Unit 2: High-Level Synthesis

e Course contents

— Hardware modeling

— Data flow

— Scheduling/allocation/assignment
¢ Reading

— Chapter 11

Unit 2

Chang, Huang, Li, Lin, Liu

High-Level Synthesis (HLS)

e Hardware-description language (HDL) synthesis

— Starts from a register-transfer level (RTL) description;
circuit behavior in each clock cycle is fixed.

— Uses logic synthesis techniques to optimize the
design.

— Generates a netlist.

e High-level synthesis (also called architectural or
behavioral synthesis)

— Starts from an abstract behavioral description.
— Generates an RTL description.

— It normally has to perform the trade-off between the
number of cycles and the hardware resources to
fulfill a task.

Unit 2 Chang, Huang, Li, Lin, Liu 2

HLS Versus RTL Synthesis

 RTL synthesis implements all functionality within a single clock
cycle.

» Behavioral synthesis automatically allocates the functionality
across multiple clock cycles.

Behavioral and RTL Synthesis

Behavioral G G0 (53 (% 4Cycles- 15 s
Sy nthesis
- % €| [:-E;‘_ 3 Cyecles - 15 e
“Wary Clock Period
wWary #of Clock Periods % @@ 2 Cyoles - 20 rs

Multiple
Architectures

RTL
\ Synthesis &
OO

“wary Clock Period

1 Cycles - 55 n=

1clozk cycle

Single
Architecture

| 210 Synepyr, o (B0 Prese vition My 1 SYI‘"]I)SW_

unit 2 Chang, Huang, Li, Lin, Liu

What Is Generated by HLS

e Behavioral Compiler creates a design that consists of a datapath,
memory I/O and a control FSM

L corirol . |Behavioral Code

Eam cosralions

Multiple
Architecture
_ cyee e 1 (Craation

ey Chsdmy =
Oy LI-J.EC

" Control ESM
= —=m:| '

¥
Slabus Pipe Ragister
¥

Target Archite_-’ctu re

Implementation

i
:
]
I

Chang, Huang, Li, Lin, Liu

Benefits of HLS (1)

¢ Quick specification and verification.

— Specify behavioral HDL easily, since it's intuitive and natural to
write.

— Save time -- behavioral HDL code is up to 10 times shorter than
equivalent RTL.

— Simulate orders of magnitude faster because of the higher level
of abstraction.

— Reuse designs more readily by starting with a more abstract
description.

e Automatically infer memory and generate finite state machine
(FSM).

— Specify memory reads and writes.

— Schedule memory I/O, resolve contention and build control
FSM.

— Trade-off single vs. multiported memories.
— Generate a new FSM.

Unit 2 Chang, Huang, Li, Lin, Liu 5

Benefits of HLS (2)

e Explore architectural trade-offs.
— Create multiple architectures from a single specification.
— Trade-off throughput and latency using high-level constraints.

— Analyze various combinations of technology-specific datapath
and memory resources.

— Evaluate cost/performance of various implementations rapidly.

¢ Reduce design time

— Model hardware and software components of system
concurrently.

— Easily implement algorithms in behavioral HDL and generate
RTL code with a behavioral compiler.

— Verify hardware in system context at various levels of
abstraction.

unit 2 Chang, Huang, Li, Lin, Liu

Hardware Models for High-level Synthesis

e All HLS systems need to restrict the target hardware.
— The search space is too large, otherwise.

e All synthesis systems have their own peculiarities, but most
systems generate synchronous hardware and build it with
functional units:

— A functional unit can perform one or more computations,
e.g. addition, multiplication, comparison, ALU.

11 i’)

i}

A4

0 = fliy, 1)

Unit 2 Chang, Huang, Li, Lin, Liu !

Hardware Models

e Registers: they store
Inputs, intermediate
results and outputs;
sometimes several '
registers are taken
together to form a
register file.

e Multiplexers: from
several inputs, one Is
passed to the output.

unit 2 Chang, Huang, Li, Lin, Liu

Hardware Models (cont’d)

e Buses: a connection

shared between several \\/ _/ \\/ _/ —

hardware elements, such
that only one element JL’JL?Z bus
can write data at a

specific time. v v

® Three-state (tri-state)
drivers control the
exclusive writing on the

‘ i
bus. enable\
0

Unit 2 Chang, Huang, Li, Lin, Liu 9

Hardware Models (cont’d)

e Parameters defining the hardware model for the
synthesis problem:

— Clocking strategy: e.g. single or multiple phase
clocks.

