \overline{b}dfg + \overline{b}dg + b\overline{d}eg \qquad \qquad x = d (b + f) + \overline{d} (\overline{b} + e)$

Technology Mapping

- Goal: translation of a technology independent representation (e.g. Boolean networks) of a circuit into a circuit in a given technology (e.g. standard cells) with optimal cost
- Optimization criteria:
 - Minimum area
 - Minimum delay
 - Meeting specified timing constraints
 - Meeting specified timing constraints with minimum area
- Usage:
 - Technology mapping after technology independent logic optimization
 - Technology translation

Standard Cells for Design Implementation

Timing Optimization

- There is always a trade-off between area and delay
- Optimize timing to meet delay spec. with minimum area

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

Typical Domain Translation Flow

- Translate original HDL code into 3-address format
- Conduct special element inferences before combinational circuit generation
- Conduct special element inferences process by process (local view)

Combinational Circuit Generation

- Functional unit allocation
 - Straightforward mapping with 3-address code
- Interconnection binding
 - Using control/data flow analysis

Functional Unit Allocation

- 3-address code
 - x = y op z in general form
 - Function unit op with inputs y and z and output x

- Need the dependency information among functional units
 - Using control/data flow analysis
 - A traditional technique used in compiler design for a variety of code optimizations
 - Statically analyze and compute the set of assignments reaching a particular point in a program

Control/Data Flow Analysis

- Terminology
 - A definition of a variable x
 - An assignment assigns a value to the variable x
 - _ d1 can reach d4 but cannot reach d3
 - d1 is killed by d2 before reaching d3
- A definition can only be affected by those definitions being able to reach it
- Use a set of data flow equations to compute which assignments can reach a target assignment

Chang, Huang, Li, Lin, Liu

Combinational Circuit Generation

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

Special Element Inferences

- Given a HDL code at RTL, three special elements need to be inferred to keep the special semantics
 - Latch (D-type) inference
 - Flip-Flop (D-type) inference
 - Tri-state buffer inference
- Some simple rules are used in typical approaches

Latch inferred!! Flip-flop inferred!!

Tri-state buffer inferred!!

Preliminaries

- Sequential section
 - Edge triggered always statement
- Combinational section
 - All signals whose values are used in the always statement are included in the sensitivity list

reg Q;

always@(posedge clk)

 $\mathbf{Q} = \mathbf{D};$

Sequential section Conduct flip-flop inference reg Q;

always@(in or en)

if(en) Q=in;

Combinational section Conduct latch inference

Terminology (1/2)

- Conditional assignment
- Selector: S
- Input: D
- Output: Q

Terminology (2/2)

- A variable Q has a *branch* for a value of selector **s**
 - The variable Q is assigned a value in a path going through the branch

Rules of Latch Inference (1/2)

- Condition 1: <u>There is no branch</u> associated with the output of a conditional assignment for a value of the selector
 - Output depends on its previous value implicitly

 Condition 2: The output value of a conditional assignment depends on its previous value explicitly

y depends on its previous value at this branch via the assignment z=y;

Typical Latch Inference

- Conditional assignments are not completely specified
 - Check if the else-clause exists
 - Check if all case items exist
- Outputs conditionally assigned in an if-statement are not assigned before entering or after leaving the ifstatement

always@(S or A or B) begin Q = A; \longrightarrow Do not infer if(S) Q = B; latch for Q end

Typical Coding Style Limitation (1/2)

Typical Coding Style Limitation (2/2)

- Process by process
 - No consideration on the dependencies across processes
 - No warrantee on the consistency of memory semantics

Terminology

- Clocked statement: edge-triggered always statement
 - Simple clocked statement
 - e.g., always @ (posedge clock)
 - Complex clocked statement

e.g., always @ (posedge clock or posedge reset)

• Flip-flop inference must be conducted only when synthesizing the **clocked statements**

Infer FF for Simple Clocked Statements (1/2)

• Infer a flip-flop for **each variable** being assigned in the simple clocked statement

Infer FF for Simple Clocked Statements (2/2)

- Two post-processes
 - Propagating constants
 - Removing the flip-flops without fanouts

Infer FF for Complex Clocked Statements

- The edge-triggered signal not used in the following operations is chosen as the clock signal
- The usage of asynchronous control pins requires the following syntactic template
 - An if-statement immediately follows the always statement
 - Each variable in the event list except the *clock signal* must be a selective signal of the if-statements
 - Assignments in the blocks B1 and B2 must be constant assignments (e.g., x=1, etc.)

always @ (posedge clock or posedge reset or negedge set)

if(reset) begin **B1** end else if (!set) begin **B2** end else begin **B3** end

Typical Coding Style Limitation

always @ (posedge clk or posedge R)
begin
$$Q = D;$$

if(R) $Q = 0;$
end
Non-synthesizable

Typical Tri-State Buffer Inference (1/2)

