
Unit 2 1Chang, Huang, Li, Lin, Liu

Unit 2: High-Level Synthesis

․Course contents
⎯ Hardware modeling
⎯ Data flow
⎯ Scheduling/allocation/assignment

․Reading
⎯ Chapter 11

Unit 2 2Chang, Huang, Li, Lin, Liu

High-Level Synthesis (HLS)
․Hardware-description language (HDL) synthesis

⎯ Starts from a register-transfer level (RTL) description;
circuit behavior in each clock cycle is fixed.

⎯ Uses logic synthesis techniques to optimize the
design.

⎯ Generates a netlist.
․High-level synthesis (also called architectural or

behavioral synthesis)
⎯ Starts from an abstract behavioral description.
⎯ Generates an RTL description.
⎯ It normally has to perform the trade-off between the

number of cycles and the hardware resources to
fulfill a task.

Unit 2 3Chang, Huang, Li, Lin, Liu

HLS Versus RTL Synthesis
• RTL synthesis implements all functionality within a single clock

cycle.

• Behavioral synthesis automatically allocates the functionality
across multiple clock cycles.

Unit 2 4Chang, Huang, Li, Lin, Liu

What Is Generated by HLS
․Behavioral Compiler creates a design that consists of a datapath,

memory I/O and a control FSM

Unit 2 5Chang, Huang, Li, Lin, Liu

Benefits of HLS (1)
․Quick specification and verification.

⎯ Specify behavioral HDL easily, since it's intuitive and natural to
write.

⎯ Save time -- behavioral HDL code is up to 10 times shorter than
equivalent RTL.

⎯ Simulate orders of magnitude faster because of the higher level
of abstraction.

⎯ Reuse designs more readily by starting with a more abstract
description.

․Automatically infer memory and generate finite state machine
(FSM).
⎯ Specify memory reads and writes.
⎯ Schedule memory I/O, resolve contention and build control

FSM.
⎯ Trade-off single vs. multiported memories.
⎯ Generate a new FSM.

Unit 2 6Chang, Huang, Li, Lin, Liu

Benefits of HLS (2)

․Explore architectural trade-offs.
⎯ Create multiple architectures from a single specification.
⎯ Trade-off throughput and latency using high-level constraints.
⎯ Analyze various combinations of technology-specific datapath

and memory resources.
⎯ Evaluate cost/performance of various implementations rapidly.

․Reduce design time
⎯ Model hardware and software components of system

concurrently.
⎯ Easily implement algorithms in behavioral HDL and generate

RTL code with a behavioral compiler.
⎯ Verify hardware in system context at various levels of

abstraction.

Unit 2 7Chang, Huang, Li, Lin, Liu

Hardware Models for High-level Synthesis
․All HLS systems need to restrict the target hardware.

⎯ The search space is too large, otherwise.
․All synthesis systems have their own peculiarities, but most

systems generate synchronous hardware and build it with
functional units:
⎯ A functional unit can perform one or more computations,

e.g. addition, multiplication, comparison, ALU.

Unit 2 8Chang, Huang, Li, Lin, Liu

Hardware Models

․Registers: they store
inputs, intermediate
results and outputs;
sometimes several
registers are taken
together to form a
register file.

․Multiplexers: from
several inputs, one is
passed to the output.

Unit 2 9Chang, Huang, Li, Lin, Liu

Hardware Models (cont’d)

․Buses: a connection
shared between several
hardware elements, such
that only one element
can write data at a
specific time.

․Three-state (tri-state)
drivers control the
exclusive writing on the
bus.

Unit 2 10Chang, Huang, Li, Lin, Liu

Hardware Models (cont’d)

․Parameters defining the hardware model for the
synthesis problem:
⎯ Clocking strategy: e.g. single or multiple phase

clocks.
⎯ Interconnect: e.g. allowing or disallowing buses.
⎯ Clocking of functional units: allowing or

disallowing of
multicycle operations
chaining
pipelined units.

