
Unit 1A 1Chang, Huang, Li, Lin, Liu

Unit 1A: Computational Complexity
․Course contents:

⎯ Computational complexity
⎯ NP-completeness
⎯ Algorithmic Paradigms

․Readings
⎯ Chapters 3, 4, and 5

Unit 1A 2Chang, Huang, Li, Lin, Liu

O: Upper Bounding Function
․Def: f(n)= O(g(n)) if ∃ c >0 and n0 > 0 such that 0 ≤ f(n)

≤ cg(n) for all n ≥ n0.
⎯ Examples: 2n2 + 3n = O(n2), 2n2 = O(n3), 3n lg n = O(n2)

․Intuition: f(n) “≤ ” g(n) when we ignore constant
multiples and small values of n.

Unit 1A 3Chang, Huang, Li, Lin, Liu

Big-O Notation
․How to show O (Big-Oh) relationships?

⎯ f(n) = O(g(n)) iff limn → ∞ = c for some c ≥ 0.
․“An algorithm has worst-case running time O(f(n))”:

there is a constant c s.t. for every n big enough, every
execution on an input of size n takes at most cf(n)
time.

()
()

f n
g n

Unit 1A 4Chang, Huang, Li, Lin, Liu

Computational Complexity

․Computational complexity: an abstract measure of the
time and space necessary to execute an algorithm as
function of its “input size”.

․Input size examples:
⎯ sort n words of bounded length ⇒ n
⎯ the input is the integer n ⇒ lg n
⎯ the input is the graph G(V, E) ⇒ |V| and |E|

․Time complexity is expressed in elementary
computational steps (e.g., an addition, multiplication,
pointer indirection).

․Space Complexity is expressed in memory locations
(e.g. bits, bytes, words).

Unit 1A 5Chang, Huang, Li, Lin, Liu

Asymptotic Functions
․Polynomial-time complexity: O(nk), where n is the input

size and k is a constant.
․Example polynomial functions:

⎯ 999: constant
⎯ lg n: logarithmic
⎯ : sublinear
⎯ n: linear
⎯ n lg n: loglinear
⎯ n2: quadratic
⎯ n3: cubic

․Example non-polynomial functions
⎯ 2n, 3n: exponential
⎯ n!: factorial

n

Unit 1A 6Chang, Huang, Li, Lin, Liu

Running-time Comparison

․Assume 1000 MIPS (Yr: 200x), 1 instruction /operation

Unit 1A 7Chang, Huang, Li, Lin, Liu

Optimization Problems
․Problem: a general class, e.g., “the shortest-path problem

for directed acyclic graphs.”
․Instance: a specific case of a problem, e.g., “the shortest-

path problem in a specific graph, between two given
vertices.”

․Optimization problems: those finding a legal configuration
such that its cost is minimum (or maximum).
⎯ MST: Given a graph G=(V, E), find the cost of a minimum

spanning tree of G.
․An instance I = (F, c) where

⎯ F is the set of feasible solutions, and
⎯ c is a cost function, assigning a cost value to each feasible

solution c : F → R
⎯ The solution of the optimization problem is the feasible solution

with optimal (minimal/maximal) cost
․ c.f., Optimal solutions/costs, optimal (exact) algorithms (Attn:

optimal ≠ exact in the theoretic computer science community).

Unit 1A 8Chang, Huang, Li, Lin, Liu

The Traveling Salesman Problem (TSP)
․TSP: Given a set of cities and that distance between

each pair of cities, find the distance of a “minimum tour”
starts and ends at a given city and visits every city
exactly once.

Unit 1A 9Chang, Huang, Li, Lin, Liu

Decision Problem
․Decision problems: problem that can only be

answered with “yes” or “no”
⎯ MST: Given a graph G=(V, E) and a bound K, is there a

spanning tree with a cost at most K?
⎯ TSP: Given a set of cities, distance between each pair of cities,

and a bound B, is there a route that starts and ends at a given
city, visits every city exactly once, and has total distance at
most B?

․ A decision problem Π, has instances: I = (F, c, k)
⎯ The set of of instances for which the answer is “yes” is given

by YΠ.
⎯ A subtask of a decision problem is solution checking: given f ∈

F, checking whether the cost is less than k.
․Could apply binary search on decision problems to

obtain solutions to optimization problems.
․NP-completeness is associated with decision problems.

Unit 1A 10Chang, Huang, Li, Lin, Liu

The Circuit-Satisfiability Problem (Circuit-SAT)
․The Circuit-Satisfiability Problem (Circuit-SAT):

⎯ Instance: A combinational circuit C composed of AND, OR,
and NOT gates.

