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ABSTRACT
The recent needs for system-on-chip RF mixed-signal design and

aggressive supply-voltage reduction demand chip-level accurate

analysis of both the substrate and power delivery systems. To-

gether with the rising frequency, low-k dielectric, copper inter-

connects, and high conductivity substrate, the inductance effects

raised serious concern recently. However, the growing design

complexity creates tremendous challenges for chip-level power-

delivery substrate co-analysis. In this paper, we propose a novel

and efficient reluctance-based passive model order reduction tech-

niques to serve these tasks. Our algorithm, SUPREME (SUb-

strate and Power-delivery Reluctance-Enhanced Macromodel Eval-

uation), not only greatly reduces the computational complexity of

previous reluctance-based model order algorithm but also capable

of handling large amount of noise sources efficiently. To facilitate

the analysis of inductive substrate return paths and evaluate the

high-frequency substrate coupling effects, we derive a novel RLKC

substrate model from Maxwell’s equations in the first time. Ex-

perimental results demonstrate the superior runtime and accuracy

over traditional MNA-based simulation. The SUPREME is going

to be released on the web for public use in the near future.

1. INTRODUCTION
The strong urge for cost reduction drives the demands for

System-on-a-Chip (SoC), which frequently requires the in-
tegration the RF analog circuits with digital circuits. With
the demands for power reductions for mobile computation
and heat-dissipation cost, the supply voltages have been ag-
gressively reduced. As a result, the power delivery and sub-
strate noise margin budgets have shrink to less than 100 mV.
Both trends require high-quality power-delivery and sub-
strate design to avoid digital-analog mutual noise coupling
nightmare. As a result, extensive power and substrate sim-
ulations are required to ensure power-delivery quality.[1][2]

Unfortunately, the rising clock frequency for both ana-
log and digital circuits and the adoption of low-k and high
conductivity interconnects and high conductivity substrates
require the consideration of inductance that consists of both
self and mutual inductances. The long range inductive cou-
pling effect makes the already tough analysis tasks even
worse. Furthermore, substrate also serves as return path and
have been ignored for many interconnect inductance anal-
ysis. With the increasing coupling between power-delivery
and substrate, power-delivery substrate co-analysis will be
crucial in the near feature.[3]

One of the co-analysis difficulty is that most of the ex-
iting substrate models consider only resistance or at most

capacitance. The inductance substrate models are required
for performing return path analysis. Furthermore, most of
the substrate and power-delivery may not compatible with
each other due to the problem nature. Due to the regular
structure, finite difference, finite element, or boundary ele-
ments models are often applied for substrate but not power-
delivery problems. As a result, it is necessary to build a
consistent model, which can facilitate power-delivery sub-
strate co-analysis.

Due to the compatibility to circuit simulators, the PEEC
model [4] introduced the concept of partial inductance into
the VLSI area and has been wildly used for interconnects
inductance modeling. However, the partial inductance as-
sumes the return path is at infinity, and thus magnetic cou-
plings between faraway conductors are not negligible. This
long-range feature enforces the system equation to embraces
a dense matrix to express all partial inductance couplings,
which results in a high complexity of inductance extraction
and simulation. Together with the facts that direct trunca-
tion of the inductance matrix could result in unstable system
models, several sparsification techniques have been proposed
to reduce the density of partial inductance matrices and pre-
serve stability. For example, shift-and-truncate method[5],
Halo method[6], and the block diagonal method[7] all pro-
vided strategies to sparsify inductance matrices.

Recently, the concept of reluctance (inverse partial in-
ductance matrix) has been revealed, and is looming as a
trend and an alternative way for solving inductance prob-
lems based on the following reasons. Since reluctance demon-
strates high locality and shielding effect similar to capaci-
tance, it is more satisfactory to sparsify the reluctance ma-
trix than inductance matrix. It was proven that the reluc-
tance matrix is diagonally dominant and positive definite
for equal-length buses. This guarantees the negative off-
diagonal elements can be safely deleted without sacrificing
stability [8]. Later, with a window-selection strategy and a
bisection subroutine, the window-based reluctance extrac-
tion was shown to be efficient, accurate, and stable to anal-
ysis the magnetic effect [9].

