Unit 1A: Computational Complexity

- Course contents:
 - Computational complexity
 - NP-completeness
 - Algorithmic Paradigms
- Readings

- Chapters 3, 4, and 5

Time	Big-Oh	n = 10	n = 100	$n = 10^{3}$	$n = 10^{6}$
500	O(1)	5×10^{-7} sec	5 × 10 ⁻⁷ sec	5×10^{-7} sec	5 × 10 ⁻⁷ sec
3n	O(n)	3 × 10 ⁻⁸ sec	3×10^{-7} sec	3×10^{-6} sec	0.003 sec
$n \log n$	$O(n \log n)$	3 × 10 ⁻⁸ sec	2×10^{-7} sec	3 × 10 ⁻⁶ sec	0.006 sec
n^2	$O(n^2)$	1×10^{-7} sec	1 × 10 ⁻⁵ sec	0.001 sec	16.7 min
<u>"</u> З	$O(n^{3})$	1×10^{-6} sec	0.001 sec	1 sec	3 × 10 ⁵ cent.
2^n	$O(2^n)$	1 x 10 ⁻⁶ sec	3×10^{17} cent.	œ	œ
n!	O(n!)	0.003 sec	œ	œ	œ

O: Upper Bounding Function

• **Def:** f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

- Examples: $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \lg n = O(n^2)$

 Intuition: f(n) "≤" g(n) when we ignore constant multiples and small values of n.

Big-O Notation

• How to show O (Big-Oh) relationships?

 $- f(n) = O(g(n)) \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = c \text{ for some } c \ge 0.$

 "An algorithm has worst-case running time O(f(n))": there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most cf(n) time.

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as function of its "input size".
- Input size examples:
 - sort *n* words of bounded length \Rightarrow *n*
 - the input is the integer $n \Rightarrow \lg n$
 - the input is the graph $G(V, E) \Rightarrow |V|$ and |E|
- Time complexity is expressed in *elementary computational steps* (e.g., an addition, multiplication, pointer indirection).
- Space Complexity is expressed in *memory locations* (e.g. bits, bytes, words).

Asymptotic Functions

- Polynomial-time complexity: O(n^k), where n is the input size and k is a constant.
- Example polynomial functions:
 - 999: constant
 - Ig *n*: logarithmic
 - $-\sqrt{n}$: sublinear
 - *n*: linear
 - *n* lg *n*: loglinear
 - n^2 : quadratic
 - *n*³: cubic
- Example non-polynomial functions
 - 2ⁿ, 3ⁿ: exponential
 - _ n!: factorial

Running-time Comparison

• Assume 1000 MIPS (Yr: 200x), 1 instruction /operation

Time	Big-Oh	n = 10	n = 100	$n = 10^{3}$	$n = 10^{6}$
500	O(1)	5×10^{-7} sec	5 × 10 ⁻⁷ sec	5×10^{-7} sec	5 × 10 ⁻⁷ sec
3n	O(n)	3×10^{-8} sec	3×10^{-7} sec	3 x 10 ⁻⁶ sec	0.003 sec
$n \log n$	$O(n \log n)$	3 × 10 ⁻⁸ sec	2 × 10 ⁻⁷ sec	3 × 10 ⁻⁶ sec	0.006 sec
ⁿ²	$O(n^2)$	1×10^{-7} sec	1 × 10 ⁻⁵ sec	0.001 sec	16.7 min
"3	$O(n^3)$	1 × 10 ⁻⁶ sec	0.001 sec	1 sec	3 × 10 ⁵ cent.
2^n	$O(2^n)$	1×10^{-6} sec	3×10^{17} cent.	œ	œ
n!	O(n!)	0.003 sec	œ	œ	œ

Optimization Problems

- **Problem:** a general class, e.g., "the shortest-path problem for directed acyclic graphs."
- Instance: a specific case of a problem, e.g., "the shortestpath problem in a specific graph, between two given vertices."
- **Optimization problems:** those finding a legal configuration such that its cost is minimum (or maximum).
 - MST: Given a graph G=(V, E), find the cost of a minimum spanning tree of G.
- An instance I = (F, c) where
 - F is the set of *feasible solutions*, and
 - *c* is a *cost function*, assigning a cost value to each feasible solution *c* : *F* → *R*
 - The solution of the optimization problem is the feasible solution with optimal (minimal/maximal) cost
- c.f., Optimal solutions/costs, optimal (exact) algorithms (Attn: optimal ≠ exact in the theoretic computer science community).