Unit 2 11Chang, Huang, Li, Lin, Liu

Chaining, Multicycle Operation, Pipelining

Unit 2 12Chang, Huang, Li, Lin, Liu

Example of a HLS Hardware Model

Unit 2 13Chang, Huang, Li, Lin, Liu

Hardware Concepts: Data Path + Control
․Hardware is normally partitioned into two parts:

⎯ Data path: a network of functional units, registers,
multiplexers and buses.

The actual ‘‘computation’’ takes place in the data
path.

⎯ Control: the part of the hardware that takes care of
having the data present at the right place at a
specific time, of presenting the right instructions to a
programmable unit, etc.

․High-level synthesis often concentrates on data-path
synthesis.
⎯ The control part is then realized as a finite state

machine or in microcode.

Unit 2 14Chang, Huang, Li, Lin, Liu

Steps of High Level Synthesis
․Preprocess the design with high-level optimization

⎯ Code motion
⎯ Common subexpression elimination
⎯ Loop unrolling
⎯ Constant Propagation
⎯ Modifications taking advantage of associativity and distributivity, etc.

․Transform the optimized design into intermediate format (internal
representation) which reveals more structural characteristics of the
design.

․Optimize the intermediate format
⎯ Tree height reduction
⎯ Behavior retiming

․Allocate the required resources to implement the design
⎯ Also called module selection

․Schedule each operation to be performed at certain time such that
no precedence constraint is violated.

․Assign (Bind) each operation to a specific functional unit and
each variable to a register.

Unit 2 15Chang, Huang, Li, Lin, Liu

HLS Optimization Criteria

․Typically, speed, area, and power consumption.
․Optimization is often constrained

⎯ Optimize area when the minimum speed is given ⇒ time-
constrained synthesis.

⎯ Optimize speed when a maximum for each resource type is
given ⇒ resource-constrained synthesis.

⎯ Minimize power dissipation for a given speed and area
requirement => Power-constrained synthesis

Unit 2 16Chang, Huang, Li, Lin, Liu

Input Format

․The algorithm, that is the input to a high-level synthesis
system, is often provided in textual form either
⎯ in a conventional programming language, such as C,

C++, SystemC, or
⎯ in a hardware description language (HDL), which is

more suitable to express the parallelism present in
hardware.

․The description has to be parsed and transformed into
an internal representation and thus conventional
compiler techniques can be used.

Unit 2 17Chang, Huang, Li, Lin, Liu

Example of High-Level Optimization
․Applying the distributivity law to reduce resource

requirement.

Unit 2 18Chang, Huang, Li, Lin, Liu

Internal Representation
․Most systems use some

form of a data-flow graph
(DFG).
⎯ A DFG may or may not

contain information on control
flow.

․A data-flow graph is built
from
⎯ Vertices (nodes):

representing computation,
and

⎯ Edges: representing
precedence relations.

Unit 2 19Chang, Huang, Li, Lin, Liu

Token Flow in a DFG
․A node in a DFG fires when all tokens are present at its

inputs.
․The input tokens are consumed and an output token is

produced.

A token

Firing
a node

Generate
a token
after firing

Unit 2 20Chang, Huang, Li, Lin, Liu

Conditional Data Flow

․By means of two special nodes:

Unit 2 21Chang, Huang, Li, Lin, Liu

Explicit Iterative Data Flow

․Selector and distributor
nodes can be used to
describe iteration.

․Loops require careful
placement of initial tokens
on edges

Example:
while (a > b)

a ← a – b;

Unit 2 22Chang, Huang, Li, Lin, Liu

Implicit Iterative Data Flow

․Iteration implied by regular input stream of tokens.
․Initial tokens act as buffers.
․Delay elements instead of initial tokens.

Unit 2 23Chang, Huang, Li, Lin, Liu

Iterative DFG Example

A second-order filter section.