To lessen the computation complexity, model order re-
duction techniques have widely been considered as another
alternative for SPICE simulation. After several years of re-
search efforts, the model order reduction techniques such as
PVL[10] and PRIMA[11] have been successfully extended
to considering inductance effects. With the success of the
reluctance technique, model reduction society starts to in-
corporate reluctance into the model order reduction frame-



work. Although the reluctance matrix has strong benefit
on sparsity, the explicit inversion of it may still be dense,
which creates difficulty to the MNA model reduction type
framework such as PRIMA. Recently, by introducing the
inverse of the inductance matrix, ENOR[12] provides a del-
icate method to embedded reluctance matrix into the nodal
analysis (NA) matrix. Latter, SMOR[13] enhanced some
numerical accuracy of ENOR while solving the admittance
matrix which is (Cs0 + G+ Γ

s0
), where Γ = AlKAT

l and s0

is the specific frequency.
The drawback for the nodal analysis type of analysis is

that the sparsity may be destroyed by the projection of re-
luctance matrix (K) to the incident matrix (Al) space and
the summation to the G and C matrices. As a result, the
efficiency of matrix solvers may be significantly degraded.
Furthermore, the need to select an expanding frequency s0

can make the procedure complicated. No explicit guide line
for the selection been made. In the case when complex fre-
quency expansion point is needed, the complexity will get
much worse.

In this paper, we decide to resolve the above issues in two
parts. First, we propose a new reluctance-enhanced model
order reduction analysis techniques, SUPREME (SUbstrate
and Power-delivery Reluctance-Enhanced Macromodel Eval-
uation), which still perform model order reduction in the
MNA (Modified Nodal Analysis) framework. However, by
using implicit inversion of K, we intelligently avoid the ex-
plicit formulation of K−1 and hence preserve the perfor-
mance and sparsity. As a result, SUPREME is fully com-
patible with PRIMA and the selection of s0 can be avoided.
When multipoint expansions are required, we also develop
an efficient passive reluctance-based multipoint expansion
procedure. Due to the compatibility to PRIMA, the accu-
racy is exact the same as the PRIMA algorithm.

Second, to enable efficient inductive substrate analysis, we
derive the RLKC substrate models from the Maxwell’s equa-
tions. As a result, the substrate model is fully compatible
with general circuit simulators and model order reduction al-
gorithms as well. As a result, power-delivery and substrate
can be therefore easily be simulated together by efficient
model order reduction techniques such as SUPREME.

The experimental results show that SUPREME is very ef-
ficient and accurate. It demonstrates over 50X runtime im-
provement over another state-of-the-art time domain simu-
lator with less than 3% of error. The experimental results on
our accurate substrate model also show that high frequency
inductive effects are need to be taken into consideration.

2. MODEL ORDER REDUCTION METHOD
WITH RELUCTANCE

A linear circuit containing RLC elements can be repre-
sented as the following set of Modified Nodal Analysis (MNA)
circuit equations.[

G AT
l−Al 0

] [
vn

il

]
+

[
C 0
0 L

]
d

dt

[
vn

il

]
=

[−AiIs

0

]
, (1)

where G and C are the conductance and capacitance ma-
trices respectively, Al and Ai represent the adjacency ma-
trices of inductors and independent current sources, vn and
il denote vectors of nodal voltages and inductance current
variables, and L is the inductance matrix containing self and
mutual inductance information.