- If a data object Q is assigned a high impedance value 'Z' in a multi-way branch statement (if, case, ?:)
 Associated Q with a tri-state buffer
- If Q associated with a tri-state buffer has also a memory attribute (latch, flip-flop)
 - Have the Hi-Z propagation problem
 - Real hardware cannot propagate Hi-Z value
 - Require two memory elements for the control and the data inputs of tri-state buffer

Typical Tri-State Buffer Inference (2/2)

- It may suffer from mismatches between synthesis and simulation
 - Process by process
 - May incur the Hi-Z propagation problem

Comments on Special Element Inference

- Typical synthesizers
 - Use ad hoc methods to solve latch inference, flip-flop inference and tri-state buffer inference
 - Incur extra limitations on coding style
 - Do not consider the dependencies across processes
 - Suffer from synthesis/simulation mismatches
- A lot of efforts can be done to enhance the synthesis capabilities
 - It may require more computation time
 - Users' acceptance is another problem
Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

Two-Level Logic Optimization

Basic idea: Boolean law x+x'=1 allows for grouping x1x2+x1 x'2=x1

Approaches to simplify logic functions:

- Karnaugh maps [Kar53]
- Quine-McCluskey [McC56]

• Example

Implicant

• IMPLICANT:

any single 1 or any group of 1's combined together on a map of the function F

– ab'c', abc

• **PRIME IMPLICANT**: an implicant that cannot be combined with another terms to eliminate a variable

- a'b'c, a'cd, ac'

Minimum Form

- A sum-of-products expression containing a non-prime implicant cannot be minimum
 - Could be simplified by combining the nonprime term with additional minterm
- To find the minimum sum-of-products
 - Find a minimum number of prime implicants which cover all of the 1's
 - Not every prime implicant is needed
 - If prime implicants are selected in the wrong order, a nonminimum solution may result

Essential Prime Implicant

• If a minterm is covered by only one prime implicant, that prime implicant is **ESSENTIAL** and must be included in the minimum sum-of-products

Note: 1's in red color are covered by only one prime implicant. All other 1's are covered by at least two prime implicants

Classical Logic Minimization

- Theorem:[Quine,McCluskey] There exists a minimum cover for F that is prime
 - Need to look just at primes (reduces the search space)
- Classical methods: two-step process
 - 1. Generation of all prime implicants
 - 2. Extraction of a minimum cover (covering problem)

Primary Implicant Generation (1/5)

Primary Implicant Generation (2/5)

Primary Implicant Generation (3/5)

	Implication Table								
	Column I	Column II							
	0000	0-00							
		-000							
	0100								
1	1000	010-							
		01-0							
	0101	100-							
	0110	10-0							
	1001								
	1010	01-1							
		-101							
	0111	011-							
	1101	1-01							
(
	1111	-111							
		11-1							

Primary Implicant Generation (4/5)

Implication Table									
Column I	Column II	Column III							
0000	0-00 *	01 *							
	-000 *								
0100		-1-1 *							
1000	010-								
	01-0								
0101	100- *								
0110	10-0 *								
1001									
1010	01-1								
	-101								
0111	011-								
1101	1-01 *								
1111	-111								
	11-1								

Primary Implicant Generation (5/5)

Prime Implicants: 0-00 = a'c'd' 100- = ab'c' 1-01 = ac'd -1-1 = bd -000 = b'c'd' 10-0 = ab'd' 01-- = a'b

Column Covering (1/4)

rows = prime implicants columns = ON-set elements place an "X" if ON-set element is covered by the prime implicant

Chang, Huang, Li, Lin, Liu

Column Covering (2/4)

If column has a single X, then the implicant associated with the row is essential. It must appear in minimum cover

Chang, Huang, Li, Lin, Liu

Column Covering (3/4)

Eliminate all columns covered by essential primes

Column Covering (4/4)

Find minimum set of rows that cover the remaining columns f = ab'd' + ac'd + a'b

Petrick's Method

- Solve the satisfiability problem of the following function $\mathbf{P} = (\mathbf{P1}+\mathbf{P6})(\mathbf{P6}+\mathbf{P7})\mathbf{P6}(\mathbf{P2}+\mathbf{P3}+\mathbf{P4})(\mathbf{P3}+\mathbf{P5})\mathbf{P4}(\mathbf{P5}+\mathbf{P7})=1$

		4	5	6	8	9	10	13
P 1	0,4 (0-00)	×						
P2	0,8 (-000)				X			
P3	8,9 (100-)				X	X		
P4	8,10 (10-0)				X		×	
P5	9,13 (1-01)					×		×
P6	4,5,6,7 (01)	×	X	X				
P7	5,7,13,15 (-1-1)		×					×

- Each term represents a corresponding column
- Each column must be chosen at least once
- All columns must be covered

• Brute force technique: Consider all possible elements

- Complete branching tree has 2^{|P|} leaves!!
 - Need to prune it
- Complexity reduction
 - Essential primes can be included right away
 - If there is a row with a singleton "1" for the column
 - Keep track of best solution seen so far
 - Classic branch and bound