Unit 2 24Chang, Huang, Li, Lin, Liu

Optimization of Internal Representation

․Restructuring data and
control flow graphs prior
to the actual mapping
onto hardware.
Examples:
⎯ Replacing chain of adders

by a tree.
⎯ Behavior retiming

Tree height reduction

Unit 2 25Chang, Huang, Li, Lin, Liu

Behavior Retiming (BRT)

• By moving registers
through logic and
hierarchical
boundaries, BRT
reduces the clock
period with minimum
area impact.

Unit 2 26Chang, Huang, Li, Lin, Liu

Effectiveness of BRT
Synopsys exp:

• RTL designs have a single clock net and were synthesized
into gates using Synopsys Design Compiler.

• Design type: dataflow implies significant number of operators;
control implies state machine dominated.

Unit 2 27Chang, Huang, Li, Lin, Liu

HLS Subtasks: Allocation, Scheduling, Assignment

․Subtasks in high-level synthesis
⎯ Allocation (Module selection): specify the hardware

resources that will be necessary.
⎯ Scheduling: determine for each operation the time at which it

should be performed such that no precedence constraint is
violated.

⎯ Assignment (Binding): map each operation to a specific
functional unit and each variable to a register.

․Remarks:
⎯ Though the subproblems are strongly interrelated, they are

often solved separately. However, to attain a better solution, an
iterative process executing these three subtasks must be
performed.

⎯ Most scheduling problems are NP-complete ⇒ heuristics are
used.

Unit 2 28Chang, Huang, Li, Lin, Liu

Example of High Level Synthesis
․The following couple of slides shows an example of

scheduling and binding of a design with given resource
allocation.

․Given the second-order filter which is first made acyclic:

Unit 2 29Chang, Huang, Li, Lin, Liu

Example of Scheduling
․The schedule and operation assignment with an

allocation of one adder and one multiplier:

Unit 2 30Chang, Huang, Li, Lin, Liu

Perform Binding to Generate Data Path

․The resulting data path after register assignment.
⎯ The specification of a controller would complete the

design.

Multiplier
Adder

Unit 2 31Chang, Huang, Li, Lin, Liu

Resource Allocation Problem

․This problem is relatively simple. It simply decides the
kinds of hardware resources (hardware implementation
for certain functional units such as adder, multiplier, etc.)
and the quantity of these resources.
⎯ For example two adders, one multiplier, 4 32-bit registers, etc.

for a certain application.

․The decision made in this step has a profound
influence on the scheduling which under the given
resource constraints decides the time when an
operation should be executed by a functional unit.

․This step set an upper bound on the attainable
performance.

Unit 2 32Chang, Huang, Li, Lin, Liu

Problem Formulation of Scheduling
․Input consists of a DFG G(V, E) and a library of

resource types.
․There is a fixed mapping from each v ∈V to some r ∈ ;

the execution delay δ(v) for each operation is therefore
known.

․The problem is time-constrained; the available
execution times are in the set

․A schedule maps each operation to its starting time; for
each edge (vi, vj) ∈ E, a schedule should respect: σ(vj)
≥ σ(vi) + δ(vi).

․Given the resource type cost ω(r) and the requirement
function Nr(σ), the cost of a schedule σ is given by:

Unit 2 33Chang, Huang, Li, Lin, Liu

ASAP Scheduling

․As soon as possible (ASAP) scheduling maps an
operation to the earliest possible starting time not
violating the precedence constraints.

․Properties:
⎯ It is easy to compute by finding the longest paths in

a directed acyclic graph.
⎯ It does not make any attempt to optimize the

resource cost.

Unit 2 34Chang, Huang, Li, Lin, Liu

Graph for ASAP Scheduling

Unit 2 35Chang, Huang, Li, Lin, Liu

Mobility-Based Scheduling

․Compute both the ASAP
and ALAP (as late as
possible) schedules σS
and σL.

․For each v ∈ V, determine
the scheduling range
[σS(v) , σL(v)].

․σL(v) - σS(v) is called the
mobility of v.

․Mobility-based scheduling
tries to find the best
position within its
scheduling range for each
operation.

