Amortized Analysis of Splay Trees

Bottom-Up Splay TreesAnalysis

- Amortized complexity of search, insert, delete, and split is $O(\log n)$.
- Actual complexity of each splay tree operation is the same as that of the associated splay.
- Sufficient to show that the amortized complexity of the splay operation is $O(\log n)$.

Potential Function

- $\operatorname{size}(x)=\#$ nodes in subtree whose root is x.
- $\operatorname{rank}(x)=$ floor $\left(\log _{2} \operatorname{size}(x)\right)$.
- $P(i)=\sum_{\text {tree node } x} \operatorname{rank}(x)$.
- $P(i)$ is potential after i^{\prime} th operation.
- $\operatorname{size}(x)$ and $\operatorname{rank}(x)$ are computed after i^{\prime} th operation.
- $P(0)=0$.
- When join and split operations are done, number of splay trees >1 at times.
- $P(i)$ is obtained by summing over all nodes in all trees.

Example

- $\operatorname{size}(x)$ is in red.
- $\operatorname{rank}(x)$ is in blue.
- Potential $=5$.

Splay Step Amortized Cost

- If $q=$ null or q is the root, do nothing (splay is over).
- $\Delta P=0$
- amortized cost $=$ actual cost $+\Delta P=0$.
- If q is at level 2 , do a one-level move and terminate the splay operation.

- $r(x)=$ rank of x before splay step.
- $r^{\prime}(x)=$ rank of x after splay step.
- $\Delta P=r^{\prime}(p)+r^{\prime}(q)-r(p)-r(q) \leq r^{\prime}(q)-r(q)$
- amortized cost $=$ actual cost $+\Delta P \leq 1+r^{\prime}(q)-r(q)$.

2-Level Move (Case 1); Case 2 is similar

- $r^{\prime}(q)=r(g p) \quad r^{\prime}(g p) \leq r^{\prime}(q)$
$r^{\prime}(p) \leq r^{\prime}(q) \quad r(q) \leq r(p)$
- $\Delta P=r^{\prime}(g p)+r^{\prime}(p)+r^{\prime}(q)-r(g p)-r(p)-r(q)$

$$
\leq r^{\prime}(q)+r^{\prime}(q)-r(q)-r(q)=2\left(r^{\prime}(q)-r(q)\right) \leq 3\left(r^{\prime}(q)-r(q)\right)-1
$$

- amortized cost $=$ actual $\operatorname{cost}+\Delta P$

$$
\leq 1+3\left(r^{\prime}(q)-r(q)\right)-1=3\left(r^{\prime}(q)-r(q)\right)
$$

Splay Operation

- When $q \neq$ null and q is not the root, zero or more 2-level splay steps followed by zero or one 1-level splay step.
- Let $r^{\prime \prime}(q)$ be rank of q just after last 2-level splay step.
- Let $r^{\prime \prime \prime}(q)$ be rank of q just after 1-level splay step
- Amortized cost of all 2-level splay steps is $\leq 3\left(r^{\prime \prime}(q)-r(q)\right)$
- Amortized cost of splay operation

$$
\begin{aligned}
& \leq 1+r^{\prime \prime \prime}(q)-r^{\prime \prime}(q)+3\left(r^{\prime \prime}(q)-r(q)\right) \\
& \leq 1+3\left(r^{\prime \prime \prime}(q)-r^{\prime \prime}(q)\right)+3\left(r^{\prime \prime}(q)-r(q)\right) \\
& =1+3\left(r^{\prime \prime \prime}(q)-r(q)\right) \\
& \leq 3\left(\text { floor }\left(\log _{2} n\right)-r(q)\right)+1
\end{aligned}
$$