Model order-reduction methods [11][14][15] generate an
analytic model, which is a compact description of original
circuits by matching their moments or poles. Equation (1)
can be written in Laplace domain:[

G AT
l−Al 0

] [
vn

il

]
+ s

[
C 0
0 L

] [
vn

il

]
=

[−AiIs

0

]
. (2)

To illustrate the idea of moment matching, we expand both
sides of the Equation (2) in a Taylor series around frequency
s = 0 and rearrange the terms, we can get([

G AT
l−Al 0

]
+ s

[
C 0
0 L

]) [
mv

0 + mv
1s + mv

2s2 + · · ·
mi

0 + mi
1s + mi

2s2 + · · ·
]

=

[−Ai(u0 + u1s + u2s2 + · · · )
0

]
. (3)

where mv
k mi

k and uk are the coefficients of the kth term
in the Taylor series, which are also known as the kth mo-
ments of vn, il, and Is respectively. The basic idea of mo-
ment matching is to calculate finite number of moments in
the left-hand-side in terms of the known moments in the
right-hand-side, and use the obtained moments to approxi-
mate the whole frequency-domain spectrum of a circuit. In
PRIMA, a special case of the above equation, sources are
assumed to be impulse functions attached to ports to pre-
serve the I/O transfer characteristics, and hence only u0 is
present in the right-hand-side of (3).

The voltage and current moments can be calculated by
solving the following procedure:[

G AT
l−Al 0

][
mv

0
mi

0

]
=

[−Aiu0

0

]
;[

G AT
l−Al 0

][
mv

k
mi

k

]
=

[−Aiuk
0

]
−
[
C 0
0 L

][
mv

k−1

mi
k−1

]
. (4)

In order to avoid numerical errors, an orthonormalization
process is often used to span the same subspace as spanned
by the finite moments. Using the orthogonal bases V, which
is a Krylov subspace, as a projection matrix and perform a
congruent transformation, the original system equation (1)
can be reduced to a small-dimentional one:

G̃x̃ + C̃
d

dt
x̃ = b̃, (5)

where

G̃ = V
T

[
G AT

l−Al 0

]
V, C̃ = V

T

[
C 0
0 L

]
V, b̃ = V

T

[ −AiIs

0

]
.

Since the dimension of Equation (5) is very small, the time-
domain simulation for this equation is not crucial to the total
runtime. The major effort of order reduction methods is to
solve (4) and construct the projection basis. There are two
reasons that order reduction method is more efficient than
the MNA time-domain solution. First, procedure (4) only
has to factorize the conductance matrix, while the MNA has
to decompose the summation of the conductance and sus-
ceptance matrices, which is much denser than the former
case and introduces more fill-in that kill the performance.
Second, (4) only has to perform backward and forward sub-
stitutions for a few times, which the MNA has to do that for
every time-step with the denser lower and upper triangular
matrices.

About the moments for sources, uk, in (3), it can be cal-
culated by the Laplace transform and some algebraic oper-
ations. It was also proven that finite time piece-wise-linear
(PWL) sources have zero negative-order moments and no
moment shifting is needed [15].



2.1 Deal with Reluctance
Reluctance matrix K is the inverse of the partial induc-

tance matrix L. It was shown that reluctance matrix has
better locality and can be extract by the windowing tech-
nique [8][16][9]. Contrasting to the dense inductance matrix
L, the reluctance matrix K can be very sparse and approx-
imates the magnetic coupling effect accurately. In the fol-
lowing discussion, the symbol K means the sparse reluctance
matrix, not the actual inverse of the dense partial inductance
matrix. In case the reluctance matrix is known instead of the
inductance matrix, the system equation (2) can be rewritten
into[

G AT
l−Al 0

] [
vn

il

]
+ s

[
C 0
0 K−1

] [
vn

il

]
=

[−AiIs

0

]
. (6)

Since the only change in this equation is that replacing L
with K−1, we can easily rewrite the moment-calculation it-
eration in (4) as follows,[

G AT
l−Al 0

][
mv

k
mi

k

]
=

[−Aiuk

0

]
−
[
C 0
0 K−1

][
mv

k−1

mi
k−1

]
.(7)

The left-hand-side of this equation remains the same, which
means we are solving the same matrix for both L and K
approaches. The matrix multiplication in the right-hand-
side of (4) can be simply calculated by[