— Interconnect: e.qg. allowing or disallowing buses.

— Clocking of functional units: allowing or
disallowing of

« multicycle operations
= Chaining
» pipelined units.

Unit 2 Chang, Huang, Li, Lin, Liu 10

Chaining, Multicycle Operation, Pipelining

S 88

4 chaiting

ronlticycle
operation

< fwro-
stage

peline
< Hip

Cycle
boundary

N

Unit 2

Chang, Huang, Li, Lin, Liu

11

Example of a HLS Hardware Model

< = multiplexer input one or more buses
@ = fristate bus driver e em—
reqgisters | —d—4 p,
and/or {
register l - 00 ®
e — <— <] <&
”E | ——dg—d <
one or ,
more €
FU’s :
T v sova TN

Unit 2 Chang, Huang, Li, Lin, Liu 12

Hardware Concepts: Data Path + Control

e Hardware is normally partitioned into two parts:

— Data path: a network of functional units, registers,
multiplexers and buses.

» The actual “‘computation” takes place in the data
path.

— Control: the part of the hardware that takes care of
having the data present at the right place at a
specific time, of presenting the right instructions to a
programmable unit, etc.

¢ High-level synthesis often concentrates on data-path
synthesis.

— The control part is then realized as a finite state
machine or in microcode.

Unit 2 Chang, Huang, Li, Lin, Liu 13

Steps of High Level Synthesis

Unit 2

Preprocess the design with high-level optimization

— Code motion

— Common subexpression elimination

— Loop unrolling

— Constant Propagation

— Modifications taking advantage of associativity and distributivity, etc.
Transform the optimized design into intermediate format (internal
representation) which reveals more structural characteristics of the
design.
Optimize the intermediate format

— Tree height reduction

— Behawvior retiming
Allocate the required resources to implement the design

— Also called module selection

Schedule each operation to be performed at certain time such that
no precedence constraint is violated.

Assign (Bind) each operation to a specific functional unit and
each variable to a register.

Chang, Huang, Li, Lin, Liu 14

HLS Optimization Criteria

e Typically, speed, area, and power consumption.

e Optimization is often constrained

— Optimize area when the minimum speed is given = time-
constrained synthesis.

— Optimize speed when a maximum for each resource type is
given = resource-constrained synthesis.

— Minimize power dissipation for a given speed and area
requirement => Power-constrained synthesis

unit 2 Chang, Huang, Li, Lin, Liu

15

Input Format

¢ The algorithm, that is the input to a high-level synthesis
system, is often provided in textual form either

— In a conventional programming language, such as C,
C++, SystemC, or

— In a hardware description language (HDL), which is
more suitable to express the parallelism present in
hardware.

® The description has to be parsed and transformed into
an internal representation and thus conventional
compiler techniques can be used.

Unit 2 Chang, Huang, Li, Lin, Liu 16

Example of High-Level Optimization

e Applying the distributivity law to reduce resource
requirement.

b a C a b C

? ./

Unit 2 Chang, Huang, Li, Lin, Liu 17

Internal Representation

e Most systems use some
form of a data-flow graph ¥ :=a * b; y :=c + d;
(DFG). Z 3= X + Y;

— A DFG may or may not
contain information on control
flow.

e A data-flow graph is built
from X y
— Vertices (nodes):

representing computation,
and

— Edges: representing
precedence relations.

Unit 2 Chang, Huang, Li, Lin, Liu 18

Token Flow in a DFG

¢ A node in a DFG fires when all tokens are present at its
Inputs.

® The input tokens are consumed and an output token is
produced.

Generate
a token
after firing

Unit 2 Chang, Huang, Li, Lin, Liu 19

Conditional Data Flow

¢ By means of two special nodes:

' ¢
Ce e
¢ v

unit 2 Chang, Huang, Li, Lin, Liu

20

Explicit Iterative Data Flow

e Selector and distributor
nodes can be used to a b\
describe iteration.