Branch and Bound Algorithm

Heuristic Optimization

- Generation of *all* prime implicants is impractical
 - The number of prime implicants for functions with *n* variables is in the order of $3^n/n$
- Finding an *exact* minimum cover is NP-hard
 - Cannot be finished in polynomial time
- Heuristic method: avoid generation of all prime implicants
- Procedure
 - A minterm of ON(f) is selected, and expanded until it becomes a prime implicant
 - The prime implicant is put in the final cover, and all minterms covered by this prime implicant are removed
 - Iterated until all minterms of the ON(f) are covered
- "ESPRESSO" developed by UC Berkeley
 - The kernel of synthesis tools

ESPRESSO - Illustrated

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - _ Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

- Multi-level logic:
 A set of logic equations with no cyclic dependencies
- Example: Z = (AB + C)(D + E + FG) + H

- 4-level, 6 gates, 13 gate inputs

- Directed acyclic graph (DAG)
- Each source node is a primary input
- Each sink node is a primary output
- Each internal node represents an equation
- Arcs represent variable dependencies

Boolean Network : An Example

Multi-Level v.s. Two-Level

- Two-level:
 - Often used in control logic design

$$f_1 = X_1 X_2 + X_1 X_3 + X_1 X_4$$

$$f_2 = X_1 X_2 + X_1 X_3 + X_1 X_4$$

- Only $x_1 x_4$ shared
- Sharing restricted to common cube

- Multi-level:
 - Datapath or control logic design
 - Can share $x_2 + x_3$ between the two expressions
 - Can use complex gates

 $g_1 = x_2 + x_3$ $g_2 = x_2 x_4$ $f_1 = x_1 y_1 + y_2$ $f_2 = x_1' y_1 + y_2$ (y_i is the output of gate g_i)

Multi-Level Logic Optimization

- Technology independent
- Decomposition/Restructuring
 - Algebraic
 - Functional
- Node optimization

Two-level logic optimization techniques are used

Decomposition / Restructuring

- Goal : given initial network, find best network
- Two problems:
 - Find good common subfunctions
 - How to perform division
- Example:

 $f_1 = abcd + abce + ab'cd' + ab'c'd' + a'c + cdf + abc'd'e' + ab'c'df'$

 $f_2 = bdg + b'dfg + b'd'g + bd'eg$

minimize (in sum-of-products form):

 $f_1 = bcd + bce + b'd' + b'f + a'c + abc'd'e' + ab'c'df'$

 $f_2 = bdg + dfg + b'd'g + d'eg$

decompose:

$$f_1 = c(a' + x) + ac'x' \quad x = d(b + d) + d'(b' + e)$$

 $f_2 = gx$

Basic Operations (1/2)

1. decomposition

(single function) f = abc + abd + (ac)'d' + b'c'd'

$$f = xy + (xy)'$$

$$x = ab$$

$$y = c + d$$

2. extraction

(multiple functions) f = (az + bz')cd + e g = (az + bz')e'h = cde

$$f = xy + e$$

$$g = xe'$$

$$h = ye$$

$$x = az + bz'$$

$$y = cd$$

3. factoring

(series-parallel decomposition)

$$f = ac + ad + bc + bd + e$$

4. substitution

(with complement)

$$g = a + b$$

$$f = a + bc + b'c'$$

f = q(a + c) + q'c'

5. elimination

$$f = ga + g'b$$
$$g = c + d$$

f = ac + ad + bc'd'g = c + d

"Division" plays a key role !!

Division

 Division: p is a Boolean divisor of f if q ≠ φ and r exist such that f = pq + r

- p is said to be a factor of *f* if in addition $r = \phi$:

f = pq

- q is called the quotient
- r is called the **remainder**
- q and r are not unique
- Weak division: the unique algebraic division such that r has as few cubes as possible
 - The quotient *q* resulting from weak division is denoted by *f* / *p* (it is *unique*)

Weak_div(*f*, *p*): $U = \text{Set} \{u_j\}$ of cubes in *f* with literals not in *p* deleted $V = \text{Set} \{v_j\}$ of cubes in *f* with literals in *p* deleted /* note that u_jv_j is the *j*-th cube of f */ $V^i = \{v_j \in V : u_j = p_i\}$ $q = \bigcap V^i$ r = f - pqreturn(*q*, *r*)

Weak Division Algorithm (2/2)

• Example
common
$$f = acg + adg + ae + bc + bd + be + a'b$$

expressions $p = ag + b$
 $U = ag + ag + a + b + b + b + b$
 $V = c + d + e + c + d + e + a'$
 $V^{ag} = c + d$
 $V^{b} = c + d + e + a'$
 $q = c + d = f/p$

- Example:
 - X = (a + b + c)de + f
 - Y = (b + c + d)g + aef
 - Z = aeg + bc
- Single-cube divisor: ae
- Multiple-cube divisor: b + c
- Extraction of common sub-expression is a global area optimization effort

Some Definitions about Kernels

- Definition: An expression is *cube-free* if no cube divides the expression evenly
 - ab + c is cube-free

- ab + ac = a (b + c) is not cube-free

- Note: a cube-free expression must have more than one cube
 - abc is not cube-free
- Definition: The *primary divisors* of an expression f are the set of expressions