C 0
0 L

][
mv

k−1

mi
k−1

]
=

[
Cmv

k−1

Lmi
k−1

]
=

[
Cmv

k−1

K−1mi
k−1

]
. (8)

While the upper part of this vector remains the same, we
can obtain the lower part by solving K. The Cholesky de-
composition can be applied to solve this matrix since K is
shown to be symmetric and positive definite; the cost of
solving this matrix wouldn’t be high because of its sparsity.
Orthonormalizing the moment vectors, we can span the pro-
jection matrix V and perform congruent transformation as

in Equation (5). G̃ and b̃ remain the same, and C̃ can be
obtained as follows:

C̃ = VT

[
C 0
0 K−1

]
V =

[
V T
1 CV1

V T
2 K−1V2

]
, (9)

where V1 and V2 are the upper and lower parts of V respec-
tively. Similar to the moment-matching process, the reduced
matrix can be obtained by replacing the LV2 multiplication
with solving K. The Cholesky-decomposed matrix of K in
previous step can be reused in this step.
Comparison with SNOR and EMOR

By substituting the bottom set of equation in (6) into the
top one and eliminating the current variable il, ENOR[12]
and SMOR[13] are able to perform the model order re-
duction method with reluctance elements. However, both
of them have to solve the matrix (Cs0 + G + Γ

s0
), where

Γ = AlKAT
l and s0 is the specific frequency that the Taylor

series is expanded around. This matrix is actually harder to
solve as the reasons listed in the next paragraph. Compared
to these two works, the advantages of our proposed method
are also listed as follows.

1. The proposed algorithm doesn’t need to solve (Cs0 +

G+ Γ
s0

) but it factorizes
[

G AT
l−Al 0

]
and K separately.

It’s known that the run-time of the matrix factoriza-
tion is determined by the number of fill-ins, and the
number of fill-ins is determined by the degree of con-
nectivity of the matrix. Thus summation of these three
matrices, (Cs0 +G+ Γ

s0
), would be much denser than

two separated ones, and also much more difficult to
solve. Not to mention that matrix C is not involved
in this procedure.

2. The term Γ
s0

has s0 as the denominator, which means
s0 can be any number but not zero. Zero frequency
(DC) is very important that one might care about. De-
sired circuit simulation may not always contain noisy
signals, but some quiet ones. Not matching the mo-
ment around 0 may losses the accuracy for DC and
limits its application. Applications such as power-grid
and substrate analyses contain a big portion of DC
signal. Interconnection such as a bus usually has some
bits with transitions and some bits without. If the
frequency-domain information for DC is not accurate,
the simulation results for those quiet lines may look
noisy although the actual responses are not.

3. Factorization for matrix
[

G AT
l−Al 0

]
can also be used

to solve the DC solution, which is useful for most of
the simulation problems. No extra effort is required.

Table 1 summarizes the algorithm described in this sec-
tion.

The SUPREME algorithm
Input: a circuit equation as (1);

a desired number of moments m;

Find projection matrix:
1 Calculate the moments for input sources uk, k = 0∼m−1;

2 Let Ĝ =

[
G AT

l−Al 0

]
, and bk =

[−Aiuk

0

]
;

3 Decompose Ĝ and K;

4 m0 = Ĝ−1b0, α0 = 1
||m0|| , and r̂0 = r0 = α0m0.

5 For k = 0 : m− 1
6

rk = Ĝ−1

(
k−1∏
j=0

αjbk −
[
C 0
0 K−1

]
rk−1

)
,

where the matrix multiplication can be down by (8).
Note that K−1ri

k−1 is implicitly solved by the factor-
ized LU; we never explicitly perform the inversion.

7

r̂k = rk −
k−1∑
j=0

(r̂T
j rk)r̂j ← orthogonalize

αk =
1

||r̂k|| , r̂k = αkr̂k, and rk = αkrk ← normalize

8 End
9 V = {r̂0, r̂1, · · · , r̂m−1} is the projection matrix.

Reduce the system:
1 Calculate G̃ = VT ĜV.