Y
Example: (Tsel F
while (a > b)

a«<a-—Db; /Q—l_l

® |_oops require careful

placement of initial tokens i
on edges (Ly distr)«

d

Unit 2 Chang, Huang, Li, Lin, Liu 21

Implicit Iterative Data Flow

e [teration implied by regular input stream of tokens.
¢ |nitial tokens act as buffers.
¢ Delay elements instead of initial tokens.

e b[1] allle

>

c[l]e

C C C

Unit 2 Chang, Huang, Li, Lin, Liu 22

lterative DFG Example

Unit 2

3 Cg
X
A second-order filter section.

Chang, Huang, Li, Lin, Liu

23

Optimization of Internal Representation

e Restructuring data and

control flow graphs_ prior Y Xg
to the actual mapping 8
onto hardware. X7 w(¥) %7
Examples: Xy —(3) %o
— Replacing chain of adders
by a tree. X5 —w{ +)
— Behavior retimin
J Xg ()
Xy —»(:)

X4

Tree height reduction

Unit 2 Chang, Huang, Li, Lin, Liu 24

Behavior Retiming (BRT)

* By moving registers
through logic and
hierarchical
boundaries, BRT
reduces the clock
period with minimum
area impact.

clock period |
constrainl = 10ns |

iy
.
i y A
—
£
o
; !
L1 1
[}
[}
[}
[}
[}
:
[}
¥

Outputs In;uls UUTHI:ITS-

Unit 2 Chang, Huang, Li, Lin, Liu 25

Effectiveness of BRT

Synopsys exp:

L RTRDESIGN: Y BEHAYIORALRETIMING ¢

Deziah TvrE

SFEED [CuoerPeron)

(GATES IE‘ FEED [Cuoct PEron) (GATES

Certral gins | 0313gates | WEns | 11 N3gales | 0% faster 4% more are
- Contral 23108 3 596 yates 13,615 4575 g2es | 15% faster,-27% more area
“Contral - 28 hns 3585 gates - - 20.6ns 3,359 gles - | same-geed, b lessares
_Dataﬂnw&.cna_mm! _’]T{IS : IE.‘_EIEIIJ-ga_tes_]E.ﬁ.n; Eq_iuuga_tes i .’J.E".I;._.1agtr_er1ﬁ.ma_re-afe;
D atafowd Cortrel 1603 7 fi2l-gates 13-n3 8013 g9zes | 20% faster, 5%-more-srea
oo Datafov - |- 2ng] 1890.gates . | 185ns) . 5109 gates. . | 16%faster, 2%.mora.ares
Datahow Mns | 31 226-gates 26-ns J2032 gates | 0% fder S more area
Dataflove J62ne 14 351 gates 2365 13,047 gadtes | 10% facter 4% lessarea
Diatalow 15 8.ns 16 798.pates 20.8-n3 15,560 gates - | 20% faster 7% -less.area
Dataflew 45113 28,705 gates 26-n3 30,387 gates . | 42%faster, 8% -more-srea

 RTL designs have a single clock net and were synthesized
Into gates using Synopsys Design Compiler.

» Design type: dataflow implies significant number of operators;
control implies state machine dominated.

Unit 2

Chang, Huang, Li, Lin, Liu

26

HLS Subtasks: Allocation, Scheduling, Assignment

e Subtasks in high-level synthesis

— Allocation (Module selection): specify the hardware
resources that will be necessary.

— Scheduling: determine for each operation the time at which it
should be performed such that no precedence constraint is
violated.

— Assignment (Binding): map each operation to a specific
functional unit and each variable to a register.

e Remarks:

— Though the subproblems are strongly interrelated, they are
often solved separately. However, to attain a better solution, an

iterative process executing these three subtasks must be
performed.

— Most scheduling problems are NP-complete = heuristics are
used.

Unit 2 Chang, Huang, Li, Lin, Liu 27

Example of High Level Synthesis

¢ The following couple of slides shows an example of
scheduling and binding of a design with given resource
allocation.

¢ Given the second-order filter which is first made acyclic:

Oz(dl) my

lg(dl)

03(d2) my

3(dz) s

Unit 2 Chang, Huang, Li, Lin, Liu 28

Example of Scheduling

® The schedule and operation assignment with an
allocation of one adder and one multiplier:

X €3 Cy Cs Ce

+ CID< €2 7| Cg

Unit 2 Chang, Huang, Li, Lin, Liu 29

Perform Binding to Generate Data Path

¢ The resulting data path after register assignment.
— The specification of a controller would complete the

design.
==
dl E |. 11] | | I] [|
d ll I"l I"Z I"3 r4
ROM 2
Adder
Multiplier\x +

=4

unit 2 Chang, Huang, Li, Lin, Liu

Resource Allocation Problem

e This problem is relatively simple. It simply decides the
kinds of hardware resources (hardware implementation
for certain functional units such as adder, multiplier, etc.)
and the quantity of these resources.