 $D(f) = \{f/c \mid c \text{ is a cube}\}$

To find cube-free divisor

Definition: The kernels of an expression f are the set of expressions

 $K(f) = \{g \mid g \in D(f) \text{ and } g \text{ is cube free}\}$

- The kernels of an expression f are $K(f) = \{f/c\}$, where
 - / denote algebraic polynomial division
 - c is a cube
 - No cube divide f/c evenly (without any remainder)
- The cube c used to obtain the kernel is the *co-kernel* for that kernel
- Definition: A cube c used to obtain the kernel k = f/c is called a co-kernel of k. C(f) is used to denote the set of co-kernels of f.
- Example

$$x = adf + aef + bdf + bef + cdf + cef + g$$
$$= (a + b + c)(d + e)f + g$$

Kernel	Co-kernel
a + b + c	df, ef
d + e	af, bf, cf
(a+b+c)(d+e)f+g	1

Kernels of Expressions

• Example:

$$f = x_1 x_2 x_3 + x_1 x_2 x_4 + x_3' x_2$$
$$K = \{x_1 x_3 + x_1 x_4 + x_3', x_3 + x_4\}$$

 $-x_1x_2$ is the co-kernel for the kernel $x_3 + x_4$

• Kernels can be used to factor an expression

$$f = x_2(x_1(x_3 + x_4) + x_3')$$

• Key in finding *common divisors* between expressions

• Theorem (Brayton & McMullen):

f and *g* have a multiple-cube common divisor if and only if the intersection of a kernel of *f* and a kernel of *g* has more than one cube

$$\begin{split} f_1 &= x_1(x_2x_3 + x_2'x_4) + x_5 \\ f_2 &= x_1(x_2x_3 + x_2'x_5) + x_4 \\ \mathsf{K}(f_1) &= \{x_2x_3 + x_2'x_4, \\ & x_1(x_2x_3 + x_2'x_4) + x_5\} \\ \mathsf{K}(f_2) &= \{x_2x_3 + x_2'x_5, \\ & x_1(x_2x_3 + x_2'x_5) + x_4\} \\ \mathsf{K}_1 & \frown \mathsf{K}_2 &= \{x_2x_3, x_1x_2x_3\} \end{split}$$

- f₁ and f₂ have no multiplecube common divisor

$$f_{1} = x_{1}x_{2} + x_{3}x_{4} + x_{5}$$

$$f_{2} = x_{1}x_{2} + x_{3}'x_{4} + x_{5}$$

$$K(f_{1}) = \{ x_{1}x_{2} + x_{3}x_{4} + x_{5} \}$$

$$K(f_{2}) = \{ x_{1}x_{2} + x_{3}'x_{4} + x_{5} \}$$

$$K_{1} \cap K_{2} = \{ x_{1}x_{2} + x_{5} \}$$

 f₁ and f₂ have multiplecube common divisor

abcd + abce + adfg + aefg + adbe + acdef + beg

Find Out All Kernels (2/2)

co-kernel	kernel
1	a((bc + fg)(d + e) + de(b + cf))) + beg
a	(bc + fg)(d + e) + de(b + cf)
ab	c(d + e) + de
abc	d + e
•	•
ac	b(d + e) + def
acd	b + ef
•	•
bc	ad + ae

They can be obtained in n^2 time where *n* is number of cubes in this expression. • Cube-literal matrix

 $f = x_1 x_2 x_3 x_4 x_7 + x_1 x_2 x_3 x_4 x_8 + x_1 x_2 x_3 x_5 + x_1 x_2 x_3 x_6 + x_1 x_2 x_9$

	x_1	x_2	$\boldsymbol{x_3}$	x_4	x_5	x_6	x_7	x_8	X9
<i>x</i> ₁ <i>x</i> ₂ <i>x</i> ₃ <i>x</i> ₄ <i>x</i> ₇	1	1	1	1	Ο	Ο	1	Ο	Ο
$x_1x_2x_3x_4x_8$	1	1	1	1	Ο	Ο	Ο	1	Ο
$x_{1}x_{2}x_{3}x_{5}$	1	1	1	Ο	1	0	Ο	Ο	Ο
$x_1x_2x_3x_6$	1	1	1	Ο	Ο	1	Ο	Ο	Ο
$x_1x_2x_9$	1	1	0	0	0	0	0	0	1

Cube-Literal Matrix & Rectangles (1/2)

 A rectangle (R, C) of a matrix A is a subset of rows R and columns C such that

 $A_{ij} = 1 \forall i \in R, j \in C$

Rows and columns need not be continuous

- A prime rectangle is a rectangle not contained in any other rectangle
 - _ A prime rectangle indicates a co-kernel kernel pair

Cube-Literal Matrix & Rectangles (2/2)

