Amortized Analysis of Splay Trees

(Amortized Analysis of Splay Trees)

Data Structures and Programming

Spring 2017 1 / 1

- Amortized complexity of search, insert, delete, and split is $O(\log n)$.
- Actual complexity of each splay tree operation is the same as that of the associated splay.
- Sufficient to show that the amortized complexity of the splay operation is $O(\log n)$.

- *size*(*x*) = #nodes in subtree whose root is *x*.
- $rank(x) = floor(log_2 size(x)).$
- $P(i) = \sum_{tree node x} rank(x)$.
 - ► *P*(*i*) is potential after *i*′th operation.
 - ► *size*(*x*) and *rank*(*x*) are computed after *i*'th operation.
 - P(0) = 0.
- When join and split operations are done, number of splay trees > 1 at times.
 - ▶ *P*(*i*) is obtained by summing over all nodes in all trees.

- *size*(*x*) is in red.
- *rank*(*x*) is in blue.
- Potential = 5.

(Amortized Analysis of Splay Trees)

Splay Step Amortized Cost

- If *q* = null or *q* is the root, do nothing (splay is over).
 - $\Delta P = 0$
 - amortized cost = actual cost + $\Delta P = 0$.
- If *q* is at level 2, do a one-level move and terminate the splay operation.

- r(x) = rank of x before splay step.
- r'(x) = rank of *x* after splay step.
- $\Delta P = r'(p) + r'(q) r(p) r(q) \le r'(q) r(q)$
- amortized cost = actual cost + $\Delta P \leq 1 + r'(q) r(q)$.

2-Level Move (Case 1); Case 2 is similar

•
$$r'(q) = r(gp)$$
 $r'(gp) \le r'(q)$
 $r'(p) \le r'(q)$ $r(q) \le r(p)$
• $\Delta P = r'(gp) + r'(p) + r'(q) - r(gp) - r(p) - r(q)$
 $\le r'(q) + r'(q) - r(q) - r(q) = 2(r'(q) - r(q)) \le 3(r'(q) - r(q)) - 1$
• amortized cost = actual cost + ΔP
 $\le 1 + 3(r'(q) - r(q)) - 1 = 3(r'(q) - r(q))$

- When *q* ≠ null and *q* is not the root, zero or more 2-level splay steps followed by zero or one 1-level splay step.
- Let r''(q) be rank of q just after last 2-level splay step.
- Let *r*^{*'''*}(*q*) be rank of *q* just after 1-level splay step
- Amortized cost of all 2-level splay steps is $\leq 3(r''(q) r(q))$
- Amortized cost of splay operation $\leq 1 + r'''(q) - r''(q) + 3(r''(q) - r(q))$ $\leq 1 + 3(r'''(q) - r''(q)) + 3(r''(q) - r(q))$ = 1 + 3(r'''(q) - r(q)) $\leq 3(floor(\log_2 n) - r(q)) + 1$

イロト イポト イヨト イヨト