
Minimum-Delay/Power Zero-Skew Clock-Tree Optimization
with Simultaneous Buffer-Insertion/Sizing and Wire-Sizing

Jeng-Liang Tsai, Tsung-Hao, Charlie Chung-Ping Chen
{ jltsai, tchen }@cae.wisc.edu, chen@engr.wisc.edu

Electrical and Computer Engineering, University of Wisconsin-Madison

ABSTRACT
In 21st-Century VLSI design, clocking plays crucial roles
for both performance and timing convergence. Minimum-
delay/power zero-skew buffer-insertion/sizing and wire-sizing
problems have long been considered intractable due to their
non-convex nature. In this paper, we present ClockTune,
a simultaneous buffer-insertion/sizing and wire-sizing algo-
rithm which guarantees zero-skew and minimizes delay or
power in pseudo-polynomial time. Extensive experimental
results show that our algorithm executes very efficiently.
For example, ClockTune achieves 40X delay improvement
for buffering and sizing an industrial clock-tree with 3101
sink nodes on a 1.2GHz Pentium IV PC in 12 minutes com-
pared with the initinal routing. Our algorithm can also be
used to achieve useful clock-skew to facilitate timing con-
vergence and to incrementally adjust clock-tree for design
convergence and explore delay-power tradeoffs during de-
sign cycles.

1. INTRODUCTION
In the multi-giga-Hertz design era, clock design plays a

crucial role in determining chip performance and facilitat-
ing timing and design convergence. First, clock-skew di-
rectly affects chip performance in a close to one-to-one ratio
since it has to be counted as cycle-time penalty. Second,
incremental clock-tree adjustment enables fast design con-
vergence by avoiding the potentially divergent design itera-
tions [1]. Since designs are subjected to change on a daily
basis, the clock-trees need to be incrementally adjusted ac-
cordingly with minimum changes to ensure acceptable clock-
skew. Third, since interconnect-delay dominates over gate-
delay, timing plans often cannot be met due to physical
effects. Recently, useful skew [2] concepts have also been
widely proposed to speed-up timing convergence in order to
compensate for the timing uncertainties resulting from the
physical layout. From the above analysis, it is crucial to de-
velop clock tuning algorithms that can balance clock-skew
with minimum adjustments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

An excellent survey of interconnect optimization techniques
can be found in [3]. Among the techniques suitable for
clock-tree optimization are buffer-insertion/sizing and wire-
sizing since these do not need to modify the existing rout-
ing. In [4] a three-stage optimization algorithm is proposed
to minimize the delay and skew of a clock-tree. A reported
27X delay improvement was reported by buffer-insertion and
buffer-sizing. In [5] an iterative algorithm performs wire-
sizing one segment at a time and about 1.5X to 3X im-
provement on minimum delay was observed. Two major ap-
proaches have been used to integrate buffer insertion/sizing
and wire-sizing techniques for delay and power optimization.
In [6] [7] [8] the simultaneous buffer-insertion/sizing and
wire-sizing problems are formulated as optimization prob-
lems, in which the maximum delay of each sink node is
constrained. In [9] [10] bottom-up dynamic programming
algorithms based on the method in [11] are used to find op-
timal solutions for a subtree and propagate the solutions up
toward the root node. These methods perform optimizations
without modifying the clock-routing, but do not guarantee
zero-skew.

Recent work [12] integrates wire-sizing into the Deferred-
Merging Embedding (DME) algorithm [13] which allows a
zero-skew clock-tree to benefit from wire-sizing and buffer-
insertion. However, the zero-skew property is achieved by
moving the merging points and the clock-routing might be
changed to accommodate the skew caused by design changes.
This may affect the detail routing. To the best of authors’
knowledge, there is no existing simultaneous wire-sizing and
buffer-insertion/sizing algorithm which finds the minimum
delay or power zero-skew solutions without modifying the
existing routing.