— For example two adders, one multiplier, 4 32-bit registers, etc.
for a certain application.

¢ The decision made In this step has a profound
Influence on the scheduling which under the given
resource constraints decides the time when an
operation should be executed by a functional unit.

¢ This step set an upper bound on the attainable
performance.

Unit 2 Chang, Huang, Li, Lin, Liu 31

Problem Formulation of Scheduling

¢ [nput consists of a DFG G(V, E) and a library % of
resource types.

e There is a fixed mapping from each v eV to some r ex;
the execution delay &(v) for each operation is therefore

Known.
e The problem is time-constrained; the available
execution times are in the set J = {0, P 1}.

¢ A schedule maps each operation to its starting time; for
each edge (v;, v;) € E, a schedule should respect: o(v))
2 o(V)) + AV).

e Given the resource type cost o(r) and the requirement
function N,(o), the cost of a schedule o is given by:

Z ()N (0).

rek

Unit 2 Chang, Huang, Li, Lin, Liu 32

ASAP Scheduling

e As soon as possible (ASAP) scheduling maps an
operation to the earliest possible starting time not
violating the precedence constraints.

e Properties:

— Itis easy to compute by finding the longest paths in
a directed acyclic graph.

— It does not make any attempt to optimize the
resource cost.

Unit 2 Chang, Huang, Li, Lin, Liu 33

Graph for ASAP Scheduling

Unit 2

Chang, Huang, Li, Lin, Liu

34

Mobility-Based Scheduling

e Compute both the ASAP e A partial schedule

and ALAP (as late as o:V—I[9,9] assigns a
possible) schedules og scheduling range to each
and oj. v eV,

e Foreachv e V, determine (V) = |0,:,(V), Omax(V) |
the scheduling range

[o=(V) , & (V)] * Finding a schedule can
s\V), O \V)].

n h
* 0.(v) - ox(v) is called the ggnsfrztifﬁ e
mobility of v. sequence of partial
e Mobility-based scheduling schedules: ¢, ... "
tries to find the best
position within its
scheduling range for each
operation.

Unit 2 Chang, Huang, Li, Lin, Liu 35

Simple Mobility-Based Scheduling

e A partial schedules: V— [J,9] assigns a scheduling
range to each

¢ Finding a schedule can be seen as the generation of a
sequence of partial schedules

“determine & (©) by computing o5 and o},”;
k<« 0
while (“there are unscheduled operations™) {
v < “‘one of the nodes with lowest mobility™;
“schedule v at some time that optimizes the current resource utilization™;
“determine & %+1) by updating the scheduling ranges
of the unscheduled nodes™;

k< k+1

unit 2 Chang, Huang, Li, Lin, Liu

List Scheduling

¢ A resource-constrained scheduling method.

e Start at time zero and increase time until all operations
have been scheduled.

— Consider the precedence constraint.

* The ready list L, contains all operations that can start
their execution at time t or later.

¢ |f more operations are ready than there are resources
available, use some priority function to choose, e.g. the
longest-path to the output node = critical-path list
scheduling.

Unit 2 Chang, Huang, Li, Lin, Liu 37

List Scheduling Example

ALU #2

ALU #1

Chang, Huang, Li, Lin, Liu

V4 VZN V6 V7
Vil V3 Vs
0 1 2 3 4 t—

38

The Assignment Problem

e Subtasks in assignment:

operation-to-FU assignment
value grouping
value-to-register assignment
transfer-to-wire assignment
wire to FU-port assignment

¢ |[n general: task-to-agent assignment

Unit 2

Chang, Huang, Li, Lin, Liu

39

Compatibility and Conflict Graphs

e Cligue partitioning gives e Graph coloring gives an

an assignment in a assignment in the
compatibility graph. complementary conflict
graph.
V2

Unit 2 Chang, Huang, Li, Lin, Liu 40

The Assignment Problem

e Assumption: assignment
follows scheduling.

e The claim of a task on an
agent is an interval =
minimum resource
utilization can be found
by left-edge algorithm.

¢ |In case of iterative
algorithm, interval graph
becomes circular-arc
graph = optimization is
NP-complete.