2 Calculate C̃ = VT

[
C 0
0 K−1

]
V by (9).

K is again implicitly solved by the factorized LU.

3 Calculate B̃ = VT

[−Ai

0

]
.

3 The reduced system becomes G̃x̃ + C̃ ˙̃x = B̃Is.

Table 1: The model order reduction algorithm with
reluctance



2.2 Multipoint Expansion
The previous discussion expands the input sources with

Taylor series and matches system moments at s = 0. This
would be adequately accurate for low frequency components
of the circuit responses. In case we want to have better
accuracy for higher frequencies, we can expand the input
sources and responses with Taylor series at s = s0, where s0

is the desired frequency. Defining a new variable z = s− s0,
Equation (3) becomes([

G AT
l−Al 0

]
+ s

[
C 0
0 L

]) [
m̂v

0 + m̂v
1z + m̂v

2z2 + · · ·
m̂i

0 + m̂i
1z + m̂i

2z2 + · · ·
]

=

[−Ai(û0 + û1z + û2z2 + · · · )
0

]
, (10)

where m̂ and û are coefficients of Taylor series of system
responses and input sources respectively. Pre-multiplying

both sides of (10) by
[

I 0
0 K

]
, we have

([
G AT

l−KAl 0

]
+ s

[
C 0
0 I

])[
m̂v

0 + m̂v
1z + m̂v

2z2 + · · ·
m̂i

0 + m̂i
1z + m̂i

2z2 + · · ·
]

=

[−Ai(û0 + û1z + û2z2 + · · · )
0

]
. (11)

Substituting s = z + s0 and performing moment-matching
process similar to (4), we get the following recurrence rela-
tion:[

G + s0C AT
l−KAl s0I

][
m̂v

0
m̂i

0

]
=

[−Aiû0

0

]
;[

G + s0C AT
l−KAl s0I

][
m̂v

k
m̂i

k

]
=

[−Aiûk

0

]
−
[
C 0
0 I

][
m̂v

k−1

m̂i
k−1

]
.(12)

Note that the moments calculated by (12) are equivalent
to those matched from Equation (10). Hence we can use
the new orthonormal basis to project the original system
equation (1) and obtain (5) and (9).

Model order reduction methods using congruence trans-
formations are proven to be passivity-preserved and stable,
as long as the system satisfies that D+DT is a non-negative

matrix [11][15][13], where D =

[
G AT

l−Al 0

]
+ s

[
C 0
0 L

]
is

the system matrix. Since the moments obtained from (12)
match the original system equation (1), the projection pro-
cess is the same as in [15]; the passivity is still preserved for
the above model order reduction method with reluctance
elements.

3. AN APPLICATION TO SUBSTRATE AND
POWER-DELIVERY CO-ANALYSIS

In this section, we propose a new substrate model, which
take the magnetic coupling effect into consideration. For the
purpose of the next substrate model derivation, we first list
the four Maxwell equations as follows.

�× E = −∂B/∂t (13)

�× H = J + ∂D/∂t (14)

� · D = ρ (15)

� · B = 0 (16)

3.1 Substrate RC model
Outside the diffusion/active areas and contact areas, the

substrate can be treated as consisting of uniformly-doped
semiconductor-material layers of varying doping densities[1].
Ignoring the magnetic effect, taking divergence of both sides

of Equation (14), and using the null identity (�· (�×A) =
0), we have

ε · ∂

∂t
(� · E) +

1

ρ
� ·E = 0 . (17)

Let � · E = k, where k = ρ/ε can be derived from Gauss’
law (15). Integrating k over a volume Ωi around node i as
shown in Figure 1 and applying divergence theorem, we can
get ∫

Ωi

kdΩ =

∫
Ωi

� · EdΩ =

∫
Si

EdS , (18)

where and Si is the surface area around cube i. The integral
of Equation (18) can be approximated as∑

j

Eij
i · Sij

i =
∑

j

Eij
i · wij

i dij
i = k · Ωi , (19)

and hence

� · E = k =
1

Ωi

∑
j

Eij
i · wij

i dij
i . (20)