⎯ Question: Is there an assignment of Boolean values to the
inputs that makes the output of C to be 1?

․A circuit is satisfiable if there exists a a set of Boolean
input values that makes the output of the circuit to be 1.
⎯ Circuit (a) is satisfiable since <x1, x2, x3> = <1, 1, 0> makes the

output to be 1.

Unit 1A 11Chang, Huang, Li, Lin, Liu

Complexity Class P
․Complexity class P contains those problems that can

be solved in polynomial time in the size of input.
⎯ Input size: size of encoded “binary” strings.
⎯ Edmonds: Problems in P are considered tractable.

․The computer concerned is a deterministic Turing
machine
⎯ Deterministic means that each step in a computation is

predictable.
⎯ A Turing machine is a mathematical model of a

universal computer (any computation that needs
polynomial time on a Turing machine can also be
performed in polynomial time on any other machine).

․MST is in P.

Unit 1A 12Chang, Huang, Li, Lin, Liu

Complexity Class NP
․Suppose that solution checking for some problem can be

done in polynomial time on a deterministic machine ⇒ the
problem can be solved in polynomial time on a
nondeterministic Turing machine.
⎯ Nondeterministic: the machine makes a guess, e.g., the right

one (or the machine evaluates all possibilities in parallel).
․The class NP (Nondeterministic Polynomial): class of

problems that can be verified in polynomial time in the size
of input.
⎯ NP: class of problems that can be solved in polynomial time on

a nondeterministic machine.
․Is TSP ∈ NP?

⎯ Need to check a solution in polynomial time.
Guess a tour.
Check if the tour visits every city exactly once.
Check if the tour returns to the start.
Check if total distance ≤ B.

⎯ All can be done in O(n) time, so TSP ∈ NP.

Unit 1A 13Chang, Huang, Li, Lin, Liu

NP-Completeness
․An issue which is still unsettled:

P ⊂ NP or P = NP?
․There is a strong belief that P ≠ NP, due to the

existence of NP-complete problems.
․The class NP-complete (NPC):

⎯ Developed by S. Cook and R. Karp in early 1970.
⎯ All problems in NPC have the same degree of difficulty: Any

NPC problem can be solved in polynomial time ⇒ all problems
in NP can be solved in polynomial time.

Unit 1A 14Chang, Huang, Li, Lin, Liu

Polynomial-time Reduction
․Motivation: Let L1 and L2 be two decision problems.

Suppose algorithm A2 can solve L2. Can we use A2 to solve
L1?

․Polynomial-time reduction f from L1 to L2: L1 ≤P L2
⎯ f reduces input for L1 into an input for L2 s.t. the reduced input is

a “yes” input for L2 iff the original input is a “yes” input for L1.
L1 ≤ P L2 if ∃ polynomial-time computable function f: {0, 1}*→
{0, 1}* s.t. x ∈ L1 iff f(x) ∈ L2, ∀ x ∈ {0, 1}*.
L2 is at least as hard as L1.

․f is computable in polynomial time.

Unit 1A 15Chang, Huang, Li, Lin, Liu

Significance of Reduction

․Significance of L1 ≤P L2:
⎯ ∃ polynomial-time algorithm for L2 ⇒ ∃ polynomial-time

algorithm for L1 (L2 ∈ P ⇒ L1 ∈ P).
⎯ polynomial-time algorithm for L1 ⇒ polynomial-time

algorithm for L2 (L1 ∉ P ⇒ L2 ∉ P).

․≤P is transitive, i.e., L1 ≤P L2 and L2 ≤P L3 ⇒ L1 ≤P L3 .

Unit 1A 16Chang, Huang, Li, Lin, Liu

Polynomial-time Reduction
․The Hamiltonian Circuit Problem (HC)

⎯ Instance: an undirected graph G = (V, E).
⎯ Question: is there a cycle in G that includes every vertex

exactly once?
․ TSP (The Traveling Salesman Problem)
․ How to show HC ≤P TSP?

1. Define a function f mapping any HC instance into a TSP
instance, and show that f can be computed in polynomial time.

2. Prove that G has an HC iff the reduced instance has a TSP tour
with distance ≤ B (x ∈ HC ⇔ f(x) ∈ TSP).

Unit 1A 17Chang, Huang, Li, Lin, Liu

HC ≤P TSP: Step 1
1. Define a reduction function f for HC ≤P TSP.

— Given an arbitrary HC instance G = (V, E) with n vertices
․ Create a set of n cities labeled with names in V.
․ Assign distance between u and v

․ Set bound B = n.
— f can be computed in O(V2) time.