• Example:

$$\mathsf{R} = \{\{1, 2, 3, 4\}, \{1, 2, 3\}\}\$$

- co-kernel: $x_1x_2x_3$
- kernel: $x_4x_7 + x_4x_8 + x_5 + x_6$

	x_{I}	x_2	$\boldsymbol{x_3}$	x_4	x_5	x_6	x_7	x_8	x 9
$x_1x_2x_3x_4x_7$	1	1	1	1	0	0	1	0	0
$x_1 x_2 x_3 x_4 x_8$	1	1	1	1	Ο	Ο	Ο	1	0
$x_1 x_2 x_3 x_5$	1	1	1	0	1	Ο	Ο	Ο	0
$x_1x_2x_3x_6$	1	1		0	0	1	Ο	Ο	0
$x_1x_2x_9$	1	1	0	0	Ο	0	Ο	Ο	1

Rectangles and Logic Synthesis

- Single cube extraction
 - F = abc + abd + eg
 - G = abfg
 - H = bd + ef
 - $(\{1,2,4\},\{1,2\}) \le ab$ $(\{2,5\},\{2,4\}) \le bd$

$$F = Xc + XY + eg$$

$$G = Xfg$$

$$H = Y + ef$$

$$X = ab$$

$$Y = bd$$

		a	Ь	С	d	e	ſ	\boldsymbol{g}
		1	2	3	4	5	6	7
abc	1	1	1	1	Ο	Ο	Ο	Ο
abd	2	1	1	Ο	1	Ο	Ο	Ο
eg	3	Ο	Ο	Ο	Ο	1	Ο	1
abfg	4	1	1	Ο	Ο	Ο	1	1
bd	5	Ο	1	Ο	1	Ο	Ο	Ο
ef	6	Ο	Ο	Ο	Ο	1	1	Ο

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

Technology Mapping

- General approach:
 - Choose base function set for canonical representation
 - Ex: 2-input NAND and Inverter
 - Represent optimized network using base functions
 - Subject graph
 - Represent library cells using base functions
 - Pattern graph
 - Each pattern associated with a cost which is dependent on the optimization criteria
- Goal:
 - Finding a minimal cost covering of a subject graph using pattern graphs

Example Pattern Graph (1/3)

Example Pattern Graph (2/3)

Example Pattern Graph (3/3)

Example Subject Graph

$$t1 = d + e;$$

 $t2 = b + h;$
 $t3 = a t2 + c;$
 $t4 = t1 t3 + f g h;$
 $F = t4';$

Sample Covers (1/2)

Sample Covers (2/2)

- Optimally cover each tree using dynamic programming approach
- Piece the tree-covers into a cover for the subject graph

Dynamic Programming for Minimum Area

• Principle of optimality: optimal cover for the tree consists of a match at the root plus the optimal cover for the sub-tree starting at each input of the match

$A(root) = m + A(I_1) + A(I_2) + A(I_3) + A(I_4)$ cost of a leaf = 0

A Library Example

Library Element

Canonical Form

DAGON in Action

NAND2(3)

Features of DAGON

- Pros. of DAGON:
 - Strong algorithmic foundation
 - Linear time complexity
 - Efficient approximation to graph-covering problem
 - Given locally optimal matches in terms of both area and delay cost functions
 - Easily "portable" to new technologies
- Cons. Of DAGON:
 - With only a local (to the tree) notion of timing
 - Taking load values into account can improve the results
 - Can destroy structures of optimized networks
 - Not desirable for well-structured circuits
 - Inability to handle non-tree library elements (XOR/XNOR)
 - Poor inverter allocation

- Add a pair of inverters for each wire in the subject graph
- Add a pattern of a wire that matches two inverters with zero cost
- Effect: may further improve the solution

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

Delay Model at Logic Level

- 1. unit delay model
 - Assign a delay of 1 to each gate
- 2. unit fanout delay model
 - Incorporate an *additional* delay for *each fanout*
- 3. library delay model
 - Use delay data in the library to provide more accurate delay value
 - May use linear or non-linear (tabular) models

Linear Delay Model

Delay = Dslope + Dintrinsic + Dtransition + Dwire

Tabular Delay Model

- Delay values are obtained by a look-up table
 - Two-dimensional table of delays (m by n)
 - with respect to input slope (m) and total output capacitance (n)
 - One dimensional table model for output slope (n)
 - with respect to total output capacitance (n)
 - Each value in the table is obtained by real measurement

Cell Delay (ps)

- Can be more precise than linear delay model
 - table size \uparrow → accuracy \uparrow
- Require more space to store the table

Chang, Huang, Li, Lin, Liu

Arrival Time and Required Time

- arrival time : calculated from input to output
- required time : calculated from output to input
- slack = required time arrival time

A(j): arrival time of signal j R(k): required time or for signal k S(k): slack of signal k D(j,k): delay of node j from input k A(j) = $\max_{k \in FI(j)} [A(k) + D(j,k)]$ r(j,k) = R(j) - D(j,k) R(k) = $\min_{j \in FO(k)} [r(j,k)]$ S(k) = R(k) - A(k)

- Replace logic gates with delay blocks
- Add start (S) and end (E) blocks
- Indicate signal flow with directed arcs

Longest and Shortest Path

• If we visit vertices in precedence order, the following code will need executing only once for each *u*

Update Successors[u]

for each vertex $v \in Adj[u]$ **do if** $A[v] < A[u] + \Delta[u] // \text{longest}$ **then** $A[v] \leftarrow A[u] + \Delta[u]$ $LP[v] \leftarrow u$ **fi if** $a[v] > a[u] + \delta[u] // \text{shortest}$ **then** $a[v] \leftarrow a[u] + \delta[u]$ $SP[v] \leftarrow u$ **fi**

Delay Graph and Topological Sort

Delay Calculation

A=3 \rightarrow longest path delay

- \rightarrow node number
- $4 \parallel \rightarrow$ gate delay

2

a=2 \longrightarrow shortest path delay

P.S: The longest delay and shortest delay of each gate are assumed to be the same.