The Traveling Salesman Problem (TSP)

 TSP: Given a set of cities and that distance between each pair of cities, find the distance of a "minimum tour" starts and ends at a given city and visits every city exactly once.

Unit 1A

Decision Problem

- **Decision problems:** problem that can only be answered with "yes" or "no"
 - MST: Given a graph G=(V, E) and a bound K, is there a spanning tree with a cost at most K?
 - TSP: Given a set of cities, distance between each pair of cities, and a bound *B*, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most *B*?
- A decision problem Π , has instances: I = (F, c, k)
 - The set of of instances for which the answer is "yes" is given by Y_{Π} .
 - A subtask of a decision problem is solution checking: given $f \in F$, checking whether the cost is less than k.
- Could apply binary search on decision problems to obtain solutions to optimization problems.
- NP-completeness is associated with decision problems.

The Circuit-Satisfiability Problem (Circuit-SAT)

- The Circuit-Satisfiability Problem (Circuit-SAT):
 - Instance: A combinational circuit C composed of AND, OR, and NOT gates.
 - Question: Is there an assignment of Boolean values to the inputs that makes the output of C to be 1?
- A circuit is satisfiable if there exists a a set of Boolean input values that makes the output of the circuit to be 1.
 - Circuit (a) is satisfiable since $\langle x_1, x_2, x_3 \rangle = \langle 1, 1, 0 \rangle$ makes the output to be 1.

Complexity Class P

- Complexity class *P* contains those problems that can be solved in polynomial time in the size of input.
 - Input size: size of encoded "binary" strings.
 - Edmonds: Problems in P are considered tractable.
- The computer concerned is a *deterministic Turing machine*
 - Deterministic means that each step in a computation is predictable.
 - A *Turing machine* is a mathematical model of a universal computer (any computation that needs polynomial time on a Turing machine can also be performed in polynomial time on any other machine).

• MST is in *P*.

Complexity Class NP

- Suppose that solution checking for some problem can be done in polynomial time on a deterministic machine ⇒ the problem can be solved in polynomial time on a nondeterministic Turing machine.
 - Nondeterministic: the machine makes a guess, e.g., the right one (or the machine evaluates all possibilities in parallel).
- The class NP (Nondeterministic Polynomial): class of problems that can be verified in polynomial time in the size of input.
 - NP: class of problems that can be solved in polynomial time on a nondeterministic machine.
- Is TSP \in NP?
 - Need to check a solution in polynomial time.
 - Guess a tour.
 - Check if the tour visits every city exactly once.
 - Check if the tour returns to the start.
 - Check if total distance $\leq B$.
 - − All can be done in O(n) time, so TSP \in NP.

• An issue which is still unsettled:

 $P \subset NP$ or P = NP?

- There is a strong belief that $P \neq NP$, due to the existence of *NP*-complete problems.
- The class NP-complete (NPC):
 - Developed by S. Cook and R. Karp in early 1970.
 - All problems in NPC have the same degree of difficulty: Any NPC problem can be solved in polynomial time ⇒ all problems in NP can be solved in polynomial time.

Polynomial-time Reduction

- Motivation: Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2 . Can we use A_2 to solve L_1 ?
- Polynomial-time reduction *f* from L_1 to L_2 : $L_1 \leq_{\mathbf{P}} L_2$
 - *f* reduces input for L_1 into an input for L_2 s.t. the reduced input is a "yes" input for L_2 iff the original input is a "yes" input for L_1 .
 - $L_1 \leq_P L_2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$ s.t. $x \in L_1$ iff $f(x) \in L_2, \forall x \in \{0, 1\}^*$.
 - L_2 is at least as hard as L_1 .
- *f* is computable in polynomial time.