In this paper, we propose a novel clock-tuning algorithm,
ClockTune, which considers buffer-insertion/sizing and wire-
sizing at the same time while maintaining the clock-tree
zero-skew. ClockTune first calculates the feasible delay and
power information for each node in a bottom-up fashion. Af-
ter the desired delay and power is chosen from the feasible
region, a buffering and wire-sizing is determined in a top-
down fashion. Although we focus on achieving zero-skew,
ClockTune can also be used to achieve useful skew to tackle
timing problems. Moreover, if the clock-routing encounters
design changes, ClockTune is able to re-balance the clock-
tree by local adjustment.

The rest of this paper is organized as follows: in Section
2 we formulate the problems and introduce the models and
notations we use in this work; in Section 3 the fundamen-
tals of our algorithm are introduced; Section 4 provides the

algorithm framework and gives the details of our ClockTune
algorithm; Section 5 is the complexity analyses, and Section
6 is our experimental results.

2. PRELIMINARIES
The minimum-delay/power zero-skew wire-sizing(min-ZSWS)

problem was solved in [14], and the proposed method pro-
vides a good basis for understanding this work. However,
[14] did not consider buffer-insertion/sizing which is a more
effective way of reducing clock delay. We first define both
problems and repeat part of the conclusions of [14] to make
this work self-contained.

Problem Definition 1. Minimum-Delay/Power Zero-Skew
Wire-Sizing(min-ZSWS) Problem :
Given a clock-tree T , find a set of feasible wire-widths with
bounded delay and power consumption such that the zero-
skew constraint is satisfied and the delay or power is mini-
mized.

Problem Definition 2. Minimum-Delay/Power Zero-Skew
Buffer-Insertion/Sizing and Wire-Sizing(min-ZSBWS) Prob-
lem :
Given a clock-tree T , find a set of feasible buffer locations,
buffer widths, and wire-widths with bounded delay and power
such that the zero-skew constraint is satisfied and the delay
or power is minimized.

2.1 Notations
Table 1 lists the notations used throughout this paper. In

Table 1, Tv is a binary tree. However, if the wire length is al-
lowed to be zero, then any tree structure can be represented
as a binary tree. In this work, buffers are only allowed to
be inserted right above a node and no buffer is allowed to
insert above a leaf node.

Tv A clock-tree with given routing rooted at node v
vl The left child of node v
vr The right child of node v
ev The edge between node v and its parent node
lv The length of edge ev

bv The buffer above node v, bv = φ if not buffered
w(ev) The wire-width of edge ev

w(bv) The output resistance of buffer bv , w(φ) = 0

r(ev) The resistance of wire ev , r(ev) = lvr0

w(ev)

c(ev) The capacitance of wire ev , c(ev) = lvw(ev)c0
dv Elmore-delay from node v to any leaf node in Tv

cv Total down-stream capacitance seen at node v
csv Total capacitance shielded from node v by buffers
r0, c0 Wire resistance and capacitance per µm2

rb, cb Unit-size gate resistance and capacitance
wm, wM Predefined minimum and maximum wire-width
wbm, wbM Predefined Minimum and maximum buffer-size

Table 1: Notations in this work

2.2 Delay and Power Models
There are two delay components in a clock-tree: interconnect-

delay and gate-delay. Although our ClockTune algorithm
makes no presumption on the delay model, using the resistance-
capacitance(RC) models for interconnects and buffers and
the Elmore-delay model for delay calculation reduces the
complexity of our algorithm. For a wire with length l and
width w, the wire resistance is lr0

w
and the wire capacitance

is lc0w. The wire capacitance is further divided into two

equal capacitors attached at both ends of the wire. For a
buffer with gate width wb, the gate capacitance at its input
is wbcb. The gate is modeled as a ramp voltage source with
an effective output resistance rb

wb

. The ramp voltage source

has a delay tc, which models the intrinsic delay of the buffer.
The power consumed by the clock-tree can be modeled as

P = fCV 2 +Ps +Pl, where f is the switching frequency; V
is the voltage swing; and C is the total interconnect capac-
itance, gate capacitance of the buffers, and sink loads. Ps

accounts for the buffer short-circuit power and Pl accounts
for the leakage power. In a usual design, the last two terms
are usually much smaller and the total capacitance is a good
measure of the total power consumption [15].