․A partial schedule
assigns a

scheduling range to each

․Finding a schedule can
be seen as the
generation of a
sequence of partial
schedules:

Unit 2 36Chang, Huang, Li, Lin, Liu

Simple Mobility-Based Scheduling

․A partial schedule assigns a scheduling
range to each

․Finding a schedule can be seen as the generation of a
sequence of partial schedules

Unit 2 37Chang, Huang, Li, Lin, Liu

List Scheduling

․A resource-constrained scheduling method.
․Start at time zero and increase time until all operations

have been scheduled.
⎯ Consider the precedence constraint.

․The ready list Lt contains all operations that can start
their execution at time t or later.

․If more operations are ready than there are resources
available, use some priority function to choose, e.g. the
longest-path to the output node ⇒ critical-path list
scheduling.

Unit 2 38Chang, Huang, Li, Lin, Liu

List Scheduling Example

Unit 2 39Chang, Huang, Li, Lin, Liu

The Assignment Problem

․Subtasks in assignment:
⎯ operation-to-FU assignment
⎯ value grouping
⎯ value-to-register assignment
⎯ transfer-to-wire assignment
⎯ wire to FU-port assignment

․In general: task-to-agent assignment

Unit 2 40Chang, Huang, Li, Lin, Liu

Compatibility and Conflict Graphs

․Clique partitioning gives
an assignment in a
compatibility graph.

․Graph coloring gives an
assignment in the
complementary conflict
graph.

Unit 2 41Chang, Huang, Li, Lin, Liu

The Assignment Problem

․Assumption: assignment
follows scheduling.

․The claim of a task on an
agent is an interval ⇒
minimum resource
utilization can be found
by left-edge algorithm.

․In case of iterative
algorithm, interval graph
becomes circular-arc
graph ⇒ optimization is
NP-complete.

Unit 2 42Chang, Huang, Li, Lin, Liu

Tseng and Sieworek’s Algorithm

Unit 2 43Chang, Huang, Li, Lin, Liu

Clique-Partitioning Example

Unit 2 44Chang, Huang, Li, Lin, Liu

Example of Behavior Optimization

Behavior Optimization
of Arithmetic (BOA)

Unit 2 45Chang, Huang, Li, Lin, Liu

Effectiveness of BOA

Synopsys

example

Unit 2 46Chang, Huang, Li, Lin, Liu

Summary

․Concepts of High Level Synthesis (HLS)
․Benefits of HLS
․Steps of High Level Synthesis
․Internal Representation and Optimization
․Resource Allocation
․Algorithms for Scheduling
․Algorithms for Binding (Assignment)

	High-Level Synthesis (HLS)
	HLS Versus RTL Synthesis
	What Is Generated by HLS
	Benefits of HLS (1)
	Benefits of HLS (2)
	Hardware Models for High-level Synthesis
	Hardware Models
	Hardware Models (cont’d)
	Hardware Models (cont’d)
	Chaining, Multicycle Operation, Pipelining
	Example of a HLS Hardware Model
	Hardware Concepts: Data Path + Control
	Steps of High Level Synthesis
	HLS Optimization Criteria
	Input Format
	Example of High-Level Optimization
	Internal Representation
	Token Flow in a DFG
	Conditional Data Flow
	Explicit Iterative Data Flow
	Implicit Iterative Data Flow
	Iterative DFG Example
	Optimization of Internal Representation
	Behavior Retiming (BRT)
	Effectiveness of BRT
	HLS Subtasks: Allocation, Scheduling, Assignment
	Example of High Level Synthesis
	Example of Scheduling
	Perform Binding to Generate Data Path
	Resource Allocation Problem
	Problem Formulation of Scheduling
	ASAP Scheduling
	Graph for ASAP Scheduling
	Mobility-Based Scheduling
	Simple Mobility-Based Scheduling
	List Scheduling
	List Scheduling Example
	The Assignment Problem
	Compatibility and Conflict Graphs
	The Assignment Problem
	Tseng and Sieworek’s Algorithm
	Clique-Partitioning Example
	Example of Behavior Optimization
	Effectiveness of BOA
	Summary