Unit 1A 18Chang, Huang, Li, Lin, Liu

HC ≤P TSP: Step 2
2. G has an HC iff the reduced instance has a TSP with

distance ≤ B.
— x ∈ HC ⇒ f(x) ∈ TSP.

— Suppose the HC is h = <v1, v2, …, vn, v1>. Then, h is also a
tour in the transformed TSP instance.

— The distance of the tour h is n = B since there are n
consecutive edges in E, and so has distance 1 in f(x).

— Thus, f(x) ∈ TSP (f(x) has a TSP tour with distance ≤ B).

Unit 1A 19Chang, Huang, Li, Lin, Liu

HC ≤P TSP: Step 2 (cont’d)

2. G has an HC iff the reduced instance has a TSP with
distance ≤ B.
— f(x) ∈ TSP ⇒ x ∈ HC.

— Suppose there is a TSP tour with distance ≤ n = B. Let it be
<v1, v2, …, vn, v1>..

— Since distance of the tour ≤ n and there are n edges in the
TSP tour, the tour contains only edges in E.

— Thus, <v1, v2, …, vn, v1> is a Hamiltonian cycle (x ∈ HC).

Unit 1A 20Chang, Huang, Li, Lin, Liu

NP-Completeness and NP-Hardness
․NP-completeness: worst-case analyses for decision

problems.
․L is NP-complete if

⎯ L ∈ NP
⎯ NP-Hard: L‘ ≤ P L for every L' ∈ NP.

․NP-hard: If L satisfies the 2nd property, but not
necessarily the 1st property, we say that L is NP-hard.

․Suppose L ∈ NPC.
⎯ If L ∈ P, then there exists a polynomial-time algorithm for every

L' ∈ NP (i.e., P = NP).
⎯ If L ∉ P, then there exists no polynomial-time algorithm for any L'

∈ NPC (i.e., P ≠ NP).

Unit 1A 21Chang, Huang, Li, Lin, Liu

Proving NP-Completeness
․ Five steps for proving that L is NP-complete:

1. Prove L ∈ NP.
2. Select a known NP-complete problem L'.
3. Construct a reduction f transforming every instance of L'

to an instance of L.
4. Prove that x ∈ L' iff f(x) ∈ L for all x ∈ {0, 1}*.
5. Prove that f is a polynomial-time transformation.

․ We have shown that TSP is NP-complete.

A known
NP-complete

problem L’

A problem L
to be proved
NP-complete

f

reduce

Unit 1A 22Chang, Huang, Li, Lin, Liu

Coping with NP-hard problems
․Approximation algorithms

⎯ Guarantee to be a fixed percentage away from the optimum.
⎯ E.g., MST for the minimum Steiner tree problem.

․Pseudo-polynomial time algorithms
⎯ Has the form of a polynomial function for the complexity, but is

not to the problem size.
⎯ E.g., O(nW) for the 0-1 knapsack problem.

․Restriction
⎯ Work on some subset of the original problem.
⎯ E.g., the longest path problem in directed acyclic graphs.

․Exhaustive search/Branch and bound
⎯ Is feasible only when the problem size is small.

․Local search:
⎯ Simulated annealing (hill climbing), genetic algorithms, etc.

․Heuristics: No guarantee of performance.

Unit 1A 23Chang, Huang, Li, Lin, Liu

Spanning Tree v.s. Steiner Tree
․Manhattan distance: If two points (nodes) are located at

coordinates (x1, y1) and (x2, y2), the Manhattan distance between
them is given by d12 = |x1-x2| + |y1-y2|.

․Rectilinear spanning tree: a spanning tree that connects its nodes
using Manhattan paths (Fig. (b) below).

․Steiner tree: a tree that connects its nodes, and additional points
(Steiner points) are permitted to used for the connections.

․The minimum rectilinear spanning tree problem is in P, while the
minimum rectilinear Steiner tree (Fig. (c)) problem is NP-complete.
⎯ The spanning tree algorithm can be an approximation for the Steiner

tree problem (at most 50% away from the optimum).
Steiner
points

Unit 1A 24Chang, Huang, Li, Lin, Liu

Exhaustive Search v.s. Branch and Bound

․TSP example

Backtracking/exhaustive search

Branch and bound

Unit 1A 25Chang, Huang, Li, Lin, Liu

Algorithmic Paradigms
․Exhaustive search: Search the entire solution space.
․Branch and bound: A search technique with pruning.
․Greedy method: Pick a locally optimal solution at each step.
․Dynamic programming: Partition a problem into a collection of

sub-problems, the sub-problems are solved, and then the original
problem is solved by combining the solutions. (Applicable when the
sub-problems are NOT independent).