3. DESIGN-SPACE AND DC REGION
D

C

v

delay/power tradeoff curve

feasible zero-skew

solutions

Figure 1: The projection of feasible design solutions
on a 2-dimensional plane

Considering the min-ZSWS problem, if Tv has n edges
then there are n wire-widths to be determined. Every em-
bedding of Tv (a set of wire-widths which satisfies zero-skew
and wire-width constraints) is a point in the n-dimensional
design-space. Since we are only interested in the delay and
power of the embeddings, we can project all the embed-
dings onto the D-C plane: the X-Y plane with delay value
on Y-axis and capacitance load value on X-axis. The pro-
jection of the embeddings form a DC region, Ωv , on the
D-C plane, is shown in Figure 1. The lower-left edge of
the DC region is the delay/power tradeoff curve, and previ-
ous works [9] [10] [11] have emphasized finding the solutions
which lie on this curve while pruning-out sub-optimal so-
lutions. These approaches have two drawbacks. First, the
combinations that lie on the curve grow superlinearly [11].
Second, early pruning sub-optimal solutions may result in
sub-optimal global solutions due to the non-convex nature
of the min-ZSWS problem.

In [14], a different approach is used to solve the min-ZSWS
problem which relies on the following property:

Property 1. Existence Property :
For every point pv = (dv, cv) ⊂ Ωv, there exists at least one

pair of points pvl
= (dvl

, cvl
) ⊂ Ωvl

and pvr
= (dvr

, cvr
) ⊂

Ωvr
such that the corresponding embeddings of Tvl

and Tvr

are the same as in the embedding of Tv from pv.

The existence property is the restatement that for a feasible
design of Tv, its design of subtrees Tvl

and Tvr
are also feasi-

ble, thus their projections are in Ωvl
and Ωvr

. As illustrated
in Figure 2, for a point pv, at least one pair of pvl

and pvr

satisfies the following equations

cv =
�

u⊂vl,vr

(cu + luw(eu)c0) (1)

dv = du +
l2ur0c0

2
+

lur0

w(eu)
, u ⊂ vl, vr (2)

C

D

D

C

D

C

Figure 2: Illustration of the existence property

and w(evl
), w(evr

) can be calculated by (2).
It is worth to mention that in the Elmore-delay model

a capacitor is used to model a RC tree and the calculated
delay only matches the first moment of the exact impulse
response. If a more accurate delay model is required, a
resistor-capacitor (RC) model or capacitor-resistor-capacitor
(CRC) model can be adopted to model a RC tree [16]. By
adding another axis to the D-C plane for the additional pa-
rameter, it forms a D-C space. The DC region becomes the
projection of the embeddings on the D-C space.

In the min-ZSBWS problem, buffering is allowed and cv is
the total capacitance of Tv minus the capacitance shielded
by first-level buffers, csv , below v. Inserting a buffer also
changes the signal polarity, thus Ωv is split into two sets.
Ωvp is the projection of even-numbered buffered embed-
dings, Ωvn is the projection of odd-numbered buffered em-
beddings, and Ωv = Ωvp ∪ Ωvn. Property 1 still holds for
the buffered case and (1) (2) can be rewritten as

cv =
�

u⊂vl,vr

(cu + luw(eu)c0 + w(bu)cb) (3)

dv =

�� � du +
l2
u

r0c0
2

+ lur0

w(eu)
, bu = φ

du + rbcu

w(bu)
+ tc +

l2
u

r0c0

2
+ lur0cbw(bu)

w(eu)
, otherwise

(4)

By Property 1, at least one set of buffering decision, buffer-
widths, and wire-widths satisfies (3) (4) for a given set of pv,
pvl

, and pvr
. The feasible embeddings are actually implied

in the DC regions and we can avoid handling the growing
design combinations by storing the DC regions associated
with every node. In the next section we will show how to
obtain the DC regions and pv, pvl

, and pvr
.

4. THE CLOCKTUNE ALGORITHM
We propose a dynamic programming algorithm, ClockTune,

to solve the min-ZSWS and min-ZSBWS problems. ClockTune
is composed of two phases. In the first phase, a bottom-
up approach is used to obtain the DC regions of all nodes.
In the second phase, a top-down approach determines the
buffer locations, buffer-widths, and wire-widths. The frame-
work of ClockTune is given as a pseudocode in Algorithm 1
and Figure 3 illustrates its procedures.