Significance of Reduction

- Significance of $L_1 \leq_{P} L_2$:
 - ∃ polynomial-time algorithm for $L_2 \Rightarrow \exists$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$).
 - ∄ polynomial-time algorithm for $L_1 \Rightarrow \exists$ polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$).
- $\leq_{\mathbf{P}}$ is transitive, i.e., $L_1 \leq_{\mathbf{P}} L_2$ and $L_2 \leq_{\mathbf{P}} L_3 \Rightarrow L_1 \leq_{\mathbf{P}} L_3$.

Polynomial-time Reduction

- The Hamiltonian Circuit Problem (HC)
 - **Instance:** an undirected graph G = (V, E).
 - Question: is there a cycle in G that includes every vertex exactly once?
- TSP (The Traveling Salesman Problem)
- How to show $HC \leq_P TSP$?
 - 1. Define a function *f* mapping any HC instance into a TSP instance, and show that *f* can be computed in polynomial time.
 - 2. Prove that *G* has an HC iff the reduced instance has a TSP tour with distance $\leq B$ ($x \in HC \Leftrightarrow f(x) \in TSP$).

$HC \leq_P TSP: Step 1$

1. Define a reduction function *f* for $HC \leq_{P} TSP$.

- Given an arbitrary HC instance G = (V, E) with *n* vertices
 - Create a set of *n* cities labeled with names in *V*.
 - Assign distance between *u* and *v*

$$d(u,v) = \begin{cases} 1, & \text{if } (u,v) \in E, \\ 2, & \text{if } (u,v) \notin E. \end{cases}$$

- Set bound B = n.
- f can be computed in $O(V^2)$ time.

$HC \leq_P TSP: Step 2$

2. *G* has an HC iff the reduced instance has a TSP with distance $\leq B$.

 $- x \in HC \Rightarrow f(x) \in TSP.$

- Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, *h* is also a tour in the transformed TSP instance.
- The distance of the tour *h* is n = B since there are *n* consecutive edges in *E*, and so has distance 1 in f(x).
- Thus, $f(x) \in \text{TSP}(f(x) \text{ has a TSP tour with distance } \leq B)$.

$HC \leq_P TSP: Step 2 (cont'd)$

- 2. *G* has an HC iff the reduced instance has a TSP with distance $\leq B$.
 - $f(x) \in \mathsf{TSP} \Rightarrow x \in \mathsf{HC}.$
 - Suppose there is a TSP tour with distance $\leq n = B$. Let it be $\langle V_1, V_2, ..., V_n, V_1 \rangle$..
 - Since distance of the tour $\leq n$ and there are *n* edges in the TSP tour, the tour contains only edges in *E*.
 - Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle ($x \in HC$).

NP-Completeness and NP-Hardness

- NP-completeness: worst-case analyses for decision problems.
- L is **NP-complete** if
 - $L \in NP$
 - − **NP-Hard:** $L' \leq P L$ for every $L' \in NP$.
- **NP-hard:** If *L* satisfies the 2nd property, but not necessarily the 1st property, we say that *L* is **NP-hard**.
- Suppose $L \in NPC$.
 - − If $L \in P$, then there exists a polynomial-time algorithm for every $L' \in NP$ (i.e., P = NP).
 - If $L \notin P$, then there exists no polynomial-time algorithm for any L' ∈ NPC (i.e., P ≠ NP).

Proving NP-Completeness

- Five steps for proving that *L* is NP-complete:
 - 1. Prove $L \in NP$.
 - 2. Select a known NP-complete problem *L*¹.
 - 3. Construct a reduction *f* transforming **every** instance of *L*' to an instance of *L*.
 - 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
 - 5. Prove that *f* is a polynomial-time transformation.
- We have shown that TSP is NP-complete.

Coping with NP-hard problems

Approximation algorithms

- Guarantee to be a fixed percentage away from the optimum.
- E.g., MST for the minimum Steiner tree problem.

• Pseudo-polynomial time algorithms

- Has the form of a polynomial function for the complexity, but is not to the problem size.
- E.g., O(nW) for the 0-1 knapsack problem.

Restriction

- Work on some subset of the original problem.
- E.g., the longest path problem in directed acyclic graphs.