Timing Optimization Techniques (1/8)

- Fanout optimization
 - Buffer insertion
 - Split
- Timing-driven restructuring
 - Critical path collapsing
 - Timing decomposition
- Misc
 - De Morgan
 - Repower
 - Down power
- Most of them will increase area to improve timing
 - Have to make a good trade-off between them

Timing Optimization Techniques (2/8)

• **Buffer insertion**: divide the fanouts of a gate into critical and non-critical parts and drive the non-critical fanouts with a buffer

Timing Optimization Techniques (3/8)

• **Split**: split the fanouts of a gate into several parts. Each part is driven with a copy of the original gate.

Timing Optimization Techniques (4/8)

• Critical path collapsing: reduce the depth of logic networks

Timing Optimization Techniques (5/8)

• **Timing decomposition**: restructuring the logic networks to minimize the arrival time

Timing Optimization Techniques (6/8)

• **De Morgan**: replace a gate with its dual, and reverse the polarity of inputs and output

NAND gate is typically faster than NOR gate

Timing Optimization Techniques (7/8)

• **Repower**: replace a gate with one of the other gate in its logic class with higher driving capability

Timing Optimization Techniques (8/8)

• **Down power**: reducing gate size of a non-critical fanout in the critical path

While (circuit timing improves) do select regions to transform collapse the selected region resynthesize for better timing done

- Which regions to restructure ?
- How to resynthesize to minimize delay ?

Restructuring Regions

- All nodes with slack within ε of the most critical signal belong to the ε -network
- To improve circuit delay, necessary and sufficient to improve delay at nodes on cut-set of ε -*network*

Find the Cutset

- The weight of each node is $W = Wxt + \alpha * Wxa$
 - Wxt is potential for speedup
 - Wxa is area penalty for duplication of logic
 - $-\alpha$ is decided by various area/delay tradeoff
- Apply the maxflow-mincut algorithm to generate the cutset of the ϵ -network

Controlling the Algorithm

- ϵ : Specify the size of the ϵ -*network*
 - Large ϵ might waste area without much reduction in critical delay
 - Small ϵ might slow down the algorithm
- d: The depth of the d-critical-fanin-section
 - _ Large *d* might make large change in the delay
 - Large *d* might increase run time rapidly due to the collapsing effort and the large number of divisor
- α : Control the tradeoff between area and speed
 - Large α avoids the duplication of logic
 - $\alpha = 0$ implies a speedup irrespective of the increase in area

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power
- Retiming

Power Dissipation

- Leakage power
 - Static dissipation due to leakage current
 - Typically a smaller value compared to other power dissipation
 - Getting larger and larger in deep-submicron process
- Short-circuit power
 - Due to the short-circuit current when both PMOS and NMOS are open during transition
 - Typically a smaller value compared to dynamic power
- Dynamic power
 - Charge and discharge of a load capacitor
 - Usually the major part of total power consumption

Vin

Power Dissipation Model

$$P = \frac{1}{2} \bullet C \bullet V_{dd}^2 \bullet D$$

- Typically, *dynamic power* is used to represent total power dissipation
 - P: the power dissipation for a gate
 - C: the load capacitance
 - V_{dd} : the supply voltage
 - D: the transition density
- To obtain the power dissipation of the circuit, we need
 - The node capacitance of each node (obtained from layout)
 - The transition density of each node (obtained by computation)

• Definition: The signal probability of a signal x(t), denoted by P_x^1 is defined as :

$$P_X^1 \equiv \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{+T/2} x(t) dt$$

where T is a variable about time.

- P_x⁰ is defined as the probability of a logic signal X(t) being equal to 0.
- $P_x^0 = 1 P_x^1$

Definition: The transition density Dx of a logic signal x(t), t∈(-∞, ∞), is defined as

$$D_{X} \equiv \lim_{T \to \infty} \frac{n_{X}(T)}{T \cdot f_{c}}$$

where f_c is the clock rate or frequency of operation.