4.1 Zero-Skew Wire-Sizing Algorithm
In this subsection we detail the bottom-up and top-down

process of ClockTune in solving the min-ZSWS problem.

4.1.1 Bottom-up Phase
We first introduce the definition of branch DC region and

the associated � operator to facilitate our discussion fol-

Algorithm 1 ClockTune(Tv)

Input: a clock-tree Tv with given routing rooted at node v
Output: an embedding of Tv

Ωv ← ClockTune DC(Tv)
/* bottom-up construct DC regions, detailed in 4.1.1 for

min-ZSWS and in 4.2 for min-ZSBWS */
Choose (dt, ct) from Ωv

/* choose the minimum-delay or power solution for Tv */
Call ClockTune Embed(dt, ct, Tv)
/* top-down sizing/buffer-insertion, detailed in 4.1.2 */

(a)
 (b)

1

2

2

3

4

5

6
 7

4

3

1

Figure 3: Illustration of ClockTune (a) the bottom-
up phase (b) the top-down phase

lowed by introducing the wire-sizing transformation of cal-
culating the branch DC region.

Definition 1. Branch DC Region :
The branch DC region of node v, Ω+

v = {(d+
v , c+

v)}, is the
projection of all embeddings of T +

v = {ev ∪ Tv} on the D-C
plane.

Definition 2. � Operator :
The DC region of v can be generated from the branch DC

regions of vl and vr by � operator. The operation is defined
as follows:

Ωv = Ω+
vl

� Ω+
vr

, where

(dv, cv) ⊂ Ωv ⇐⇒ ∃(d+
vl

, c+
vl

) ⊂ Ω+
vl

, (d+
vr

, c+
vr

) ⊂ Ω+
vr

s.t. dv = d+
vl

= d+
vr

, cv = c+
vl

+ c+
vr

.

Lemma 1. Wire-sizing transformation
Ω+

v can be obtained from Ωv by the transformation � v : � 3 →� 2 described as follows:

d+
v = dv +

lvr0

w(ev) � lvw(ev)c0

2
+ cv � (5)

c+
v = cv + lvw(ev)c0, (6)

where(dv, cv) ⊂ Ωv , wm ≤ w(ev) ≤ wM

The ClockTune DC(Tv) subroutine of the ClockTune algo-
rithm can now be written as Algorithm 2. For a leaf node v,
cv is the load capacitance and hence a constant. To enforce
the zero-skew constraint, we set dv to 0 for all leaf nodes,
and Ωv = {(dv, cv)} are single points on the D-C plane. Al-
though our focus is on the min-ZSWS problem, ClockTune
can accept arbitrary skew values by simply assigning differ-
ent dv for each leaf nodes. ClockTune can also be extended
to accept bounded-skew constraints where Ωv of the leaf
nodes become vertical segments.

For a level-1 node v, the closed-form solution of Ωv can
be obtained by solving (5) (6) for vl, vr, and impose the

Algorithm 2 ClockTune DC(Tv) in min-ZSWS problem

Input: a clock-tree Tv with given routing rooted at node v
Output: DC regions of all nodes in Tv

if v is a leaf node then
Ωv ← (dv, cv)

else {v is an internal node}
call ClockTune DC(Tvl

)
call ClockTune DC(Tvr

)
Ω+

vl
← � vl

(Ωvl
)

Ω+
vr
← � vr

(Ωvr
)

Ωv ← Ω+
vl

� Ω+
vr

end if

zero-skew constraint d+
vl

= d+
vr

. The solution is as below.

dv(w(evl
)) = dvl

+
l2vl

r0c0

2
+

lvl
r0cvl

w(evl
)

(7)

cv(w(evl
)) = cvl

+ cvr
+ lvl

w(evl
)c0 +

l2vr
cvr

r0c0

(dvl
− dvr

) + r0c0
2

(l2vl
− l2vr

) +
lv

l
r0cv

l

w(ev
l
)

(8)