Unit 2 Chang, Huang, Li, Lin, Liu 41

Tseng and Sieworek’s Algorithm

Unit 2

k<«
G’E(chi‘, Eﬁ) «— G (Ve, E¢);
while (EX # 2) {
“find (v;, v;) € Ef with largest set of common neighbors”;
N < “set of common neighbors of v; and ’UJ'”;
S < iU J;
k+1
V,:_i_ «— Vc’f‘ U{vs)\ vi, v b
E.f—'_l «— @;
for each (v, v,) € Eé‘
if (U 7 Vi A Um Z Vj AUy £V Aty £ Yj)
k1 k+1 .
E; «— E; " U{(vm, vp));
foreachwv,, ¢ N
EST ESTH U {(un, v0))
k<« k+1;

Chang, Huang, Li, Lin, Liu

42

Cligue-Partitioning Example

Y0.1.2

V4 Vs 6

\% 7
V3

Unit 2

Yo.1

V0.1.2.3
®

V4 Vs 6

Vv 7

Chang, Huang, Li, Lin, Liu

Vo.1.2

Vv
0.1,2.3
@

V4 Vs 67
P

43

Example of Behavior Optimization

Carry delay
incu
three times

~Carry delay
incurred once

SO——RaE=0—=3In=— IO

Behavior Optimization
of Arithmetic (BOA)

unit 2 Chang, Huang, Li, Lin, Liu

44

Effectiveness of BOA

Synopsys

example

Unit 2

CESIGH TY¥PE

RTL DESIGH

hotion estimation

236 ns
12,793 gates

202 ns
12,219 gates

14% faster,
5% less ared

. - - 19.2 ns 1745 ns 9% faster,
Graphics interpolation 2,507 gates 29452 gates 16% less area
16 ns 149 ns 7% faster,

Colorspace conwversion
and scaling

34 866 gates
[marual CEo impkermentation)

34 397 gates

4% less area

F.rns 5.3 nNs 31% faster,
Sum oT4 aperands 1,418 gates 1,207 gates 2% less area
a*h + 1 11.6 ns 9.3 ns Z0% faster,
2877 gates 24524 gates 2% |ess area
a*404 4.4 ns 3.1 ns 30 % faster,
(0130030 13033340307) ¥a49 gates 449 gates 40 % less area
a*3E3E 8.7 ns 4 6 nNs 19 % faster;
(13114441130 1141411a3 927 gates Y09 gates 23% less area
3*h + 11.0 ns 100 ns 9% faster,
2,707 gates 2 689 gates sdMme ared
14 .2 ns 128 ns 10% Taster,
a*b+crd+e T ¥, 435 gates ¥.110 gates 4% |less darea
2.1ns 6.7 ns 1F % faster,
Sum of 16 operands 2,836 gates 2,123 gates 259% less area

Chang, Huang, Li, Lin, Liu

45

Summary

e Concepts of High Level Synthesis (HLS)
¢ Benefits of HLS

e Steps of High Level Synthesis

¢ |[nternal Representation and Optimization
e Resource Allocation

¢ Algorithms for Scheduling

¢ Algorithms for Binding (Assignment)

unit 2 Chang, Huang, Li, Lin, Liu

46

	High-Level Synthesis (HLS)
	HLS Versus RTL Synthesis
	What Is Generated by HLS
	Benefits of HLS (1)
	Benefits of HLS (2)
	Hardware Models for High-level Synthesis
	Hardware Models
	Hardware Models (cont’d)
	Hardware Models (cont’d)
	Chaining, Multicycle Operation, Pipelining
	Example of a HLS Hardware Model
	Hardware Concepts: Data Path + Control
	Steps of High Level Synthesis
	HLS Optimization Criteria
	Input Format
	Example of High-Level Optimization
	Internal Representation
	Token Flow in a DFG
	Conditional Data Flow
	Explicit Iterative Data Flow
	Implicit Iterative Data Flow
	Iterative DFG Example
	Optimization of Internal Representation
	Behavior Retiming (BRT)
	Effectiveness of BRT
	HLS Subtasks: Allocation, Scheduling, Assignment
	Example of High Level Synthesis
	Example of Scheduling
	Perform Binding to Generate Data Path
	Resource Allocation Problem
	Problem Formulation of Scheduling
	ASAP Scheduling
	Graph for ASAP Scheduling
	Mobility-Based Scheduling
	Simple Mobility-Based Scheduling
	List Scheduling
	List Scheduling Example
	The Assignment Problem
	Compatibility and Conflict Graphs
	The Assignment Problem
	Tseng and Sieworek’s Algorithm
	Clique-Partitioning Example
	Example of Behavior Optimization
	Effectiveness of BOA
	Summary