․Hierarchical approach: Divide-and-conquer.
․Mathematical programming: A system of solving an objective

function under constraints.
․Simulated annealing: An adaptive, iterative, non-deterministic

algorithm that allows “uphill” moves to escape from local optima.
․Tabu search: Similar to simulated annealing, but does not

decrease the chance of “uphill” moves throughout the search.
․Genetic algorithm: A population of solutions is stored and allowed

to evolve through successive generations via mutation, crossover,
etc.

Unit 1A 26Chang, Huang, Li, Lin, Liu

Dynamic Programming (DP) v.s. Divide-and-Conquer
․Both solve problems by combining the solutions to subproblems.
․Divide-and-conquer algorithms

⎯ Partition a problem into independent subproblems, solve the
subproblems recursively, and then combine their solutions to
solve the original problem.

⎯ Inefficient if they solve the same subproblem more than once.
․Dynamic programming (DP)

⎯ Applicable when the subproblems are not independent.
⎯ DP solves each subproblem just once.

Unit 1A 27Chang, Huang, Li, Lin, Liu

Example: Bin Packing
․The Bin-Packing Problem Π : Items U = {u1, u2, …, un},

where ui is of an integer size si; set B of bins, each with
capacity b.

․Goal: Pack all items, minimizing # of bins used. (NP-
hard!)

S = (1, 4, 2, 1, 2, 3, 5)

Unit 1A 28Chang, Huang, Li, Lin, Liu

Algorithms for Bin Packing

S = (1, 4, 2, 1, 2, 3, 5)

․Greedy approximation alg.: First-Fit Decreasing (FFD)
⎯ FFD(Π) ≤ 11OPT(Π)/9 + 4)

․Dynamic Programming? Hierarchical Approach?
Genetic Algorithm? …

․Mathematical Programming: Use integer linear
programming (ILP) to find a solution using |B| bins,
then search for the smallest feasible |B|.

Unit 1A 29Chang, Huang, Li, Lin, Liu

ILP Formulation for Bin Packing
․0-1 variable: xij=1 if item ui is placed in bin bj, 0 otherwise.

․Step 1: Set |B| to the lower bound of the # of bins.
․Step 2: Use the ILP to find a feasible solution.
․Step 3: If the solution exists, the # of bins required is |B|. Then exit.
․Step 4: Otherwise, set |B| ← |B| + 1. Goto Step 2.

Unit 1A 30Chang, Huang, Li, Lin, Liu

CAD Related Conferences/Journals
․ Important Conferences:

⎯ ACM/IEEE Design Automation Conference (DAC)
⎯ IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
⎯ IEEE Int’l Test Conference (ITC)
⎯ ACM Int'l Symposium on Physical Design (ISPD)
⎯ ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC)
⎯ ACM/IEEE Design, Automation, and Test in Europe (DATE)
⎯ IEEE Int'l Conference on Computer Design (ICCD)
⎯ IEEE Custom Integrated Circuits Conference (CICC)
⎯ IEEE Int'l Symposium on Circuits and Systems (ISCAS)
⎯ Others: VLSI Design/CAD Symposium/Taiwan

․ Important Journals:
⎯ IEEE Transactions on Computer-Aided Design (TCAD)
⎯ ACM Transactions on Design Automation of Electronic Systems

(TODAES)
⎯ IEEE Transactions on VLSI Systems (TVLSI)
⎯ IEEE Transactions on Computers (TC)
⎯ IEE Proceedings – Circuits, Devices and Systems
⎯ IEE Proceedings – Digital Systems
⎯ INTEGRATION: The VLSI Journal

	Unit 1A: Computational Complexity
	O: Upper Bounding Function
	Big-O Notation
	Computational Complexity
	Asymptotic Functions
	Running-time Comparison
	Optimization Problems
	The Traveling Salesman Problem (TSP)
	Decision Problem
	The Circuit-Satisfiability Problem (Circuit-SAT)
	Complexity Class P
	Complexity Class NP
	NP-Completeness
	Polynomial-time Reduction
	Significance of Reduction
	Polynomial-time Reduction
	HC P TSP: Step 1
	HC P TSP: Step 2
	HC P TSP: Step 2 (cont’d)
	NP-Completeness and NP-Hardness
	Proving NP-Completeness
	Coping with NP-hard problems
	Spanning Tree v.s. Steiner Tree
	Exhaustive Search v.s. Branch and Bound
	Algorithmic Paradigms
	Dynamic Programming (DP) v.s. Divide-and-Conquer
	Example: Bin Packing
	Algorithms for Bin Packing
	ILP Formulation for Bin Packing
	CAD Related Conferences/Journals