Equations (7) (8) represent a strictly decreasing curve on
the D-C plane. However, the closed-form solution of Ωv for
a level-2 node v is difficult to obtain. Sampling techniques
are applied to sample and store Ω+

vl
and Ω+

vr
which are then

combined into Ωv. We first take p samples on the delay range
d+

vl
∩ d+

vr
, then take q samples for w(eu) (assuming u is the

level-1 child of v). For each sample of w(eu), (7) (8) gives
a single point, and a subset of Ω+

u which is also a strictly
decreasing curve can be obtained. The intersection points
of these q curves and p delay samples can be calculated, and
the ranges those points span can be captured. By taking
the same p delay samples on the other child node, Ωv =
Ω+

vl
� Ω+

vr
can be obtained. The procedure is illustrated

in Figure 4. In a sampled DC region, each delay sample is
associated with one or more capacitance ranges. The branch
DC region of a sampled DC region can be solved by (5) (6)
analytically and again we perform sampling on the delay to
obtain the sampled DC region for level-3 and above nodes.

D

C

+

D

C

v
l

D

C

v
l

+

D

C

v
r
 D

C

v

D

C

v
r

Figure 4: Obtain the DC region of a level-2 node by
sampling techniques

4.1.2 Top-down Phase
The top-down phase is straight-forward. We first select

a pair of target delay and capacitance load values (dt, ct)
from Ωv , which can be the minimum-delay or minimum-
power solution. The capacitance load ct is further divided
into ctl and ctr such that ctl + ctr = ct, (dt, ctl) ⊂ Ω+

vl
,

and (dt, ctr) ⊂ Ω+
vr

. If vl is a leaf node, then w(evl
) is de-

termined by (2). If vl is a level-1 node, the feasible range
of w(evl

) can be obtained by solving (5). If vl is a level-2
or above node, then the DC region of vl is in a sampled

Algorithm 3 ClockTune Embed(dt, ct, Tv) in min-ZSWS

Input: a clock-tree Tv with given routing rooted at node v
Output: an embedding of Tv

if v is the root node then
choose (dt, ct) from Ωv

end if
choose ctl and ctr such that ctl + ctr = ct, (dt, ctl) ⊂ Ω+

vl
,

and (dt, ctr) ⊂ Ω+
vr

foreach child node u ∈ {vl, vr}
switch u

case leaf node
solve w(eu) by (2)

case level-1 node
solve the range of w(eu) by (5)
choose a w(eu) and calculate (du, cu)
call ClockTune Embed(du, cu, Tu)

case level-2 or above node
solve the range of w(eu) for every sample in Ωu by (5)
choose a w(eu) and calculate (du, cu)
call ClockTune Embed(du, cu, Tu)

end switch
end for

form. For each sample in Ωvl
, the range of w(evl

) can be
obtained by solving (5) and at least one range of w(evl

) is
feasible by Property 1. Once w(evl

) is chosen, the target
delay and capacitance load of Ωvl

are determined and we
can proceed to determine the wire-widths in Tvl

. The same
approach applies to vr. ClockTune Embed() is given in Al-
gorithm 3.

4.1.3 ε-Optimality
It has been shown that the ClockTune algorithm for the

min-ZSWS problem is ε-optimal; for any given ε, ClockTune
finds a solution that is within ε distance to the optimal de-
lay/power solution by adjusting numbers of samples on delay
and wire-width.

4.2 Zero-Skew Buffer-Insertion/Sizing and Wire-
Sizing Algorithm

In the min-ZSBWS problem Ωv is split into Ωvp and Ωvn.
When applying � v , the polarities of the DC regions remain
unchanged. If a buffer is inserted, the total capacitance
increases, but the capacitance seen by upstream nodes is
reduced. Thus, we need to expand the D-C plane into the
D-C space where dv is on the Y-axis, csv is on the X-axis, and
cv is on the Z-axis. We now define another transformation
for buffer-insertion/sizing.