- Dx is the expected number of transitions happened in a clock period.
- A circuit with clock rate 20MHz and 5 MHz transitions per second in a node, transition density of this node is 5M / 20M = 0.4

Signal Probability and Transition Density

Signal Probability and Transition Density

$$P_{j}^{10} + P_{J}^{11} = P_{j}^{1-} = P_{j}^{1}$$

$$P_{j}^{01} + P_{J}^{11} = P_{j}^{1-} = P_{j}^{1}$$

$$P_{j}^{10} = P_{j}^{01}$$

$$D_{j} = P_{j}^{10} + P_{j}^{01}$$

$$D_{j} \le 2 \times P_{j}^{1}$$

$$D_{j} \le 2 \times P_{j}^{0}$$

P.S: P^{ab} is the probability of changing from logic state a to b

The Calculation of Signal Probability

- BDD-based approach is one of the popular way
- Definition
 - p(F): fraction of variable assignments for which F = 1
- Recursive Formulation
 - _ p(F) = [p(F[x=1]) + p(F[x=0])] / 2
- Computation
 - Compute bottom-up, starting at leaves
 - At each node, average the value of children
- Ex: F = d2'(d1+d0)a1a0 + d2(d1'+d0')a1a0' + d2d1d0a1'a0

p(F) = 7/32 = 0.21875

The Calculation of Transition Density

- Transition density of cube
 - f = ab
 - $D_f = D_a P_b + D_b P_a 1/2 D_a D_b$
 - D_aP_b means that output will change when b=1 and a has changes
 - 1/2 $D_a D_b$ is the duplicate part when both a and b changes
- n-input AND :
 - a network of 2 -input AND gate in zero delay model
 - 3-input AND gate

 $D_g = D_f P_c + D_c P_f - 1/2 D_f D_c$

- Inaccuracy of this simple model :
 - Temporal relations
 - Spatial relations

The Problem of Spatial Correlation

Simulation-Based Computation

- Input-pattern dependent
- Too many input patterns

Logic Minimization for Low Power (1/2)

• Consider an example:

• Different choices of the covers may result in different power consumption

Logic Minimization for Low Power (2/2)

- Typically, the objective of logic minimization is to minimize
 - NPT : the number of product terms of the cover
 - NLI : the number of literals in the input parts of the cover
 - NLO : the number of literals in the output parts of the cover
- For low power synthesis, the power dissipation has to be added into the cost function for best covers

Technology Mapping for Low Power (1/3)

Gate Type	Area	Intrinsic Cap.	Input Load
INV	928	0.1029	0.0514
NAND2	1392	0.1421	0.0747
NAND3	1856	0.1768	0.0868
AOI33	3248	0.3526	0.1063
	(b) Characte	eristics of Library	

Unit 3

Technology Mapping for Low Power (2/3)

(a) Minimun-Area Mapping

Technology Mapping for Low Power (3/3)

Outline

- Synthesis overview
- RTL synthesis
 - Combinational circuit generation
 - Special element inferences
- Logic optimization
 - Two-level logic optimization
 - Multi-level logic optimization
- Technology mapping
- Timing optimization
- Synthesis for low power

Retiming

- Exploit the ability to move registers in a circuit
 - To minimize the cycle time
 - To minimize the the number of registers for a given cycle time

• Combinational logic not modified

Formulation

- Directed graph:
 - Nodes: combinational logic
 - Edges: connections (possible latched) between logic
- Weights
 - Nodes: combinational logic propagation delay
 - Edges: number of registers
- Path delay *d*(*P*): sum of node delays along a path
- Path weight *w*(*P*): sum of edge weights along a path
- Clock period: $\Phi(G) = \max\{d(p) \mid w(p) = 0\}$

- *W*(*u*,*v*) is defined as the minimum number of registers on any path from vertex *u* to vertex *v*
- The critical path p is a path from u to v such that w(p)=W(u,v)
- D(u,v) is defined as the maximum total propagation delay on any critical path from u to v

A synchronous circuit must satisfy following rules:

- D1: The propagation delay d(v) is non-negative for each vertex v
 - Infeasible in real cases
- W1: The register count *w*(*e*) is non-negative for each edge *e*
 - Infeasible in real cases
- W2: In any directed cycle, there is some edge with positive register count
 - No combinational loops

Retiming: Formulation

- Assign an integer-valued labeling *r* to each vertex
 - $W_r(u,v) = W(u,v) + r(v) r(u)$
 - $w_r(\rho) = w(\rho) + r(v) r(u)$

 $W_r(u,v) = 3 + 2 - 1 = 4$

- Corollary: For any cycle p, $w_r(p) = w(p)$
- Legal retiming needs only being checked against condition W1: non-negative edge weight
- Corollary: Let *G* be a synchronous circuit and *r* be a retiming on *G*. Then the retimed graph *G*_{*r*} satisfies condition W2

Relocating Registers

Optimal Retiming (1/3)

- Problem: Given a graph G, find a legal retiming r of G such that the clock period Φ(G_r) of the retimed circuit G_r is as small as possible.
- Lemma: Let G be a synchronous circuit, and let c be any positive real number, the following are equivlent:
 1. Φ(G) ≤ c
 - 2. For all vertices *u* and *v*, if D(u,v) > c, then $W(u,v) \ge 1$
- Lemma:
 - A path *p* is a critical path of $G_r \Leftrightarrow$ it is a critical path of *G*
 - $W_r(u,v) = W(u,v) + r(v) r(u)$
 - $D_r(u,v) = D(u,v)$
- Corollary: $\Phi(G_r) = D(u, v)$ for some u, v