• Exhaustive search/Branch and bound

- Is feasible only when the problem size is small.
- Local search:
 - Simulated annealing (hill climbing), genetic algorithms, etc.
- Heuristics: No guarantee of performance.

Spanning Tree v.s. Steiner Tree

- Manhattan distance: If two points (nodes) are located at coordinates (x_1, y_1) and (x_2, y_2) , the Manhattan distance between them is given by $d_{12} = |x_1 x_2| + |y_1 y_2|$.
- Rectilinear spanning tree: a spanning tree that connects its nodes using Manhattan paths (Fig. (b) below).
- Steiner tree: a tree that connects its nodes, and additional points (Steiner points) are permitted to used for the connections.
- The minimum rectilinear spanning tree problem is in P, while the minimum rectilinear Steiner tree (Fig. (c)) problem is NP-complete.
 - The spanning tree algorithm can be an *approximation* for the Steiner tree problem (at most 50% away from the optimum).

Exhaustive Search v.s. Branch and Bound

• TSP example

Chang, Huang, Li, Lin, Liu

Algorithmic Paradigms

- Exhaustive search: Search the entire solution space.
- **Branch and bound:** A search technique with pruning.
- Greedy method: Pick a locally optimal solution at each step.
- **Dynamic programming:** Partition a problem into a collection of sub-problems, the sub-problems are solved, and then the original problem is solved by combining the solutions. (Applicable when the sub-problems are **NOT independent**).
- Hierarchical approach: Divide-and-conquer.
- Mathematical programming: A system of solving an objective function under constraints.
- **Simulated annealing:** An adaptive, iterative, non-deterministic algorithm that allows "uphill" moves to escape from local optima.
- **Tabu search:** Similar to simulated annealing, but does not decrease the chance of "uphill" moves throughout the search.
- Genetic algorithm: A population of solutions is stored and allowed to evolve through successive generations via mutation, crossover, etc.

Dynamic Programming (DP) v.s. Divide-and-Conquer

- Both solve problems by combining the solutions to subproblems.
- Divide-and-conquer algorithms
 - Partition a problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
 - Inefficient if they solve the same subproblem more than once.
- Dynamic programming (DP)
 - Applicable when the subproblems are not independent.
 - DP solves each subproblem just once.

Example: Bin Packing

- The Bin-Packing Problem Π : Items $U = \{u_1, u_2, ..., u_n\}$, where u_i is of an integer size s_i ; set *B* of bins, each with capacity *b*.
- Goal: Pack all items, minimizing # of bins used. (NPhard!)

Algorithms for Bin Packing

- Greedy approximation alg.: First-Fit Decreasing (FFD)

 FFD(Π) ≤ 110PT(Π)/9 + 4)
- Dynamic Programming? Hierarchical Approach? Genetic Algorithm? ...
- Mathematical Programming: Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible |B|.

ILP Formulation for Bin Packing

• 0-1 variable: $x_{ij}=1$ if item u_i is placed in bin b_i , 0 otherwise.

- **Step 1:** Set |*B*| to the lower bound of the # of bins.
- Step 2: Use the ILP to find a feasible solution.
- Step 3: If the solution exists, the # of bins required is |B|. Then exit.
- Step 4: Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.

CAD Related Conferences/Journals

- Important Conferences:
 - ACM/IEEE Design Automation Conference (DAC)
 - IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
 - IEEE Int'l Test Conference (ITC)
 - ACM Int'l Symposium on Physical Design (ISPD)
 - ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC)
 - ACM/IEEE Design, Automation, and Test in Europe (DATE)
 - IEEE Int'l Conference on Computer Design (ICCD)
 - IEEE Custom Integrated Circuits Conference (CICC)
 - IEEE Int'l Symposium on Circuits and Systems (ISCAS)
 - Others: VLSI Design/CAD Symposium/Taiwan
- Important Journals:
 - IEEE Transactions on Computer-Aided Design (TCAD)
 - ACM Transactions on Design Automation of Electronic Systems (TODAES)
 - IEEE Transactions on VLSI Systems (TVLSI)
 - IEEE Transactions on Computers (TC)
 - IEE Proceedings Circuits, Devices and Systems
 - IEE Proceedings Digital Systems
 - INTEGRATION: The VLSI Journal