Lemma 2. Buffer-insertion/sizing transformation :
Ω+

vn with buffer inserted above v can be obtained from Ωvp

by the transformation � v : � 5 → � 3 described as follows:

d+
vn = dvp +

rbcvp

w(bv)
+ tc +

l2vr0c0

2
+

lvr0cbw(bv)

w(ev)
(9)

c+
vn = cbw(bv) + lvw(ev)c0, (10)

c+
svn = csvp + cvp (11)

where (dvp, cvp, csvp)⊂Ωvp,

wm≤w(ev)≤wM , wbm≤w(bv)≤wbM ,

p, n are interchangeable. (12)

To obtain the 3-dimensional DC regions, sampling is first
performed on the delay and shielded capacitance values along

Y and X directions. To create the branch DC regions above
a buffered node, we also take samples on w(bv). Note that
although we take samples on two more variables, the sam-
pling originally required on the child branch width can be
eliminated by the fact that cvp = c+

svn − csvp from (11).
Due to the space limit, we omit the details and illustrate
the procedure in Figure 5 and Algorithm 4. The top-down
algorithm is basically the same except that the power is esti-
mated by cv +csv and both ct = ctl +ctr and cst = cstl +cstr

have to be satisfied when choosing pvl and pvr.

D

C1

C1

C2

C3

C2
 C3

Figure 5: Illustration of the procedure to generate
the branch DC region above a buffered node

Algorithm 4 ClockTune DC(Tv) in min-ZSBWS problem

Input: a clock-tree Tv with given routing rooted at node v
Output: DC regions of all nodes in Tv

if v is a leaf node then
Ωvp ← (dv, cv, csv), Ωvn ← φ

else {v is an internal node}
call ClockTune DC(Tvl

)
call ClockTune DC(Tvr

)
Ω+

vlp ← � vl
(Ωvlp) ∪ � vl

(Ωvln)

Ω+
vln ← � vl

(Ωvln) ∪ � vl
(Ωvlp)

Ω+
vrp ← � vr

(Ωvrp) ∪ � vr
(Ωvrn)

Ω+
vrn ← � vr

(Ωvrn) ∪ � vr
(Ωvrp)

Ωv ← (Ω+
vlp � Ω+

vrp) ∪ (Ω+
vln � Ω+

vrn)
end if

4.3 Slew-rate Control
One of the purposes for buffer-insertion is to adjust the

clock slew-rate. If the loading capacitance of a buffer is too
large, the output signal will have a slow rise and fall time,
and it in turn increases the short-circuit power of down-
stream buffers. One way to control the slew-rate is to limit
the loading capacitance to a certain value such that the slew-
rate of the buffer is bounded to the desired value. This con-
straint can be taken care of easily by limiting cv during the
bottom-up phase. In this manner, it is guaranteed that the
embeddings we get during top-down phase will not have any
buffer driving a load that exceed the predefined upper limit.
During the bottom-up phase, the DC regions might grow
very large because of the ill-buffered embeddings. Again
we can set upper limits on dv and (csv + cv). Since cv has
been limited by the maximum buffer loading value, which is
usually small, imposing the limit on csv is sufficient. These
limits are equivalent to adding 3 cutting planes in the D-C
space and only consider the DC regions that lie inside the
cube on the first-octant.

4.4 Incremental Refinement

When clock-routing undergoes design changes and the
clock-tree is no longer zero-skew, ClockTune can be used
to perform incremental refinement in the way that follows.
First, the DC regions are reconstructed from affected nodes
until it reaches node v such that Tv covers all design changes.
If the projection of the original embedding of Tv, (d̃v, c̃v, c̃sv),
falls in the new DC region, we take this point and run Clock-
Tune Embed(d̃v , c̃v, c̃sv) to determine the buffering and wire-
sizing of Tv. The rest of the clock-tree is not aware of these
design changes because (d̃v, c̃v, c̃sv) exposed to the rest of
the clock-tree remains the same. Otherwise, we keep updat-
ing the DC regions toward the root node until the original
projection falls in the new DC region.