Substituting (20) into (17) and using

Eij
i =

(Vi − Vj)

hij
i

. (21)

Equation (17) becomes

∑
j

[
(Vi − Vj)

Rij
i

+ Cij
i

(
∂Vi

∂t
− ∂Vj

∂t

)]
= 0 , (22)

in which

Rij
i = ρ

hij
i

wij
i dij

i

, and (23)

Cij
i = ε

wij
i dij

i

hij
i

. (24)

The RC model of Equation (22) is shown in Figure 2(a).

cell i

cell j

hi
ij

di
ij

wi
ij Si

ij

i

Figure 1: A control volume for a cell in the substrate

3.2 Substrate RLKC model
In case the magnetic effect is not negligible, the electric

field intensity contains two parts according to the Helmholtz’s
theorem.

E = −� V − ∂A

∂t
, (25)

where A is the magnetic vector potential. Under the quasi-
static assumption, A can be obtained from the solution of
a vector Poisson’s equation.

A =
µ0

4π

∫
Ω

J

r
dΩ =

µ0

4π

∫
a

∫
l

J · dl

r
da , (26)



(a) (b)

cell i

cell j

Ri
ij Ci

ij Ri
ij Ci

ij

Lii
ij

cell i

cell j Lik
ij

coupling to cell k

Figure 2: (a) RC model and (b) RLC model for a
cell in substrate

where Ω is a control volume, J is the current density, l is the
length of the control volume, and a is the area of its cross
section. With the time-varying magnetic field consideration,
Equation (21) has to be rewritten. In order to calculate

Eij
i , we calculate the average magnetic vector potential by

integrating (26) over the volume of cell i and dividing it by
the volume. Equation (21) thus becomes

Eij
i =

(Vi − Vj)

hij
i

− ∂

∂t

∑
k

µ0

4π

1

Ωi

∫
a

ij
i

∫
a

ij
k

∫
h

ij
i

∫
h

ij
k

Jij
k dl·dl

r
dada

=
(Vi − Vj)

hij
i

− ∂

∂t

∑
k

µ0Iij
k

4πΩia
ij
k

∫
a

ij
i

∫
a

ij
k

∫
h

ij
i

∫
h

ij
k

dl·dl

r
dada

=
(Vi − Vj)

hij
i

− 1

hij
i

∑
k

µ0

4πaij
i aij

k

∫
a

ij
i

∫
a

ij
k

∫
h

ij
i

∫
h

ij
k

dl·dl

r
dada

∂Iij
k

∂t

=
(Vi − Vj)

hij
i

− 1

hij
i

∑
k

Lij
ik

∂Iij
k

∂t
, (27)

where k means the kth node in the circuit, J ij
k and Iij

k denote

the current density and the current of the kth node running

in the direction of �ij respectively, r is the distance between
nodes i and k, and L is the inductance. Using Eij

i derived in
Equation (27) for (20), and substituting �·E into Equation
(17), we get

∑
j

(Vi−Vj)−
∑

k Lij
ik

∂I
ij
k

∂t

Rij
i

+ Cij
i

∂

∂t

(
(Vi−Vj)−

∑
k

Lij
ik

∂Iij
k

∂t

) = 0 ,

(28)
where

Rij
i = ρ

hij
i

wij
i dij

i

, (29)

Cij
i = ε

wij
i dij

i

hij
i

, and (30)

Lij
ik =

µ0

4πaij
i aij

k

∫
a

ij
i

∫
a

ij
k

∫
h

ij
i

∫
h

ij
k

dl · dl

r
dada . (31)

Equations (29) and (30) are exactly the same as (23) and
(24). Equation (28) is similar to (22); their only difference
is that the voltage drop (Vi − Vj) in the RC cases shifts to
the voltage drop minus the Ldi/dt drop. Therefore, the RC
model in Figure 2(a) can be modified and becomes a new
RLC model, which is shown in Figure 2(b).