Optimal Retiming (2/3)

- Theorem: *r* is a legal retiming of *G* such that $\Phi(G_r) \le c$ if and only if
 - 1. $r(v_h)=0$
 - 2. $r(u)-r(v) \le w(e)$ for every edge e(u, v)
 - -- keep the register count non-negative
 - 3. $r(u)-r(v) \le W(u,v)-1$ for every vertices u and v such that D(u,v) > c
 - -- pipeline the long path (register count > 1)
- Solve the integer linear programming problem
 Bellman-Ford method in O(|V|³)
- The set of *r*'s determine new positions of the registers

Optimal Retiming (3/3)

- Algorithm of optimal retiming:
 - 1. Compute *W* and *D*
 - 2. Sort the elements in the range of *D*
 - 3. Binary search the minimum achievable clock period by applying Bellman-Ford algorithm to check the satisfication of the Theorem
 - 4. Derive the r(v) from the minimum achievable clock period found in Step 3
- Complexity $O(|V|^3 |g|V|)$
All-Pair Shortest-Paths

- W and D can be computed by solving the *all-pair* shortest-paths problem
 - Floyd-Warshall method: $O(|V|^3)$
 - Johnson's method: O(|V| |E| |g| |V|)
- Algorithm WD:
 - 1. Weight each edge e(u, v) with the ordered pair (w(e), -d(u))
 - 2. Solve the all-pair shortest-paths problem
 - Add two weights by component-wise addition
 - Compares weights using lexicographic ordering
 - 3. Each shortest-path weight (x, y) between vertices u and v
 - *W*(*u*,*v*)=*x*
 - D(u,v)=d(v)-y

Examples: W and D Matrixes

W	v_h	v_1	v_2	v_{3}	v_{A}	v_5	v_6	v_{7}	D	v_{h}	v_1	v_2	v_3	v_{A}	v_{5}	v_6	v_7	(destination)
v_{h}	0	1	2	3	4	3	2	1	v_h	$\frac{n}{0}$	3	6	9	12	16	13	10	(
v_1	0	0	1	2	3	2	1	0	v_1^n	10	3	6	9	12	(16)	13	10		
v_2	0	1	0	1	2	1	0	0	v_2	17	20	3	6	9	13	10	17		
v_3	0	1	2	0	1	0	0	0	v_3	24	27	30	3	6	10	17	24		
v ₄	0	1	2	3	0	0	0	0	v_4	24	27	30	33	3	10	17	24		
v_5	0	1	2	3	4	0	0	0	v_5	21	24	27	30	33	7	(14)	21		
v_6	0	1	2	3	4	3	0	0	v_6	14	17	20	23	26	30	7	(14)		
v_7	0	1	2	3	4	3	2	0	v_7	7	10	13	(16)	19	23	(20)	7		
	1								1				\smile			\smile			

(source) Unit 3

Retimed Correlator

Retiming and Resynthesis

- Migrate all registers to the periphery of a sub-network
 Peripheral retiming
- Optimize the sub-network with any combinational technique
 - Resynthesis
- Replace registers back in the sub-network
 - Retiming
- This procedure may further improve the timing across the registers

Examples of Resynthesis

Peripheral Retiming

- A peripheral retiming is a retiming such that
 - r(v)=0 where v is an I/O pin
 - w(u,v)+r(v)-r(u)=0 where e(u,v) in an internal edge
- Move all registers to the peripheral edges
- Leave a purely combinational logic block between two set of registers
- Example:

Conditions for Peripheral Retiming

- No two paths between any input *i* and any output *j* have different edge weights
- Exist α_i and β_j , $1 \le i \le m$, $1 \le j \le n$ such that $W_{i,j} = \alpha_i + \beta_j$ (m: no. of inputs; n: no. of outputs)
- *W_{i,j}* = ∑_{path ij} -> oj</sub> *w*(*e*) if all paths between input *i* and output *j* have the same weight
- Complexity $O(e \cdot \min(m, n))$

Examples of Peripheral Retiming

- Example 1:
 - $W_{1,1}=2, W_{2,1}=3,$ $\Rightarrow \alpha_1=1, \alpha_2=2, \beta_1=1$

• Example 2: $W_{1,1}=0, W_{1,2}=0, W_{2,1}=0, W_{2,2}=1$ \Rightarrow no solution

Legal Resynthesis Operations (1/2)

- Any that do not create a path with negative weight
- Resynthesis could create pseudo-dependency between any input and output
- Example:

Legal Resynthesis Operations (2/2)

Unit 3

Chang, Huang, Li, Lin, Liu

Effects of Retiming and Resynthesis

- Area optimization:
 - No significant improvement
 - Limitation on existing combinational optimization techniques
 - Some circuits (pipelined datapaths) have inherently no potential for further optimization using retiming and resynthesis techniques
- Performance optimization of pipelined circuits:
 - Significant improvements for pipelined arithmetic circuits