5. COMPLEXITY
Assuming a clock-tree Tv has n nodes, we always take

p samples for delay and q samples for wire-width. In the
min-ZSWS problem, it takes O(1) time to construct the DC
regions for leaf and level-1 nodes. Level-2 nodes require
O(pq) time for delay and wire-width sampling. The other
nodes need O(p2) time to combine p ranges for each delay
sample. Thus, the complexity for the bottom-up phase is
O(max(p, q)pn). In the top-down phase, each wire-width
can be determined in O(p) time and the complexity is O(pn).
The overall runtime complexity is O(max(p, q)pn). Since
we only need to store the maximum and minimum values
of the capacitance load of each delay sample, the memory
requirement is O(pn). In the min-ZSBWS problem, we take
r samples on the shielded capacitance value and the straight
forward implementation requires O(p2qr2n) runtime. By
exploring the properties of (9) (10) (11) the runtime can
be reduced to ∼ O(pqr2n), and the memory requirement is
O(prn).

6. EXPERIMENTAL RESULTS
We implement our algorithm in C++ and run the program

on a 1GB 1.2GHz Pentium IV PC. The benchmarks r1-r5
are taken from [17]. All simulations use r0 = 0.03, c0 =
2× 10−16/µm2, wm = 0.3µm, wM = 3µm. The parameters
of the buffers are cb = 40fF , rb = 100Ω, tc = 30ps, and
wbm = 1, wbM = 10. The initial routings are generated
by the BB+DME [13] algorithm. The numbers of samples
used in the min-ZSWS problem are p = q = 256. The
numbers of samples used in the min-ZSBWS problem are
p = q = r = 64.

Table 2 shows the minimum-delay and minimum-power
solutions for the min-ZSWS problem. If the initial routing
does not use the minimum wire-width, then both the delay
and power can be lowered by performing wire-sizing. Table 3
shows the minimum-delay and minimum-power solutions for
the min-ZSBWS problem. The delay is dramatically lower
than that of the initial routing even for the minimum-power
solution, and the minimum-delay solutions have more than
2X speedup compared with the minimum-power solution.
Note that the delays shown in the figures and tables are
the Elmore-delays multiplied by ln2. Figure 6 shows the
DC regions of the root node in r5 for the min-ZSWS and
min-ZSBWS problems.

7. REFERENCES
[1] Jason Cong and Majid Sarrafzadeh. Incremental physical

design. In Proceedings of the international symposium on
Physical design, 2000, pages 84–92. ACM Press, 2000.

Initial(w = 1µm) ClockTune(wm = 0.3µm, wM = 3µm, p = q = 256)
Input delay load minimum-delay solution minimum-power solution CPU

(#nodes) (ns) (pF) Delay Gain Load Gain Delay Gain Load Gain (min.)
r1(267) 1.009 45.2 0.306 3.59 34.5 1.56 1.905 0.58 24.7 2.18 0.34
r2(598) 3.210 93.6 0.762 4.21 67.7 1.59 5.195 0.62 53.0 2.04 0.83
r3(862) 4.590 126.7 1.152 3.99 92.5 1.55 7.838 0.59 73.6 1.95 1.28
r4(1903) 13.184 266.2 3.288 4.01 184.3 1.61 24.802 0.53 156.8 1.89 2.61
r5(3101) 24.883 413.0 6.093 4.08 286.6 1.58 47.958 0.52 248.1 1.83 4.35

Table 2: The delay and power before and after wire-sizing. The gains are measured by the initial values
divided by the optimized values.

Initial(w = 1µm) ClockTune(wm = 0.3µm, wM = 3µm, wbm = 1, wbM = 10, p = q = r = 64)
Input delay load minimum-delay solution minimum-power solution CPU

(ns) (pF) Delay Gain Load Gain Buffers Delay Gain Load Gain Buffers (min.)
r1(267) 1.009 45.2 0.145 7.54 36.5 1.24 38 0.382 2.875 28.1 1.61 23 1.1
r2(598) 3.210 93.6 0.200 16.06 88.7 1.06 80 0.636 5.05 64.6 1.45 66 2.7
r3(862) 4.590 126.7 0.236 19.43 108.0 1.17 119 0.563 8.15 85.1 1.49 72 3.0
r4(1903) 13.184 266.2 0.345 38.19 229.7 1.16 251 0.927 14.22 193.8 1.37 148 7.7
r5(3101) 24.883 413.0 0.563 44.20 324.9 1.27 342 1.036 24.03 323.7 1.28 281 11.2

Table 3: The delay and power before and after buffer-insertion/sizing and wire-sizing.