Note that the inductance equation (31) is the same as
the partial inductance formula commonly used in the in-
terconnect inductance extraction process. Due to the long-
range nature of the partial inductance, it will lead to a big

dense inductance matrix if we try to extract the mutual
coupling between every inductance element. Supposed we
have a n × n × n 3-D grid, the number of self inductors in
this grid for one direction is n3, and the number of total
coupling will be n6. It’s impossible to extract and simu-
late such a model with this high complexity. Therefore, we
apply the windowing reluctance extraction technique[9] to
simulate the magnetic effect in this model.

3.3 Power-delivery and Substrate Co-analysis
On a VLSI chip power is transferred through many com-

plicated circuit structures. A power-delivery structure ex-
ample is shown in Figure 3. From the power supply through
the PCB, packaging, I/O pins, C4-bumps, and on-chip in-
terconnect to the transistors, every portion of the circuit in
the power-delivery path plays a crucial role for the quality
of power delivery. All of them need to be carefully modeled
and designed.

Substrate

Transistors

Bonding Wire

via

C4 Bond

Power Grid

GND

GND VDD

VDD

I/O Pad

Figure 3: Power-delivery structure on the substrate

Usually, power-delivery structure is modeled with RC or
RLC lump elements. Thus a power-grid model looks will be
a multi-layer RL meshes. Between the power and ground
meshes, there are independent current sources extracted or
estimated form transistor behavior, and capacitors that model
on chip decoupling capacitances. As a result of [3], a power-
grid model without taking substrate into consideration actu-
ally over-estimates the voltage fluctuation on power-delivery
structures. Therefore, we combine the RLC power-grid model
with the RLC substrate model proposed as test cases, and
perform the model order reduction with reluctance elements.
The results are shown in the following section.

4. SIMULATION RESULT
We implements the SUPREME in C/C++ programming

language. We also implement the MNA-based simulator
that can deal with reluctance elements. In order to have
fare comparison, both MNA and SUPREME use the same
state-of-art sparse matrix solver. The simulations are run on
an Intel Pentium IV 1.4GHz system with RedHat 7.2 Linux
operation system.

Figure 4 shows the responses for RC and RLKC substrate
models that are proposed in the previous section respec-
tively. The input signal is an unit ramp voltage source
starting at 0.5ps; we measure the node that is 100µm away
from this input signal. The thickness of the substrate is
set to 40µm. The responses show that the RLKC model



cause a 50% overshoot compared to the RC model. Mag-
netic couplings do affect the substrate system. During the
transition of transistors in digital circuits, the sources cause
high-frequency noises on other circuits on the chip.
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Figure 4: The responses for RC and RLKC sub-
strate models.

Figure 5 and Table 2 show the simulation results for power-
grid substrate co-analysis models. Figure 5 shows the wave-
form comparison of the SUPREME and the MNA-based ex-
act solution. The results demonstrate the superior runtime
and accuracy over traditional MNA-based simulation. The
speedup for the circuit with 40923 nodes is 44.2x. While
the circuit size becomes larger, more significant speedup
can be expected. Figure 6 shows runtime comparison of
SUPREME and MNA. From the log-scale diagram, the run-
time of SUPREME is almost linear and has orders of mag-
nitude speedup, while our MNA-based simulator is super-
linear.
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Figure 5: The comparison of waveforms on
power(left) and ground(right) between the MNA ex-
act solution and SUPREME

# of # of # of # of MNA SUPRIME
nodes elements couplings sources runtime runtime

486 1009 2312 125 15.81 1.10
3858 8433 21352 977 283.09 10.81
10438 23073 59592 2367 1073.78 31.86
40923 91243 239192 10322 4978.77 112.60
162043 362883 958392 40842 - 464.16
363363 814923 2157592 91562 - 1078.54

Table 2: Runtime(sec) comparison between MNA
exact solution and SUPRIME
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