3.1457

3.2768

x 10
−10

2.5

3

3.5

4

x 10
−12

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
−9

Csv

D

Cv

Figure 6: The DC regions of the root node of r5
in (left) min-ZSWS and (right) min-ZSBWS prob-
lems. The marks indicate the minimum-delay and
minimum-power solutions

[2] Joe G. Xi and Wayne W.-M. Dai. Useful-skew clock routing
with gate sizing for low power design. In Proceedings of the
33rd annual conference on Design automation conference,
pages 383–388. ACM Press, 1996.

[3] Jason Cong, Zhigang Pan, Lei He, Cheng-Kok Koh, and
Kei-Yong Khoo. Interconnect design for deep submicron
ics. In Proceedings of the 1997 IEEE/ACM international
conference on Computer-aided design, pages 478–485.
IEEE Computer Society, 1997.

[4] X. Zeng, D. Zhou, and Wei Li. Buffer insertion for clock
delay and skew minimization. In Proceedings of the 1999
international symposium on Physical design, pages 36–41.
ACM Press, 1999.

[5] Sachin S. Sapatnekar. Rc interconnect optimization under
the elmore delay model. In Proceedings of the 31st annual
conference on Design automation conference, pages
387–391. ACM Press, 1994.

[6] Rony Kay, Gennady Bucheuv, and Lawrence T. Pileggi.
Ewa: exact wiring-sizing algorithm. In Proceedings of the
1997 international symposium on Physical design, pages
178–185. ACM Press, 1997.

[7] J. Cong, C. Koh, and K. Leung. Simultaneous buffer and
wire sizing for performance and power optimization. In
Proceedings of the 1996 international symposium on Low
power electronics and design, pages 271–276. IEEE Press,
1996.

[8] Chung-Ping Chen, Chris C. N. Chu, and D. F. Wong. Fast
and exact simultaneous gate and wire sizing by lagrangian
relaxation. In Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, pages
617–624. ACM Press, 1998.

[9] Takumi Okamoto and Jason Cong. Buffered steiner tree
construction with wire sizing for interconnect layout
optimization. In Proceedings of the 1996 IEEE/ACM
international conference on Computer-aided design, pages
44–49. IEEE Computer Society Press, 1996.

[10] Charles J. Alpert, Anirudh Devgan, and Stephen T. Quay.
Buffer insertion with accurate gate and interconnect delay
computation. In Proceedings of the 36th ACM/IEEE
conference on Design automation conference, pages
479–484. ACM Press, 1999.

[11] L.P.P.P. van Ginneken. Buffer placement in distributed
rc-tree networks for minimal elmore delay. In Proceedings of
the IEEE International Symposium on Circuits and
Systems, pages 865–868, 1990.

[12] I-Min Liu, Tan-Li Chou, Adnan Aziz, and D. F. Wong.
Zero-skew clock tree construction by simultaneous routing,
wire sizing and buffer insertion. In Proceedings of the
international symposium on Physical design, 2000, pages
33–38. ACM Press, 2000.

[13] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, and A.B.
Kahng. Zero skew clock routing with minimum wirelength.
Circuits and Systems II: Analog and Digital Signal
Processing, Volumn 39, Issue 11:799–814, Nov. 1992.

[14] The authors. Epsilon-optimal min-delay/area zero-skew
clock tree wire-sizing in pseudo-polynomial time. In to be
appeared in the international symposium on Physical
design, 2003. ACM Press, 2003.

[15] Satyamurthy Pullela, Noel Menezes, Junaid Omar, and
Lawrence T. Pillage. Skew and delay optimization for
reliable buffered clock trees. In Proceedings of the 1993
IEEE/ACM international conference on Computer-aided
design, pages 556–562, 1993.

[16] Peter R. O’Brien and Thomas L. Savarino. Modeling the
driving-point characteristic of resistive interconnect for
accurate delay estimation. In Proceedings of the 1989
IEEE/ACM international conference on Computer-aided
design, pages 512–515, 1989.

[17] R.-S. Tsay. Exact zero skew. In Proceedings of the 1991
IEEE international conference on Computer-aided design,
pages 336–339, 1991.

